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Abstract 

The planning and operation of microgrids have become very important challenges in the electricity industry due to the 

expansion of distributed generation (DG) resources and the development of demand response programs (DRPs). Microgrids 

generally include renewable DG resources whose generation is random. This leads to uncertainty in system planning. This 

study discusses microgrid operation management considering DRPs and implementation of conservation voltage reduction 

(CVR) in the future operation horizon. For this purpose, a stochastic operation planning model for the next day is designed, 

which is associated with the implementation of DRPs, CVR, and the presence of DG resources to optimize the performance 

of a smart microgrid to increase reliability and reduce costs. In this study, DRPs are implemented using time-of-use (TOU) 

and incentive-based programs. Incentive-based programs are used to deal with uncertainty in the commitment of renewable 

resources, and TOU programs are used to deal with the fluctuation of generation of renewable resources by establishing a 

relationship between uncertainty and the fluctuation of generation of these resources. Besides, CVR is applied and voltage-

dependent load modeling is performed considering innovation in addition to the format of DRPs to further reduce peak loads. 

The uncertainty of DG resources is modeled using the information-gap decision theory (IGDT) method. This optimization is 

carried out on a sample microgrid using genetic algorithm (GA). According to the results, the implementation of uncertainty-

based DRPs leads to cost reduction and improvement of microgrid reliability. 
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1. Introduction 

Microgrids (MGs) have emerged as a 

promising solution to address the challenges 

associated with modern power distribution systems. 

They offer enhanced reliability, resilience, and 

energy efficiency. Conservation Voltage Reduction 

(CVR) is a key technique within microgrid planning 

that optimizes voltage levels to reduce energy 

consumption without compromising the quality of 

power delivered to end-users. The increasing 

demand for electricity, coupled with environmental 

concerns, has necessitated the development of 

sustainable and efficient power distribution 

solutions. Microgrids, which are localized, 

controllable, and often renewable-energy integrated 

systems, have gained importance for their potential 

to revolutionize the way we distribute and consume 

electrical energy. Within the framework of 

microgrid planning, the incorporation of CVR has 

become a crucial strategy for achieving energy 

efficiency goals [1]. CVR is a vital methodology 

employed in the delivery systems to guarantee that 

the voltage outline of the network remains within an 

acceptable range, as decided by the regulations 

established by the utility. Voltage regulation (VR) 

can be executed in various ways based on the 

conditions and demand of the system, and one such 

method is conservative voltage decrease (CVR), 

which entails decreasing the voltage level of the 

system or increasing it within the allowable range. 

CVR has garnered significant attention due to its 

potential to augment economic benefits and lessen 

costs linked to the functioning of power systems. By 
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adjusting the voltage outline of the delivery system, 

CVR can optimize the system's demand and increase 

the overall profitability of the network. Integrating 

CVR into microgrids offers several benefits [2]: 

− Energy Savings: CVR reduces energy 

consumption by maintaining voltage levels 

closer to the optimal range for end-users, 

resulting in significant energy savings. 

− Improved Grid Reliability: Microgrids with 

CVR enhance grid reliability by reducing 

voltage fluctuations and mitigating voltage-

related issues, such as overvoltage or 

undervoltage. 

− Enhanced Renewable Energy Integration: CVR 

helps stabilize voltage levels, facilitating the 

integration of intermittent renewable energy 

sources, such as solar and wind, into microgrid 

systems. 

− Environmental Impact: Reduced energy 

consumption translates to lower greenhouse gas 

emissions and contributes to environmental 

sustainability. 

Figure )1( represents a graphical representation 

of a system involving DG sources and VRs. In this 

context, DG sources likely refer to small-scale, 

decentralized energy generators such as solar panels, 

wind turbines, or geothermal systems. VRs are 

control devices that play a crucial role in regulating 

the voltage levels in the system, ensuring that they 

remain within acceptable limits. The figure 

highlights two distinct types of signals, color-coded 

for clarity. Signals depicted in red are associated 

with the production resources, which are 

presumably the DG sources. These red signals are 

indicative of the incentives provided by the 

electricity distribution company to encourage and 

support the operation of DG sources. Such 

incentives may encompass feed-in tariffs, net 

metering programs, or other financial mechanisms 

designed to promote renewable energy generation 

and reduce dependence on traditional grid sources. 

In contrast, the green signals in the figure are applied 

to loads within the system. These loads are 

characterized as being capable of participating in 

DR programs and implementing CVR strategies. DR 

programs typically involve adjusting electricity 

consumption patterns in response to grid conditions 

or price signals. By participating in DR, consumers 

can reduce their energy consumption during peak 

periods or when grid reliability is at risk. The 

application of green signals to these loads suggests 

a coordinated approach to managing electricity 

demand by encouraging load reduction and voltage 

optimization through CVR techniques. 
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Fig. 1. A graphical representation of a MG involving DG 
sources and VRs implementing DRPs and CVR 

 

CVR, has been extensively researched as a 

practical strategy for reducing peak loads, 

minimizing power losses, conserving energy, 

reducing operational expenses, and enhancing the 

dependability and security of power systems. In 

numerous studies, including a survey conducted in 

[3], the various applications of CVR and its potential 

to achieve economic operation and energy 

conservation have examined. In another study, the 

benefits and drawbacks of implementing CVR, its 

impact on cost reduction and energy conservation in 

power systems are discussed [4]. In [5], CVR was 

utilized to optimize the planning of a microgrid, 

determining the optimal placement and size of 

capacitors and distributed generations to enhance 

branch efficiency. Furthermore, [6] explored the 

energy-saving effects of implementing CVR and 

voltage optimization on the Ireland distribution 

system. The utilization of CVR to diminish energy 

usage and limit the maximum demand has been 

shown in [7]. In urgent situations where electrical 

energy availability is scarce to meet network 

demands, CVR can be employed to slightly reduce 

the demand, thereby enhancing the reliability and 

security of the power system. The effectiveness of 

CVR in enhancing power system stability, security, 

and reliability was assessed in [8]. In [9], the focus 

is on the growing energy requirements due to 

urbanization and technological progress, with a 

strong emphasis on the significance of incorporating 

renewable energy sources into conventional power 

grids. The paper conducts an assessment of 

optimization methods used for managing energy 

within microgrids, with a particular emphasis on the 

success of mixed integer programming, multi-agent-

based approaches, and meta-heuristics. The 

depletion of natural resources and the intermittent 

nature of renewable energy sources have 

underscored the necessity for hybrid microgrids, 

merging AC and DC technologies to mitigate 
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deficiencies and enhance system reliability [10]. 

