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Abstract 

Visual sensor networks (VSNs) apply directional sensors that can be configured only in one direction and also can be set in 

one of the possible observing ranges. In this battery-resource-limited environment, battery management and network lifetime 

expansion are still important challenges. The target coverage problem in such networks, in which all of the specified targets 

must be continuously observed and monitored by administrators is formulated as an integer linear programming problem (ILP) 

that is an NP-Hard problem. Although several approaches have been presented in the literature to solve the aforementioned 

problem, the majority of them suffer from getting stuck in the local trap and low exploration in search space. To address the 

issue, a discrete cuckoo-search optimization algorithm (DCSA) is extended to solve this combinatorial problem. The discrete 

operator of the proposed algorithm is designed in such a way that explore search space efficiently and lead to balancing in the 

local and global search process. The proposed algorithm was examined in different conducted scenarios. The returned results 

of simulations of numerous scenarios show the dominance of the proposed algorithm in comparison with other existing 

approaches in terms of network lifetime maximization. In other words, the proposed DCSA has 19.75% and 13.75% 

improvement in terms of network average lifetime expansion against HMNLAR and GA-based approaches respectively in all 

scenarios. 
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1. Introduction 

A typical directional sensor network (DSN) 

comprises a set of directional sensors that can be 

configured based on the situation. Each directional 

sensor is adjusted in one of its possible directions 

and is a configurable range based on the target 

distance. The ultrasonic, radar, and video camera 

sensors, and visual sensor networks (VSNs) are 

typical kinds of DSN [1-3]. Target coverage is a key 

issue in harsh or expensive industries in which the 

predetermined targets in the observing field should 

be permanently observed and monitored by admins 

to react carefully according to the events in 

observing environment [4]. In this environment, one 

of the most important challenges is to manage the 

battery consumption of sensors in such a way that 

the sensors are utilized uniformly. Although 

different technologies for energy harvesting are 

used, utilizing these technologies is impossible or 

expensive in some cases. However, battery usage 

management is still a challenge. Fig. 1 illustrates a 

common DSN. In this network, 5 different targets 

must be continuously observed and monitored by 5 

available configurable directional sensors in the 

two-dimensional observing environment. 

The uniformly engagement of sensors leads to 

distribute their battery usage and more round the 

targets can be observed. On the other hand, the naïve 

usage of sensors may lead into inefficiency in which 

the early battery depletion does not let the network 

observe all of the targets in the field. To solve the 

problem efficiently, the new concept of “cover“ is 

defined. A cover is a set of configured sensors not 

all available sensors in which they collaboratively 

can observe all of the targets in the field.  
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Fig. 1. A common DSN with 5 directional sensors 

observing 5 different targets [1]. 

Eq. (1) draws a valid cover by utilizing only 4 

sensors out of 5 alive sensors. Note that, sensor 𝑆4 is 

configured in sleep mode to save energy. 

𝑐𝑜𝑣𝑒𝑟 = {𝑆1(1,2), 𝑆2(2,2), 𝑆3(3,1), 𝑆5(3,2)} (1) 

Note that, the notation 𝑆5(3,2) means that the 

sensor 𝑆5 is activated in its 3rd direction by 

adjustment of its 2nd range observing target 𝑇4. Once 

a cover is utilized for some time, the other sensors 

are set to sleep mode to save energy in that time.  

Then, another cover that utilizes other configured 

sensors is engaged. This procedure is iterated until 

the battery depletion of sensors does not let to 

creating another cover. The sum of the engagement 

time of utilized covers is named network lifetime. 

The objective of this paper is to maximize network 

lifetime. This is an optimization problem which 

needs an efficient algorithm. The need for 

developing an efficient algorithm is necessary to 

create ample covers and switch between them to 

utilize all sensors as uniformly as possible. In this 

way, network lifetime is promisingly increased. 

Therefore, the innovations of this paper are enlisted 

below: 

− It formulates the network lifetime maximization 

into a discrete optimization model. 

− It designs a discrete cuckoo search optimization 

scheduling algorithm (DCSA) to solve stated 

discrete optimization problem. 

− The proposal is tested in different scenarios to 

be trustable for engagement in the real world. 

− The rest of the paper is organized as follows. 

 Section 2 reviews related works. Section 3 presents 

the problem statement formally. The suggested 

DCSA is elaborated in section 4. The performance 

of this proposal is verified in Section 5. Section 6 

concludes the paper along with getting a clue for 

future direction. 