These hybrid microgrids align with the current trend 

of scattered and concentrated energy loads. This 

paper represents critical issues related to hybrid 

microgrids, including their integration, security, 

reliability, power generation optimization, load 

management in various scenarios, uncertainty 

management for renewable energy, feeder 

placement optimization, and cost-effective control 

strategies. The authors in [11] presents a coordinated 

strategy for optimizing voltage and VAR control in 

interconnected MGs and distributed energy 

resources (DERs), with a specific focus on 

conserving voltage levels but adaptable to other 

voltage-VAR optimization (VVO) challenges. It 

incorporates various voltage-power control modes 

of DERs at both the distribution network and MG 

levels. Validation on two test systems reveals that 

this approach, on average, enhances grid efficiency 

by 4% compared to scenarios based on economic 

operation [12-13]. Demand Response Program 

(DRP) is a valuable tool for distribution system 

operators as it can lower operational costs, enhance 

power system reliability, and increase profits from 

energy sales [14]. The Emergency Demand 

Response Program (EDRP) serves as a means to 

manage electricity prices during distribution system 

reliability issues. This research introduces a 

formulation that calculates the ideal demand levels 

within the EDRP, considering the perspective of the 

Regional Market Manager (RMM). The objective is 

to minimize EDRP costs and achieve load curve 

smoothing, employing a logarithmic model and a 

demand elasticity matrix [15].  Modifying the 

energy consumption pattern during a specific time 

frame can impact the voltage profile of the system. 

Previous studies [16-17] have explored the effects of 

DRP on voltage in distribution systems. In [18], 

emergency DRP was implemented to manage and 

regulate voltage in automated distribution networks 

in real-time. Given that the implementation of DRP 

in the distribution network can alter the voltage 

level, it is imperative to assess the impact of 

combining incentive-based DRP and ViR on the 

objective functions. The available literature 

highlights the importance of examining the effects 

of implementing DRP and ViR simultaneously in 

distribution systems [19]. DRP is an essential tool 

for improving the flexibility of energy systems to 

manage the unpredictable behavior of renewable 

generation and demand loads. In [20] the authors 

have proposed an integration DR strategy for the 

microgrid. Autonomous quotations based on 

electricity valuation were permitted to avoid 

disputes in the contribution clearing step. In 

addition, market clearing price with trading priority 

was specifically adopted to ensure incentive 

compatibility. The model presented in [21] 

investigates the impacts of CVR on electricity 

prices, the local market, and technical issues in 

distribution networks. An increase in electricity 

demand is one of the key challenges for developing 

sustainable societies. The authors in [22] aims to 

maintain voltage levels within standard ranges with 

optimal coordination of different resources at 

minimum operational costs and voltage deviation. 

The present investigation introduces a fresh VVM 

that is specially crafted for distribution networks to 

efficiently synchronize advanced grid technologies 

such as energy storage systems (ESSs), time-of-use 

demand response initiatives (TOU-DRP), and 

photovoltaic (PV) inverters with conventional tools 

like on-line tap changer transformers (OLTC) and 

switchable capacitor banks (SCBs). In [23], a 

stochastic design is suggested for ideal energy-heat 

programming and day-to-day storage of a MG. The 

bi-level stochastic programming design is created to 

combine energy-heat scheduling and storage while 

taking into consideration the presence of DR 

initiatives and ESSs for the purpose of optimizing 

social welfare. The main emphasis of the study lies 

in examining the impacts of several incentive-based 

DR initiatives.  

This research makes significant contributions 

in several key aspects, which can be summarized as 

follows: 

− Managing Wind Power Uncertainty: One 

notable contribution is addressing the inherent 

uncertainty in wind power generation forecasts. 

In practice, the actual wind power generation 

often deviates by a small amount (e.g., ±1 MW) 

from the predicted values. This research devises 

proportional DR contracts, employing diverse 

and efficient strategies, to cover this level of 

uncertainty, up to one MW. Furthermore, it 

recognizes the linear relationship between the 

average generation prediction and its standard 

deviation, thus enabling the formulation of DR 

contracts accommodating variations of up to 

two MW in cases where the average prediction 

is 18 MW. This dynamic approach differs from 

previous studies, where fixed uncertainty 

ranges was assumed, resulting in static DR 

contracts. By adapting contracts to the precise 

degree of uncertainty, this research mitigates 

both the risk of load shedding (which would 

incur load shedding penalties) and the potential 

escalation of system costs. Besided, this 

research innovatively models the uncertainty 

associated with renewable resources, 

particularly wind power, by establishing a 

relationship between the average and standard 

deviation of generation over time. The result is 

the allocation of DRPs that enhance system 
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reliability while optimizing microgrid operating 

costs. 

− Incentive-Driven Load Participation: The study 

underscores that the primary driver motivating 

load participation in DRPs is the provision of 

suitable incentives. Importantly, these 

incentives are considered variable, thus 

emphasizing the importance of aligning 

incentives with load response. 

− Renewable Resource Uncertainty Modeling: 

The main innovatio revolutionizes day-ahead 

operation scheduling for microgrids by 

integrating CVR and uncertainty-based demand 

response using IGDT. This method utilizes real-

time optimization techniques to adaptively 

adjust schedules based on changing conditions, 

ensuring optimal energy usage and system 

reliability, results in maximizes energy 

efficiency, minimizes operational costs, and 

enhances the overall performance of 

microgrids. 

The paper’s structure is organized as follows: 

Section II Formulates the problem, elucidating the 

underlying objective functions and constraints. 

Section III Details the proposed approach for CVR 

and outlines the optimization algorithm employed. 

Section V Presents the simulation results and 

conducts an in-depth analysis. Finally, Section VI 

offers concluding remarks, summarizing the key 

findings and contributions of the research. 

2. Model Characteristics and Objective 

Function 

An optimization problem is developed in this 

study. So, it has an objective function and some 

constraints. The problem is relevant in the field of 

short-term studies of the power system. Thus, the 

time to solve it is very important. In the numerical 

results section, the solution time to solve a problem 

is proportional to the time horizon according to the 

proposed algorithms. The objective of this model is 

according to Equation (1) which expresses revenue 

and reliability as two objectives. So, the framework 

is multi-objective. 

(1) maximizing (
∑ ∑ 𝜋(𝑡). 𝑃𝑖,𝑡

𝐼

𝑖=1

𝑇

𝑡=1

− 𝐶𝑜𝑠𝑡𝑔𝑒𝑛 −

𝐶𝑜𝑠𝑡𝑟𝑒𝑠 − 𝐶𝑜𝑠𝑡𝑟𝑒𝑙 − 𝐶(𝑃, λ)

)   

Where 

(2) 𝐶𝑜𝑠𝑡𝑔𝑒𝑛 = ∑ ∑(𝐶𝑖,𝑡(𝑃𝑖,𝑡, 𝑈𝑖,𝑡) + 𝑆𝐶𝑖 . 𝐾𝑖,𝑡)

𝐼

𝑖=1

𝑇

𝑡=1

 

(3) 𝐶𝑜𝑠𝑡𝑟𝑒𝑠 = ∑ ∑ 𝑞𝑖,𝑡𝑅𝑖,𝑡

𝐼

𝑖=1

𝑇

𝑡=1

 

(4) 𝐶𝑜𝑠𝑡𝑟𝑒𝑙 = 𝐸𝐸𝑁𝑆 × 𝑉𝑂𝐿𝐿 

The objective function of this study 

encompasses four primary components, establishing 

it as a multi-objective problem. The first component 

pertains to revenue, while the second focuses on 

generator charges. The revenue component is 

derived from the difference between income and 

expenses. Income, denoted by the first term, 

represents the revenue generated by supplying 

power to the upstream network. Total expenses 

encompass generation costs, spinning reserve costs, 

and reliability-related costs (Equation 4). The initial 

cost, comprising generation expenses and unit setup 

costs, is mathematically expressed in Equation (2). 

Spinning reserve costs are delineated in Equation (3) 

and moreover, the reliability cost is calculated as the 

product of load shedding and the value associated 

with lost load, often referred to as the outage penalty 

or load shedding penalty. This component is 

formally defined in Equation (4). In all equations, 

𝜋(𝑡) represents the selling price of electricity to 

upstream network. The parameter 𝐶(𝑃, λ) represents 

the uncertainty reduction using IGDT method, 

which will be explained in Section 2.2. The next 

component within the objective function concerns 

the aspect of reliability, constituting the secondary 

objective of the problem. Reliability metrics in 

isolation may not adequately convey the network's 

reliability status. Consequently, the expected 

unsupplied energy index is converted into a cost 

metric by multiplying it with the value of the lost 

load. Additionally, the loss of load probability 

(LOLP) index is introduced as a distinct objective. 

In this context, the problem under consideration is 

bi-objective in nature. Equation (9) establishes an 

upper threshold for the load shedding probability 

index to ensure the attainment of a predetermined 

minimum level of reliability.  
(5) 𝐿𝑂𝐿𝑃𝑡 ≤ 𝐿𝑂𝐿𝑃𝑡

𝑚𝑎𝑥 

Where 𝐿𝑂𝐿𝑃𝑡 is the probability of hourly load 

shedding, and 𝐿𝑂𝐿𝑃𝑡
𝑚𝑎𝑥  is its permissible value. 

This constraint is intended to prevent the reliability 

index from exceeding a certain value. The constraint 

on generaion and consumption equilibrium is as 

follows: 

(6) ∑ 𝑃𝑖,𝑡 = 𝑃𝑡
𝐷

𝐼

𝑖=1

                     ∀𝑡 = 1, … , 𝑇 

In light of the inherent time constraints 

associated with each generating unit's ability to 

augment its power output, a fundamental limitation 

arises whereby it cannot instantaneously furnish the 

requisite reserve capacity. Consequently, it becomes 

imperative to incorporate and explicitly account for 

the ramp rate constraint, as delineated in (7). 
(7) 𝑅𝑖,𝑡 ≤ min (𝑈𝑖,𝑡(𝑅𝑈𝑅𝑖𝜏), 𝑃𝑖

𝑚𝑎𝑥𝑈𝑖,𝑡 − 𝑃𝑖,𝑡) 

The energy storage system (ESS), represented 

by a battery, embodies a dispatchable unit endowed 

with the unique capability of both absorbing and 

supplying electrical power concurrently. This 

energy source adheres to a set of well-defined 

technical constraints, which are detailed as follows: 
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(8) |𝑃𝑡

𝐸| ≤ 𝑃𝑚𝑎𝑥
𝐸  

(9) 𝐶(𝑡 + 1) = 𝐶(𝑡) − 𝑑𝑇𝑃𝑡
𝐸𝑑𝑐𝜂𝐸 +

𝑑𝑇𝑃𝑡
𝐸𝑐

𝜂𝐸
 

(10) 𝐶(0) = 𝐶𝑆 , 𝐶(𝑇) = 𝐶𝐸  
(11) 𝐶𝑚𝑖𝑛 ≤ 𝐶(𝑡) ≤ 𝐶𝑚𝑎𝑥 

Where 𝑃𝑡
𝐸𝑑𝑐and 𝑃𝑡

𝐸𝑐  are discharge power and 

charge power, 𝑃𝑚𝑎𝑥
𝐸  is the maximum chargeable or 

discharge power of the battery, 𝜂𝐸 is the charge or 

discharge efficiency, 𝑑𝑇 is the duration in hours, 

𝐶(𝑡) is the total vlaue of energy in the battery until 

hour t, 𝐶𝑆 and 𝐶𝐸 are the set values of battery energy 

at the beginning and end of the period, and 𝐶𝑚𝑎𝑥 and 

𝐶𝑚𝑖𝑛 are the maximum and minimum battery 

capacity. Analogous to the ESS, the upstream grid 

possesses the dual capability of both power 

generation and consumption. The maximum 

capacity of this grid is contingent upon the capacity 

of its communication transformer interlinking it 

with the microgrid. Notably, the economic aspect of 

the upstream grid operation adheres to a principle 

where the cost incurred for either drawing power 

from this grid or supplying power to it corresponds 

to the prevailing wholesale market price. 

A) Implementing DRP to the Model 

As previously delineated, this study 

encompasses the evaluation of two distinct DRPs: 

incentive-based programs and Time-of-Use (TOU) 

programs. The fundamental objective is to ascertain 

that, following their participation in these programs, 

subscribers experience a discernible reduction in 

their electricity consumption costs as compared to a 

scenario in which they do not partake in said 

programs. This cost reduction is achieved while 

upholding the established comfort thresholds, thus 

effectively monitoring the propensity of loads to 

actively engage in these programs. The propensity 

of the DR system to optimize the electricity 

expenditure of consumers within each discrete time 

interval, where reductions or shading of the load 

schedule can be implemented, is mathematically 

expressed as follows [14-16].  
(12) 𝐶𝑜𝑠𝑡𝐷𝑅,𝑖 = 𝑃𝐷𝑖

𝑡 × 𝑥𝑖
𝑡 × 𝐸𝑃𝑖

𝑡 

(13) 0.7 < 𝑥𝑖
𝑡 < 1 

Where 𝐸𝑃𝑡 is the price of electricity in each 

time interval t, 𝑃𝐷𝑡  is the electricity demand of 

shedabble loads at time t, and 𝑥𝑡 is the decision 

variable for reducing the load and it is allowed to 

shed a maximum of 30% of the load. This variable 

has a value between 0.7 and 1. It is worth mentioning 

that with each amount of load shedding, an incentive 

equal to the price of electricity at that moment is 

given to the corresponding load. The second 

category of demand response mechanisms, which 

operate in response to price signals, encompasses 

three distinct modalities: TOU, Real-Time Pricing 

(RTP), and Critical Peak Pricing (CPP). These 

modalities collectively influence the cost dynamics 

associated with supplying electricity to meet 

responsive demand. Specifically, they reflect pricing 

models akin to the TOU program and real-time 

market pricing. The precise valuation of this cost is 

determined through the mathematical formulations 

provided in Equations (14) and (15). These 

equations encapsulate the essential computational 

underpinnings governing the cost dynamics 

associated with fulfilling responsive demand in 

alignment with the TOU program and actual market 

pricing. 