2. Related Works 

The profound literature review in target 

coverage and lifetime maximization of DSNs, 

reveals that we can classify algorithms in two main 

categories. The categories are heuristic-based and 

meta-heuristic-based approaches. Target coverage 

problem is a class of k-coverage problem in DSNs 

once the parameter k is taken 1. In k-coverage 

problem, each target must be permanently observed 

by k different sensors to improve reliability of 

observation [3]. To this end, Zannat et al. suggested 

number of heuristics to figure out the k-coverage 

problem in VSN so that each video sensor is 

configured in right direction and minimum coverage 

range to optimal electricity usage [4]. Jinglan Jian et 

al. proposed a heuristic approach to take full-view 

target coverage in VSNs [5]. Similar heuristic has 

been suggested in literature to apply sensor nodes in 

WSNs to maximize target coverage subject to taking 

sensor directions and battery limitations at the same 

time [6]. Other heuristics have been presented by 

Tan and Jarvis to balance between detection and 

target coverage process [7]. Xu et al. proposed a 

hierarchical target-oriented multi-agent 

coordination framework (HiT-MAC) to improve 

target coverage issue in sensor networks [8].  They 

formulated the problem into an integer linear 

programming (ILP). To figure out this combinatorial 

ILP problem, the two-level heuristic was developed. 

In addition, a greedy target coverage-aware 

approach has been extended in literature to solve 

network lifetime maximization problem in battery-

limited environments [9].  Ahmad and Kohil 

presented bi-direction sensor placement algorithm to 

solve k-coverage problem to reduce data 

transmission costs and also increase network 

lifetime [10]. Mohammadi et al. introduced couple 

of heuristics each of which considers one of the 

prominent network parameters to solve target 

coverage problem [11]. Finally, they proposed a 

comprehenisive heuristic by incorporating all 

weighted effective network parameters which lead 

promising solution. Al Zishan et al. in [12] 

formulated target coverage and k-target coverage 

problems into an integer quadratic programing 

problem (IQLPP). In this paper two different over 

and under provisioned networks were investigated. 

A heuristic optimization algorithm so-called 

maximum coverage with minimum sensors 

(MCMS) was extended to solve stated IQLPP. To 

this end, a greedy algorithm opts a sensor in every 

round of optimization process by taking a 

predetermined criterion. This criterion is to select 

sensor that can cover the most number of targets as 

possible. In the large-scale problems, the heuristics 

seldom produce the most efficient solutions because 

the heuristics explore search space according 

predetermined criteria in which they cannot 

compensate the inefficient passed paths. To mitigate 

the challenge, the meta-heuristics have more time to 

explore search space and change the passed 

directions. A cuckoo search optimization algorithm 

was utilized in wireless sensor networks (WSNs) for 
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scheduling of sensors to cover targets [13]. A 

discrete grey wolf optimization algorithm (DGWA) 

was proposed by Ekhlas et al. to solve the k-

coverage problem in DSNs [3]. They proposed 

numerous discrete exploration and exploitation 

operators each of which was tailored with the 

discrete search space. Finally, the most efficient 

permutations led to promising solutions. One of the 

most applicable meta-heuristic algorithms is 

genetic-based (GA) algorithm because it can simple 

adapt itself with all kinds of problems [14-16]. To 

this end, a GA algorithm was suggested in literature 

to solve the k-coverage problem in both over-

provisioned and under-provisioned DSNs [17]. 

Investigation on meta-heuristic algorithm reveals 

that most of them have local search trend while 

others have global search trend. In addition, majority 

of them have evolutionary inclination which may be 

threatened with local optimum trap. One of the 

successful mat-heuristic algorithm is cuckoo search 

optimization algorithm (CSA) that engages superior 

and inferior solutions and gives the chance only to 

bad solutions [20]. This procedure lessens the 

getting stuck in local trap possibility. One of the 

most important operators of CSA is to utilize lévy 

flight process to keep randomness of searching. 

Since the stated problem is discrete, the discrete 

version of CSA is customized and presented. 

The literature comparison reveals that further 

processing is needed to introduce operators. In 

addition, it needs to call them at the right time to lead 

balancing in local and global searches and to 

produce the promising solutions as well. 

3. Problem Formulation 

In this section the problem statement is done. 