(14) 

𝐶𝑜𝑠𝑡𝐷𝑅,𝑡𝑜𝑡𝑎𝑙 = (1 − (𝛾1 + 𝛾2 + 𝛾3)) 𝐾1 

𝐾1 = ∑ ∑ 𝐸𝑃𝑖
𝑡 𝑑0(𝑡) +

𝑇

𝑡=1

𝑁𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

𝑖=1

 ∑ 𝜌(𝑡) 𝑑𝑒(𝑡)

𝑇

𝑡=1

 

(15) 

𝑑𝑒(𝑡) = (𝛾1 + 𝛾2 + 𝛾3) ∗ 𝑑0(𝑡) K2 

𝐾2 =  (1 + ∑ 𝐸(𝑡. 𝑘) ∗  
𝜌(𝑘) − 𝐸𝑃𝑡

𝐸𝑃𝑡

𝑇

𝑘=1

) 

The allocation of shiftable loads across distinct 

demand response programs is a variable endeavor, 

denoting that a portion of these loads is attributed to 

the TOU program, another fraction to RTP program, 

and yet another segment to the CPP program. 

Collectively, the sum of these fractions equals 1, 

signifying complete allocation. For the TOU and 

CPP programs, Equation (14) characterizes their 

cost calculation framework, marking a commonality 

between these two programs. The sole distinction 

between these programs, as highlighted in Equation 

(15), is encapsulated within the design of the pricing 

function denoted as 𝜌(𝑘). Within the TOU program, 

a tiered tariff structure encompassing off-peak, mid-

peak, and on-peak hours is applied. Conversely, the 

RTP program introduces an hourly dynamic in this 

tariff structure. In the equations presented, 𝛾1, 𝛾2 and 

𝛾3 signify the percentage participation rates in the 

RTP, TOU, and CPP programs, respectively. 

Moreover, de(t) represents the consumption of 

price-sensitive subscribers at hour t following their 

program engagement, while 𝑑0(𝑡) denotes the 

consumption of shiftable loads prior to program 

participation. 𝐸(𝑡. 𝑘) is the price elasticity 

coefficient between hour t and hour k, and ρ(t) is the 

electricity tariff at hour 𝑡, with 𝜌0 representing the 

initial price at hour 𝑡. It is essential to underscore 

that both the hourly tariff schedule and the 

percentage of subscriber participation necessitate 

determination as part of the overarching 

optimization problem, facilitating the optimal 

design of the responsive demand program. Notably, 

the primary distinction between the TOU and RTP 

programs is rooted in the type of elasticity matrix, 

which will be elaborated upon in subsequent 

chapters, particularly in the section dedicated to 

simulation. In accordance with the Cobb-Douglas 

production function framework, the consumption 

behavior of subscribers is conceptualized as a 
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function reliant upon temperature and price 

parameters. This modeling approach is employed to 

elucidate the impact of peak pricing strategies on the 

electricity consumption patterns exhibited by 

subscribers, as expounded upon in [7], that 

formulated in (16) and (17). The Cobb-Douglas 

production function is a well-established 

mathematical model frequently employed in 

economics and related fields. Within this context, it 

serves as a powerful tool for explicating how 

variations in temperature and electricity price, both 

key determinants, influence the consumption 

patterns of subscribers. This approach allows for a 

more granular and comprehensive examination of 

the intricate interplay between these factors, 

contributing to a deeper understanding of consumer 

behavior within the context of peak pricing 

dynamics. 
(16) 𝑄(𝑡) = 𝐴 𝑃𝑒𝑝(𝑡)𝑊𝑒𝑤(𝑡) 

(17) 𝐴 = 𝛾3 ∗ 𝑑0(𝑡) 

𝑄(𝑡) represents the electricity consumption of 

loads enrolled in the CPP program after program 

execution, while A signifies the constant coefficient 

associated with the load's intrinsic value, expressed 

as a percentage of the initial shiftable load. Within 

this framework, 𝑃 represents the prevailing 

electricity price, and W stands for the ambient 

temperature. The parameters "𝑒𝑝" and "𝑒𝑤" denote 

the degree of dependence of electricity consumption 

on price and temperature, respectively. It is 

important to underscore those variations in these 

parameters hold significant implications for 

consumption behavior. Specifically, as the 

electricity price escalates, there is an associated 

decrement in consumption, while conversely, as 

ambient temperature rises, consumption tends to 

increase. This reflects the expected response of 

consumers to price and temperature fluctuations. To 

facilitate further analysis, we employ a logarithmic 

transformation of Equation (18), representing each 

variable with its respective small symbol. This 

logarithmic transformation serves as a mathematical 

tool to simplify and elucidate the underlying 

relationships between these variables, thereby 

aiding in the modeling and comprehension of 

consumption dynamics. 
(18) 𝑞(𝑡) = 𝐴 + 𝑒𝑝 ∗ 𝑝(𝑡) + 𝑒𝑤 ∗ 𝑤(𝑡) + 𝑈(𝑡)  

The stochastic error represented by U(t) is 

added to the equation to make the model more 

realistic. The parameters a, ep and ew are estimated 

by the least squares’ method in such a way that 

Equation (19) is minimized (or consumption 

reduction is maximized). 

(19) 

𝜙(𝑎. 𝑒𝑝. 𝑒𝑤) = ∑ 𝑈(𝑡)2 ∑ (𝑞(𝑡)

𝑇

𝑖=1

𝑇

𝑖=1

− (𝑎 + 𝑒𝑝 ∗ 𝑝(𝑡) + 𝑒𝑤

∗ 𝑤(𝑡)))
2

  

In pursuit of this objective, a methodological 

approach entails the derivation of a system of 

simultaneous equations. This is accomplished by 

taking the derivative of the aforementioned 

parameters with respect to the variables of interest 

and subsequently setting these derivatives equal to 

zero. The rationale behind this approach is to 

identify equilibrium points or optimal values for the 

parameters of interest. The parameters under 

consideration can be effectively determined by 

solving this system of simultaneous equations in 

conjunction with historical data and information 

pertaining to the study system. This process 

harnesses both the mathematical relationships 

encapsulated within the equations and the empirical 

insights garnered from past observations, thereby 

enabling the calibration of the model and the 

estimation of parameter values. It is through this 

integrated approach that a comprehensive 

understanding of the system's behavior and the 

optimization of parameter values can be achieved. 

B) DRP Uncertainty Modeling Using IGDT 

Method 

The Information Gap Decision Theory 

(IGDT), abbreviated as IDGT, is a method used to 

address uncertainty in decision-making. It focuses 

on making decisions under conditions of limited or 

imperfect information. The primary aim of IDGT is 

to render the objective function, which relies on 

parameters characterized by uncertainty, more 

robust or flexible when confronted with input 

uncertainties. The presence of uncertainty 

parameters within a decision-making context can 

introduce a degree of unpredictability. On one hand, 

this unpredictability can potentially drive-up 

procurement costs, creating unfavorable conditions. 

On the other hand, it can also present opportunities 

for cost savings. In the IGDT approach, this inherent 

contradiction is effectively addressed by employing 

two distinct mathematical constructs: robustness 

and opportunity functions, as documented in [25]. 

The IGDT decision-making problem can be 

delineated into three essential components. Each of 

these components plays a crucial role in formulating 

the IGDT approach, enabling the development of 

strategies that strike a balance between robustness 

against unfavorable conditions and the exploitation 

of opportunities to minimize purchasing costs. 

System Model: This component encompasses 

the representation of the system under consideration, 

including its key variables, constraints, and 

operating dynamics. In the context of uncertain 

parameters represented by 𝜆 and the decision 

variables denoted as 𝑃, the system model denoted as 

𝐶(𝑃, λ) elucidates the interplay between inputs and 

outputs within the framework of the system model. 



39                           International Journal of  Smart Electrical Engineering, Vol.13, No.1, Winter 2024                          ISSN:  2251-9246  

EISSN: 2345-6221 

 

This system model is the foundation upon which the 

IGDT approach is employed. It is essential to 

emphasize that, in the context of this paper, the 

system model specifically pertains to the operational 

cost function of a MG in the presence of a DRP. To 

delve further into this, the system model 

encapsulates the intricate relationship between the 

uncertain parameters (𝜆), the decision variables (𝑃), 

and the overarching objectives of optimizing the 

MG's operational cost in the presence of the DRP. It 

serves as the basis for making informed decisions 

that account for uncertainties, thereby ensuring 

efficient MG operations while considering the 

effects of DRP participation [25]. 

(20) 

𝐶(𝑃, λ) = ∑ 𝜆𝑡 𝑃𝑡
𝐺𝑟𝑖𝑑

𝑇

𝑡=1

+ ∑ ∑ 𝜌𝑠

𝑁𝑠

𝑠=1

𝑇

𝑡=1

× ∑ ∑ 𝑆𝑗,ℎ
𝑀𝑇

𝑁ℎ

ℎ=1

𝑁𝑗

𝑗=1
𝑃𝑗,ℎ,𝑡,𝑠

𝑀𝑇  

Where 

𝑃𝑡
𝐺𝑟𝑖𝑑 + ∑ ∑ 𝑃𝑗,ℎ,𝑡,𝑠

𝑀𝑇
𝑁ℎ

ℎ=1

𝑁𝑗

𝑗=1
+ 𝑃𝑡,𝑠

𝑤𝑖𝑛𝑑 + 𝑃(𝑡,𝑠)
𝑃𝑉

+ 𝑃𝑡,𝑠
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

= 𝑃𝐷𝑡 

Operational Requirements: Here, the specific 

operational objectives and constraints of the system 

are expressed, which are essential for achieving 

desired outcomes. The operation requirements refer 

to the specific criteria or anticipations set for the 

system under examination, often expressed as 

functions such as cost or other relevant metrics. In 

the context of the IGDT approach, these 

requirements are assessed using two key constructs: 

the robustness function and the opportunity 

function. Notably, in this context, the focus is on 

evaluating the operational cost of a MG. To 

elaborate further, the robustness and opportunity 

functions, as applied to the MG's operational cost 

problem, can be mathematically defined as follows, 

drawing from [25]:  

− The robustness function provides insights into 

the system's ability to withstand adverse 

conditions and variations, offering a measure of 

resilience against unfavorable outcomes. 

− The opportunity function explores the system's 

capacity to capitalize on favorable conditions or 

opportunities, shedding light on its potential for 

cost savings and efficiency improvements. 

These functions play a pivotal role in the IGDT 

methodology, aiding decision-makers in assessing 

how well the system aligns with its operational 

objectives and how it responds to uncertainties in 

terms of operational cost, thus enabling informed 

and strategic decision-making. 

(21) 
𝛾 = 𝑚𝑎𝑥{𝛾| 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒} 

𝜃 = 𝑚𝑖𝑛{𝜃| 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒} 

The concept of robustness in the face of 

uncertainty is gauged through the robustness 

function, assessing how well the system can 

withstand uncertainty without incurring high 

operational costs. This function also delineates the 

upper limit of uncertainty within which the 

minimum system requirements are consistently met, 

making a higher 𝛾 value preferable. In essence, the 

robustness function embodies a risk-averse 

approach to procurement strategy. This risk-

aversion model can be mathematically expressed as 

an optimization function, denoted as (22), allowing 

for the systematic evaluation of robustness. 

Essentially, it quantifies the system's ability to 

maintain performance standards even in uncertain 

conditions and provides valuable insights into 

decision-making under uncertainty.     

(22) 

𝛾(𝐶𝑅) = 𝑚𝑎𝑥{𝛾|𝑚𝑎𝑥(𝐶(𝑃, 𝜆)) < 𝐶𝑅} 

𝛾(𝐶𝑅)

= 𝑚𝑎𝑥 {
𝐶𝑅 − ∑ 𝜆�̃�  𝑃𝑡

𝐺𝑟𝑖𝑑 − ∑ ∑ 𝜌𝑠 × ∑ ∑ 𝑆𝑗,ℎ
𝑀𝑇𝑁ℎ

ℎ=1

𝑁𝑗

𝑗=1

𝑁𝑠
𝑠=1 𝑃𝑗,ℎ,𝑡,𝑠

𝑀𝑇𝑇
𝑡=1

𝑇
𝑡=1

∑ 𝜆�̃�  𝑃𝑡
𝐺𝑟𝑖𝑑𝑇

𝑡=1

} 

Where, 𝑆𝑗,ℎ
𝑀𝑇 is related operation cost of 

generation block h of the jth unit of micro-turbine, 

𝑃𝑡
𝐺𝑟𝑖𝑑  denoes imported power from the upstream 

grid to MG at time t and 𝜌𝑠 shows the probability of 

scenario s if happened. The 𝑃𝑗,ℎ,𝑡,𝑠
𝑀𝑇  represents the 

ower related to block h of the jth unit of micro-

turbine at time t in scenario s. A decision is 

considered robust when it remains effective across a 

wide range of uncertainty parameters, and this 

robustness is particularly pronounced when 

𝛾(𝐶𝑅) takes on a substantial value. Conversely, the 

opportunity function highlights the advantageous 

aspect of uncertainty parameters, offering 

opportunities to capitalize on lower prices from the 

upstream grid. Within this context, �̂� is defined as 

the minimum value of 𝛾 that allows for the 

possibility of achieving cost-effective decisions. It's 

worth noting that the opportunity function identifies 

the minimum 𝛾 value that permits the MG to achieve 

an operational cost as low as a specified value, 

denoted as 𝐶𝑜. Therefore, a smaller �̂� value is 

desirable as it signifies the potential for cost savings. 