It is necessary to create a cover at a time. This cover 

including limited number of configured sensors in 

which every cover can observe all of the targets in 

the observing environment itself. Note that, if every 

cover is continuously utilized to monitor all targets, 

this procedure has the lowest efficiency [1, 3]. 

Therefore, designing the intelligent procedure which 

finds different covers and switch between them 

leads to better performance in terms of network 

lifetime maximization. If a cover 𝐶𝑖 is engaged for 

𝑇𝑖  unit of time in 𝑖 -th round; then, the sum of all 𝑇𝑖  

for i=1,…,M is named network lifetime. The 

objective of this paper is to maximize network 

lifetime that Eq. (2) calculates. This is an integer 

linear programming (ILP) problem which needs an 

efficient solution. 

Max. ∑ 𝑇𝑖

𝑀

𝑖=1

 (2) 

∑ ∑
∑ 𝑋𝑖𝑗𝑑𝐿×∆𝐿×𝑇𝑖 ≤ E

NRng

𝐿=1

    where d ϵ {1,2,…,DMax} ,  

𝑋𝑖𝑗𝑑𝐿∈ {0,1}  

M

j=1

m

i=1

 (3) 

∑ Zi

n

i=1

= n    , where   Zi ∈ {0,1} (4) 

𝑇𝑖≥ 0 ,  ∀  i=1,2,…,M   (5) 

Eq. (2) is the main objective that must be 

maximized subject to keeping some constraints. Eq. 

(3) shows that the sensors’ full battery (E) can be 

shared between rounds once the sensors are utilized 

for observation. Otherwise, the sensors are 

configured to sleep-mode to save energy. Two 

decision binary variables 𝑋𝑖𝑗𝑑𝐿 are 𝑍𝑖 used for 

different goals. For instance, the former is used to 

indicate the sensor 𝑆𝑖 is engaged in 𝑗–th round in its 

𝑑-th direction and 𝐿–th range whereas the latter 𝑍𝑖 

is used to show the target 𝑖–th is observed or not. Eq. 

(4) emphasizes that all of the targets in the field must 

be observed. Recall that the notation ∆𝐿 is the battery 

usage pattern of each sensor once it is configured in 

its 𝐿–th range. 

4. Proposed Meta-heuristic-based Methodology 

for Lifetime Improvement of DSN 

There are several meta-heuristic-based 

optimization algorithms. The majority of them are 

suitable for continuous optimization search space. 

Also, some of them are evolutionary-based in which 

their operators conduct solutions toward better area. 

Ignoring not toward not to explore worst area 

increase the getting stuck in local trap. To bridge the 

gap, the cuckoo search-based algorithm (CSA) is 

extended which has three promising features. 

Firstly, it is a discrete version tailored with the stated 

discrete optimization problem. Secondly, it even 

examines worse solutions which may produce 

efficient solutions probability. Thirdly, it introduced 

discrete operator which permutes search space 

efficiently.  

A)  Principles: Encoding and Fitness 

Function 

One of the most important concepts in meat-

heuristic approaches is how to present a candidate 

solution. The encoding indicates how the solution is 

encoded. The used encoding approach is similar to 

papers in [18-19]. In regard to DSN of Fig. 1, the 

cover calculated in Eq. (1) is encoded in Fig. 2.  

 
𝑡5 𝑡4 𝑡3 𝑡2 𝑡1 Target 

[2,2,2] [5,3,2] [3,3,1] [1,1,2] [1,1,2] Configured Sensor 

Fig. 2. An encoded cover as a candidate solution 
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The notation [5,3,2] in 𝑡4’s column means that 

the sensor 𝑆5 is activated in its 3rd direction by the 

2nd adjusted range to monitor target 𝑡4. To evaluate 

the competency of each candidate solution, a fitness 

function is determined. The fitness function is 

directly depends on the objective of the problem. To 

this end, the new fitness function is introduced in 

which a cover with lesser sum of adjustment ranges 

of utilized sensor is favorable. In this paper, Eq. (6) 

calculate a fitness value of each cover. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐶𝑜𝑣𝑒𝑟) = ∑ ∆𝐿

n

𝑗: Sj(𝑖,L)𝜖 𝑐𝑜𝑣𝑒𝑟

 (6) 

The proposed algorithm is iterated until the 

new cover cannot be made. If the battery level of 

alive sensors permit to create another cover, the new 

cover with the lowest sum of possible battery 

consumption is created. This is done by performing 

an enhanced CSA. Since the CSA algorithm is an 

endless approach similar to other meta-heuristic-

based algorithms, it is iterated for some rounds. 