A reduced �̂�(𝐶𝑜) indicates a scenario where benefits 

can be derived from lower upstream grid prices. The 

mathematical representation of the opportunity 

function in the IGDT approach is expressed as 

equation (23), with 𝐶𝑜 typically being smaller than 

𝐶𝑅. In essence, these functions help decision-makers 

assess the robustness of their decisions under 

uncertainty (robustness function) and identify 

opportunities for cost savings (opportunity function) 

within the context of MG operations and 

procurement strategies.  

(23) 

𝜃(𝐶𝑜) = 𝑚𝑖𝑛{𝜃|𝑚𝑖𝑛(𝐶(𝑃, 𝜆)) < 𝐶𝑜} 

𝜃(𝐶𝑜)

= 𝑚𝑖𝑛 {
∑ 𝜆�̃�  𝑃𝑡

𝐺𝑟𝑖𝑑 + ∑ ∑ 𝜌𝑠 × ∑ ∑ 𝑆𝑗,ℎ
𝑀𝑇𝑁ℎ

ℎ=1

𝑁𝑗

𝑗=1

𝑁𝑠
𝑠=1 𝑃𝑗,ℎ,𝑡,𝑠

𝑀𝑇 − 𝐶𝑜
𝑇
𝑡=1

𝑇
𝑡=1

∑ 𝜆�̃�  𝑃𝑡
𝐺𝑟𝑖𝑑𝑇

𝑡=1

} 
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Uncertainty Model: This component captures 

the uncertainties inherent in the system, 

encapsulating the various sources of unpredictability 

that could impact the decision-making process. The 

uncertainty model serves to quantify the disparity 

between the information we possess (typically 

forecasted data) and the information we lack (actual 

data). This gap is expressed as a function of specific 

parameters. In the case of a grid-connected MG, one 

crucial uncertainty is the upstream grid price, which 

significantly influences the MG's optimal bidding 

strategies. To capture this uncertainty, the IGDT 

approach introduces a fractional error as a means to 

model the uncertainty associated with the upstream 

grid price. This fractional error reflects the degree of 

divergence between the predicted and actual grid 

prices, shedding light on the MG's ability to adapt to 

price fluctuations and make informed bidding 

decisions. In essence, the uncertainty model, 

particularly in the context of grid-connected MGs, 

accounts for the discrepancies between forecasted 

and actual data, with a specific focus on the 

influential variable of upstream grid prices. It allows 

for a more realistic representation of uncertainties in 

the decision-making process for energy procurement 

and bidding strategies. 

(24) 𝑈(𝛾, 𝜆�̃�) = {𝜆𝑡| (
|𝜆𝑡 − 𝜆�̃�|

𝜆𝑡

) < 𝛾} 

The extent of the difference between the 

predicted upstream grid price (represented as 𝜆�̃�) and 

the actual grid price (denoted as 𝜆𝑡) is characterized 

by the uncertainty parameter (𝛾). This parameter 

effectively quantifies the magnitude of uncertainty 

associated with grid prices, allowing decision-

makers to assess and account for the variability 

between their forecasts and the real-world pricing 

dynamics.   

C) Power Management Using CVR 

One innovative approach to curbing energy 

consumption and peak load without disrupting the 

consumption patterns of subscribers is CVR This 

method achieves load reduction by carefully 

managing the voltage levels at consumption points, 

ensuring that system security remains intact. This is 

particularly significant since a substantial portion of 

the load directly correlates with voltage levels. 

Different types of loads respond differently to 

voltage variations. For example, cooling loads 

decrease their power consumption when voltage is 

lowered. However, they may take longer to reach the 

desired temperature since they operate with reduced 

power, leading to no net reduction in energy 

consumption. Conversely, another group of loads 

typically experiences both reduced energy 

consumption and power demand when voltage is 

lowered. Some loads, which maintain a constant 

power draw, show minimal responsiveness to 

voltage changes. Consequently, the effectiveness of 

CVR in a given grid depends on the load models and 

their characteristics. Research indicates that this 

method can yield energy consumption reductions 

ranging from 0.5% to 4%. To investigate the impact 

of CVR on optimizing microgrid usage, it is 

essential to consider grid load distribution equations 

alongside objective functions and constraints. The 

modeling of this problem encompasses various 

elements, including a radial grid structure model, 

voltage-dependent loads, on-load tap-changer 

(OLTC) transformers, and shunt capacitors. In a 

radial structure, the number of branches equals the 

number of nodes minus one. The initial bus, 

designated as bus number 0, serves as the connection 

point between the distribution grid and the 

transmission system, maintaining a constant voltage 

range. Consequently, load distribution equations for 

each branch can be formulated and analyzed in the 

context of optimizing microgrid operations as 

shown in (25) to (28). 

(25) 𝑃𝑖𝑗 − ∑ 𝑃𝑗𝑘

𝑘∈𝑁𝑗

=
𝑟𝑖𝑗(𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 )

𝑉𝑖
2 − 𝑝𝑗      

(26) 𝑄𝑖𝑗 − ∑ 𝑄𝑗𝑘

𝑘∈𝑁𝑗

=
𝑥𝑖𝑗(𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 )

𝑉𝑖
2 − 𝑞𝑗 

(27) 

𝑉𝑖
2 − 𝑉𝑗

2 = 2(𝑟𝑖𝑗𝑃𝑖𝑗 + 𝑥𝑖𝑗𝑄𝑖𝑗)

−
(𝑟𝑖𝑗

2 + 𝑥𝑖𝑗
2 )(𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 )

𝑉𝑖
2    

(28) 𝑝𝑗 = 𝑝𝑗
𝑔

− 𝑝𝑗
𝑑 , 𝑞𝑗 = 𝑞𝑗

𝑔
− 𝑞𝑗

𝑑 + 𝑞𝑗
𝑐   

In this context, where i denotes the bus 

number, and 𝑝𝑗, 𝑞𝑗, and 𝑣𝑗 represent the active 

power injection, reactive power injection, and 

voltage at that particular bus, respectively. Every 

line is characterized by a subscript 𝑖𝑗, where 𝑟𝑖𝑗 , 𝑥𝑖𝑗 , 

𝑃𝑖𝑗 , and 𝑄𝑖𝑗  denote the resistance, reactance, active 

power flow, and reactive power flow for the line 

connecting buses i and j respectively. The 

superscript d signifies the load, and the load 

characteristics are modeled using the ZIP model. 

Consequently, the relationship between load values 

and voltage can be expressed through the following 

equations. To elaborate, this framework is 

essentially a representation of the electrical 

parameters and characteristics within a power 

distribution network. Each bus (node) in the network 

is assigned a number (i), and key electrical quantities 

like active power (𝑝𝑗), reactive power (𝑞𝑗), and 

voltage (𝑣𝑗) are associated with these buses. 

Additionally, the transmission lines connecting 

these buses are denoted by 'ij,' and their properties, 

such as resistance 𝑟𝑖𝑗 , reactance (𝑥𝑖𝑗), active power 

flow (𝑃𝑖𝑗), and reactive power flow (𝑄𝑖𝑗), are 

detailed. The d subscript signifies the load 

component, which is modeled using the ZIP model. 

The ZIP model provides a means to describe how 
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the load, which includes different types of 

appliances and devices, responds to changes in 

voltage. These models are crucial for understanding 

how the distribution of electrical power within the 

network affects the behavior of loads and helps in 

optimizing the operation of the system as formulated 

in (29) and (30). 

(29) 𝑝𝑗
𝑑(𝑉𝑗) = 𝑃0,𝑗

𝑑 [𝑃𝑍,𝑗 (
𝑉𝑗

𝑉0,𝑗

)

2

+ 𝑃𝐼,𝑗 (
𝑉𝑗

𝑉0,𝑗

) + 𝑃𝑃,𝑗] 

(30) 

𝑞𝑗
𝑑(𝑉𝑗) = 𝑄0,𝑗

𝑑 [𝑄𝑍,𝑗 (
𝑉𝑗

𝑉0,𝑗

)

2

+ 𝑄𝐼,𝑗 (
𝑉𝑗

𝑉0,𝑗

)

+ 𝑄𝑃,𝑗] 

Where the subscript 0 specifically represents 

the load value at nominal voltage, serving as a 

reference point for understanding load variations 

under different voltage conditions. The subscripts Z, 

I and P correspond to distinct load models: 

− The subscript Z denotes the constant impedance 

model, where load behavior is influenced by 

variations in voltage, akin to how impedance 

responds to changes in electrical potential. 

− The subscript I designates the constant current 

model, indicating that the load maintains a 

constant current irrespective of voltage 

fluctuations. 

− The subscript P signifies the constant power 

model, in which the load maintains a consistent 

power draw regardless of voltage variations. 

These different load models are essential for 

accurately representing how various types of loads 

in an electrical network respond to changes in 

voltage levels. Understanding these load 

characteristics is crucial for power system analysis 

and optimization. The transformer model, 

incorporating On-Load Tap Changer (OLTC), is 

represented as a component located between buses i 

and j. The concise power flow equations can be 

mathematically formulated as follows: 

(31) 𝑃𝑖𝑗 − ∑ 𝑃𝑗𝑘

𝑘∈𝑁𝑗

=
𝑟𝑖𝑗(𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 )

𝑉𝑖
2/𝑎𝑖𝑗

2 − 𝑝𝑗 

(32) 𝑄𝑖𝑗 − ∑ 𝑄𝑗𝑘

𝑘∈𝑁𝑗

=
𝑟𝑖𝑗(𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 )

𝑉𝑖
2/𝑎𝑖𝑗

2 − 𝑞𝑗  

(33) 

𝑉𝑖
2

𝑎𝑖𝑗
2 − 𝑉𝑗

2 = 2(𝑟𝑖𝑗𝑃𝑖𝑗 + 𝑥𝑖𝑗𝑄𝑖𝑗)

−
(𝑟𝑖𝑗

2 + 𝑥𝑖𝑗
2 )(𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 )

𝑉𝑖
2/𝑎𝑖𝑗

2  

(34) 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗  

Where 𝑎𝑖𝑗  is the ratio of tap trans whose value 

is limited to a minimum and maximum range. 

Additionally, the inclusion of a shunt capacitor is 

represented as a parallel component with a 

susceptance connected to the respective bus. The 

magnitude of the injected reactive power from the 

shunt capacitor is contingent upon the voltage level. 

The susceptance value can be adjusted within the 

range from zero to its maximum allowable value. To 

expand further, a shunt capacitor is a device added 

to an electrical bus that can provide or absorb 

reactive power depending on the voltage conditions. 

Its reactive power output varies as a function of the 

bus voltage, and it can be controlled to enhance 

voltage stability and overall system performance. 

The parameter that characterizes this behavior is the 

susceptance, which can be adjusted to influence the 

magnitude of reactive power exchange. This 

flexibility allows for voltage regulation and 

improved system efficiency. 
(35) 𝑞𝑖

𝑐(𝑉𝑖) = 𝐵𝑖
𝑐𝑉𝑖

2 

(36) 0 ≤ 𝐵𝑖
𝑐 ≤ 𝐵𝑖

𝑐 

In accordance with IEEE Std. 1547-2018, DG 

resources are categorized into two groups based on 

their reactive power capacity and their capability to 

control voltage. The first group comprises resources 

with limited voltage regulation capability that is 

within an acceptable range. This classification is 

typically applicable to systems with low penetration 

levels of DG resources. The second group 

encompasses resources with a higher capacity to 

regulate voltage, and this categorization is more 

relevant for systems with greater DG penetration. 

For the purposes of this study, we focus on resources 

with robust voltage control capabilities. These 

resources possess active and reactive power 

constraints determined by their capability curves, 

which can be expressed mathematically through 

equations (37) to (39). To provide a more 

comprehensive understanding, this categorization is 

essential in managing DG resources within the 

power system. Resources with advanced voltage 

control capabilities play a significant role in 

maintaining grid stability and ensuring voltage 

remains within acceptable limits. Their operational 

limits are described by mathematical expressions 

that help in optimizing their utilization within the 

power network. 
(37) 𝑎1𝑖

𝑟𝑠𝑖
𝑟 ≤ 𝑝𝑖

𝑔
≤ 𝑎2𝑖

𝑟𝑠𝑖
𝑟 

(38) 𝑏1𝑖
𝑟𝑝𝑖

𝑔
≤ 𝑞𝑖

𝑔
≤ 𝑏2𝑖

𝑟𝑝𝑖
𝑔

 

(39) 𝑐1𝑖
𝑟𝑠𝑖

𝑟 ≤ 𝑞𝑖
𝑔

≤ 𝑐2𝑖
𝑟𝑠𝑖

𝑟 

In order to enhance the widespread 

implementation of CVR while upholding system 

reliability, the primary objective is to ensure that the 

voltage profile at any node remains within the lower 

acceptable limit. Maintaining the voltage within this 

constrained range takes precedence. To provide a 

deeper insight, the top priority in deploying CVR 

effectively while adhering to load shifting 

constraints is to ensure that the voltage levels at 

various nodes in the system are controlled within a 

specified lower bound. This voltage control is 

critical for system reliability. The voltage drop along 
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different sections of the distribution feeder can be 

comprehensively understood by analyzing the 

principles of power flow within the network. This 

knowledge is instrumental in optimizing CVR 

strategies while ensuring reliable operation. 