B)  Description of the proposed Algorithm for 

solving the sated problem 

Algorithm 1 is dedicated to solve SDN’s 

lifetime expansion. It is iterated until the remaining 

battery of alive sensors can constitute the new cover. 

The main loop is between lines 7 and 40. Then, 

Algorithm 1 returns the efficient scheduling solution 

which includes the cover, its engagement time, and 

sensors’ configurations. As the proposed algorithm 

is CSA-based, in each round, it splits solutions into 

two different sets that are inferior and superior set of 

cuckoos. Before doing so, all cuckoos that are 

candidate solutions are evaluated by fitness function 

and then are sorted. The best solutions are placed in 

superior set while the worst solutions that have Pα 

probability are placed in the inferior solution set. 

In inferior update, pair of cuckoos are selected 

to mate with each other; then, two newborn cuckoos 

are generated. The newborn solutions are generated 

by calling Shuffle-based-LevyFlight procedure. The 

newborn solutions are directly substituted with 

parents, but in superior update, pair of cuckoos as 

two solutions are selected. Similar to previous 

section, two newborn solutions are generated. Each 

of newborn solutions is constituted with relevant 

parent provided it dominates associated parent in 

terms of objective function. After executing in 

several rounds, the best so far cuckoo is returned as 

an efficient solution. Shuffle-based-LevyFlight 

procedure in Algorithm 2 is called to explore 

discrete search space. The details of new Shuffle-

based-LevyFlight procedure is seen in Algorithm 2. 

 

 

Algorithm 1. Discrete Cuckoo Search Algorithm for SDN 

lifetime extension: 

Input:  

DSN: A given directional sensor network specification 

m : number of available sensors 

n : number of determined targets; 
DMax : All sensor’s directions; 

NRng : All adjustable ranges of each sensor; 

E : initial battery level of sensors; 

Iterations : maximum iterations; 
CuckooSize : size of all individuals in cuckoo swarm; 

Pα : probability of inferior cuckoos in the cuckoo swarm;  

Output: 

All efficient covers each of which is engaged for some time; 

1: SchedulingSolution  ϕ ; 
2: Lifetime  0 ; 

3: NPR  0 ; (* number of possible rounds *) 

4: For i  1 To m Do 

5:    Ei  1 ; (* The initial battery level of every sensor *) 

6: End-For 

7: Until 𝐴live sensors can observe all targets Repeat 

8: Create random initial cuckoos in the CuckooSwarm  

9: Calculate the fitness function for each cuckoo according to Eq. 

(6). 
10:Sort the CuckooSwarm based on fitness function in decreasing 

order. 

11: For Iter 1 to Iterations Do 
12: Partition CuckooSwarm into inferior and superior sets based 

on fitness function by Pα and (1- Pα) probability respectively; 

13: For random pairs of cuckoos  (Cuckoo𝑖, Cuckoo𝑗) in inferior 

set Do 

14:[Cuckoo𝑝, Cuckoo𝑞]NewLevyFlight (Cuckoo𝑖, Cuckoo𝑗, 

CuckooSwarm, CuckooSize) based on Algorithm 2 

15: Cuckoo𝑖   Cuckoo𝑝  

16:  Cuckoo𝑗    Cuckoo𝑞 

17: Fitness(Cuckoo𝑖)  Fitness(Cuckoo𝑝) 

18: Fitness(Cuckoo𝑗)  Fitness(Cuckoo𝑞) 

19: End-of-inferior-Changes 

20: Repeat partitioning of the newly updated CuckooSwarm into 

two inferior and superior sets; 
21:For random pairs of cuckoos  (Cuckoo𝑖, Cuckoo𝑗) superior set 

Do 

22:[Cuckoo𝑝, Cuckoo𝑞]NewLevyFlight (Cuckoo𝑖, Cuckoo𝑗, 

CuckooSwarm, CuckooSize) based on Algorithm 2 

23: Select two random cuckoos: Cuckoo𝑟1 and Cuckoo𝑟2 from 

CuckooSwarm 

24: If Fitness(Cuckoo𝑝) dominates Fitness(Cuckoo𝑟1) Then 

25: Cuckoo𝑟1  Cuckoo𝑝  

26: Fitness(Cuckoo𝑟1)  Fitness(Cuckoo𝑝) 

27:  End-if 

24: If Fitness(Cuckoo𝑞) dominates Fitness(Cuckoo𝑟2) Then 

25: Cuckoo𝑟2  Cuckoo𝑞  

26: Fitness(Cuckoo𝑟2)  Fitness(Cuckoo𝑞) 

27: End-if 
32: End-of-superior-Changes 

33: End-For-Iteration 

34: Sort Cuckoos in CuckooSwarm ; name the best cover be 
BestCover 

35: EngageTime  Set appropriate engagement time of 

BestCover based on the weakest sensor in terms of remaining 
battery. 

36: Lifetime  Lifetime + EngageTime; 

37: NPR  NPR +1; (* The new cover was constituted *) 

38:SchedulingSolution  SchedulingSolution ∪ { 

(NPR,BestCover, EngageTime) } 

39:Update sensors’ battery level which were engaged in current 

round; 
40: End-Repeat-Until 

41: Return SchedulingSolution, Lifetime, and NPR 

42:End-Algorithm 1 
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Algorithm 2. Shuffle-based-LevyFlight  

Input:  

CuckooSwarm : Swarm of cuckoos; 
SwarmSize : size of cuckoo swarm; 

Cuckoo𝑖, Cuckoo𝑗 : two consecutive cuckoos in CuckooSwarm; 

n : number of targets; 

m : number of sensors;  

Pα : probability of inferior cuckoos in the cuckoo swarm ; 

Output: 

Cuckoo𝑝, Cuckoo𝑞  : two new cuckoos; 

1: Draw two random integers R1 and  R2 whereas  1 ≤ R1 <  R2 

≤ n ;  

2:Cuckoo𝑝 Concatenate (Cuckoo𝑖[1.. R1], Cuckoo𝑗[R1+1.. 

R2],Cuckoo𝑖[R2+1..n]) 

3:Cuckoo𝑞  Concatenate (Cuckoo𝑗[1.. R1], Cuckoo𝑖[R1+1.. 

R2], Cuckoo𝑗[R2+1..n]) 

4: Return Cuckoo𝑝 and  Cuckoo𝑞 ; 

5: End-Algorithm 2 

 

As Algorithm 2, Fig. 3, and Fig. 4 illustrate the 

parents chromosome is partitioned in three parts, the 

first newborn solution gets the first and third parts of 

its body from its daddy’s parts while it heirs the 

second body part from mommy’s second part. The 

same behavior is done for second newborn cuckoo. 

Fig. 3 and Fig. 4 shows how the Shuffle-based-

LevyFlight procedure works. 
Cuckoo𝑖 

𝑡5 𝑡4 𝑡3 𝑡2 𝑡1 Target 
[5,1,2] [4,1,2] [3,2,1] [1,1,2] [1,1,2] Utilized 

Sensor 
Cuckoo𝑗 

𝑡5 𝑡4 𝑡3 𝑡2 𝑡1 Target 
[3,3,2] [4,1,2] [2,1,2] [1,1,2] [1,1,2] Utilized 

Sensor 
 

Fig. 3. Two cuckoos as two candidate solutions 

 

                   Cuckoo𝑝 

𝑡5 𝑡4 𝑡3 𝑡2 𝑡1 Target 

[5,1,2] [4,1,2] [2,1,2] [1,1,2] [1,1,2] Utilized 

Sensor 

Cuckoo𝑞 

𝑡5 𝑡4 𝑡3 𝑡2 𝑡1 Target 

[3,3,2] [4,1,2] [3,2,1] [1,1,2] [1,1,2] Utilized 

Sensor 

 

Fig. 4. Two newborn solutions 

5. Performance Assessment 

In this section, the performance of the 

proposed algorithm is assessed. To this end, some 

scenarios, environment description, and 

comparative algorithms are introduced.  

A) Scenarios  

Table 1 informs the considered scenarios. To 

compare the effectiveness of proposed algorithm, 

one heuristic and one meta-heuristic algorithm have 

been selected from literature. The former is heuristic 

maximum network length adjustable range 

(HMNLAR) [11] and genetic-based algorithm (GA) 

[17].  

Table.1. 
Scenarios Description 

Scenario no. 

 

Number of 

Sensors 

Number of 

Targets 

1 40 20 

2 50 30 
3 100 30 

4 150 50 

B) Simulation Environment 

Table 2 shows the specification of observing 

environment in terms of observing area, sensor 

battery usage pattern, directions, etc. 

Table.2. 
Description of Observing Environment 

Metric Value 

Monitoring district  1000 × 1000 (m2) 

Number of Targets 20~50 

Number of Sensors 40~150 

Max direction 1~3 (each 1200) 

Max Adjustable Range 1=(30 m), 2=(60m), 3=(90 m)  

Battery Usage level ∆𝐿=L , L=1,2,3 

C) Simulations and Data Analysis  

All comparative algorithms are executed on 

the same datasets and running on the same platform 

to reach fair results. To this end, all of the literature 

with their proposed algorithm have been coded in 

MATLAB 2019a programming language. The used 

platform was a laptop with Intel® Core i5-3230M 

CPU@ 2.60GHz, 8 GB RAM memory specification 

and Windows 7 64-bit as an operating system. 

Except for HMNLAR that is a heuristic algorithm, 

others have been independently run 30 times. The 

minimum, maximum, and average of network 

lifetime are reported. To this end, Table 4 is 

dedicated which informs the proposed algorithm 

beat others in terms of lifetime expansion 

significantly. In addition, the relative percentage 

deviation (RPD) parameter is adopted from 

literature to show in how extent the proposed 

algorithm improves network lifetime in comparison 

with other comparative approaches [21]. Therefore, 

last columns’ of Table 4 indicate the dominance 

amount of the proposed algorithm against other 

comparative algorithms. Since the heuristic 

algorithm works based on predetermined criteria, 

their performance does not change in different 

running; on the other hand, the meta-heuristic 

algorithms work probabilistically this is the reason 

why they have fluctuations. To this end, the 

minimum, maximum, an average values are 

monitored. One of the best features for deciding is 

to focus on average results. By a closer look at the 

average results, it can be concluded that the 
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proposed algorithm has the best performance in 

terms of network lifetime expansion. 

Table.3. 
Performance assessment by comparison of different algorithms 

in terms of objective 

Sen. Min-Max Lifespan  

in terms of unit of time (UT)  

Average (UT) 

 

 

RPD  (UT) 

HMN 

LAR 

GA DCSA HMN 

LAR 

 

GA D-

CSA 

Vs HMN 

LAR 

Vs GA 

1 1.55 1.65-1.95 2.10-2.35 1.55 1.77 2.22 43% 25% 

2 2.43 2.47-2.63 2.50-2.68 2.43 2.53 

 

2.58  6% 2% 

 

3 3.05 2.95-3.15 3.14-3.60 3.05 3.09 3.40 11% 10% 

4 3.55 3.57-3.85 3.95-4.47 3.55 3.72 4.23 19% 18% 

 

Also, in terms of RPD, the proposed algorithm 

has the dominance mount of 43% and 25% in 

comparison with MHNLAR and GA-based algorithm 

in the first scenario. In the second scenario, the 

marginal dominance is about 6% and 2% 

respectively. In the third scenario, this dominance 

against other competitors is about 11% and 10%. 

Finally, in the larger scale input known as fourth 

scenario, the dominance of D-CSA is about 19% and 

18% respectively in terms of network lifetime 

improvement. In this regard, Fig. 5 schematically 

depicts performance comparison of all comparative 

algorithms in a picture. 

 
Fig. 5. The average lifetime comparison between 

comparative algorithms separated in each scenario 

As Fig. 5 shows the proposed DCSA has the 

first place, after that the GA and HMNLAR are 

placed. Note that, the gained results of fourth 

scenario shows that proposed DCSA has high 

potential of scalability once the number of sensors 

and targets are significantly increased.  

6. Conclusion and Future Work 

This paper formulates the DSN lifetime 

expansion into a linear programming model (LPP) 

that is an NP-Hard problem. To figure out this 

combinatorial problem, a discrete version of CSA 

algorithm was extended. It takes the benefits that are 

designing new discrete lévy flight operator. This 

novel operator efficiently permutes discrete search 

space which leads to efficient solutions. The 

effectiveness of the proposed algorithm was verified 

against a famous heuristic and a successful meta-

heuristic algorithm on the same datasets running in 

the same platform. Simulation results verified the 

effectiveness of proposed algorithm in solving the 

stated problem. For future work, we intend to extend 

an efficient hybrid meta-heuristic algorithm which 

makes balancing in local search and global search of 

discrete search space by incorporating machine 

learning techniques. 
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