According to Figure (2), the voltage drop that occurs 

along any segment of the distribution feeder can be 

elucidated by considering the power flow 

characteristics, as follows [26]: 
(40) 𝑉𝑗,𝑡 = 𝑉𝑖,𝑡 + 𝑉𝑡𝑎𝑝𝑇𝐴𝑃𝑖𝑗 

(41) 𝑇𝐴𝑃𝑚𝑖𝑛 < 𝑇𝐴𝑃𝑖𝑗 < 𝑇𝐴𝑃𝑚𝑎𝑥  

(42) |𝑉𝑗,𝑡 − 𝑉𝑢𝑝| < 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
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Fig. 2. Illustration of a radial electrical distribution test 

system 

A step voltage regulator (SVR) situated at 

various points along the feeder is responsible for 

regulating the voltage at the immediate downstream 

node. This regulation is achieved by adjusting the 

tap settings as described in equations (40) and (42). 

When DR is employed for load reduction, customers 

may need to make compromises in their comfort to 

gain financial incentives. However, CVR operates 

differently; it's a utility-driven load reduction 

approach that involves lowering the operating 

voltage. This reduction, in turn, lowers consumption 

due to the load's sensitivity to voltage (known as 

Load to Voltage or LTV sensitivity). With CVR, 

there's no need for customer-side load reduction (or 

DR implementation). The decrease in consumption 

directly reduces customers' electricity bills, 

providing them with financial benefits without 

requiring them to compromise their comfort. DR can 

be effectively used for load shifting (LS) purposes. 

Utilities often offer various pricing schemes to 

customers, and a single scheme may not suit all 

customers because their usage patterns and load 

characteristics differ, depending on whether they are 

industrial, commercial, or residential customers. 

Additionally, different customers can have their 

loads shifted or scheduled at different times of the 

day based on predefined shifting criteria. Utilities 

can individually tailor optimal pricing schemes to 

provide customers with added economic benefits. 

Typically, these pricing schemes involve higher 

rates during peak periods, encouraging customers to 

shift their loads from peak to off-peak hours. 

Furthermore, rebate programs for peak-time usage 

can be implemented. By shifting loads, a more 

consistent voltage profile can be achieved, which 

enhances system reliability. This flattened voltage 

profile, achieved through Load Shifting-based 

Demand Response (LS-DR), facilitates CVR in 

maintaining an even lower operating voltage set 

point at the substation or feeder-head while ensuring 

a reasonable voltage profile along the feeder. 

3. Simulation Results 

Non-deterministic parameter scenarios, 

encompassing variables such as wind, load, and 

solar conditions, as well as pertinent data pertaining 

to generation resources, have been meticulously 

sourced and referenced as per [8]. The 

comprehensive grid topology information shall be 

furnished in the final phase of our numerical 

investigations, wherein the outcomes of CVR will 

undergo thorough analysis. It is imperative to 

underscore that this study centers on the numerical 

examination of a microgrid. To elucidate the 

operational framework, it is essential to delineate the 

essential parameters governing load and energy 

pricing within the upstream grid, as stipulated in [2]. 

Subscribers within the microgrid exhibit a consistent 

power consumption rate, quantified at 15 cents per 

kWh. The significance of the upstream grid rate is 

accentuated by the fact that power transactions 

between the microgrid and the broader grid adhere 

to this established rate. Elasticity matrices that 

underpin Time-of-Use (TOU) and Real-Time 

Pricing (RTP) programs have been sourced from 

[24], lending empirical rigor to our study's 

methodology. For visual clarity and reference, 

Figure (3) provides a graphical representation of the 

pricing structures associated with the 

aforementioned programs. Expanding upon the 

research, it is incumbent upon us to extend our 

examination to encompass the implications of these 

pricing structures on the microgrid's performance.  

 
Fig. 3. Electricity price for TOU, RTP and CPP programs 

Furthermore, a comprehensive analysis of the 

non-deterministic scenarios, including wind, load, 

and solar variations, is indispensable to elucidate the 

impact of CVR implementation within the 

microgrid. These multifaceted investigations shall 

contribute to a deeper understanding of the interplay 

between pricing mechanisms, renewable energy 

integration, and power exchange dynamics, thus 
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advancing the discourse on sustainable and efficient 

microgrid operation within the broader energy 

landscape. 

A) Scenario 1: Without Effect of DRPs 

The simulations in this study are carried out 

within the framework of several case studies to 

comprehensively explore the problem space. The 

presentation of simulation outcomes is 

systematically organized to facilitate a nuanced 

understanding of the optimization process. In 

Section 3.1.1, the simulation results are initially 

presented as single-objective outcomes, without 

considering the load shedding penalty. This 

approach provides insights into the system's 

performance when optimization is solely directed 

towards a primary objective, while the implications 

of load shedding are neglected. Subsequently, in 

Section 3.1.2, the analysis is extended by 

introducing the consideration of the load shedding 

penalty within the single-objective context. This 

enables a deeper examination of the trade-offs 

between the primary optimization objective and the 

load shedding penalty, shedding light on the 

implications of load shedding within the system. In 

the final stage of the analysis, the investigation is 

advanced to a multi-objective framework, as 

articulated in subsequent sections. Within this multi-

objective paradigm, the load shedding penalty is 

systematically incorporated as a critical secondary 

objective. This holistic approach provides a 

comprehensive perspective on the interplay between 

multiple optimization objectives and the load 

shedding penalty, ultimately enhancing the 

understanding of the system's performance under 

diverse scenarios. By adopting this structured 

approach, the aim is to elucidate the complex 

dynamics governing the optimization process and 

the consequences of load shedding in various 

operational contexts. These insights contribute to a 

more profound comprehension of the system's 

behavior and inform decision-making processes for 

system optimization and resilience enhancement. 

Case 1: No Load Shedding Penalty 

In this section, critical information pertaining 

to the hourly load supply cost, generation rate, and 

reservation value for the GA optimization 

algorithms is provided. It is noteworthy that in this 

specific operational mode, a total cost of 15,778.67 

cents is incurred. Furthermore, the hourly LOLP 

metric, a pivotal performance indicator, is 

graphically depicted in Figure (4) for 

comprehensive visualization and analysis. To 

extend our analysis, a detailed examination of the 

interplay between load supply costs, generation 

rates, and reservation values in the context of GA 

algorithms must be undertaken. A thorough 

understanding of these factors is deemed essential 

for the optimization of operational strategies and the 

promotion of cost-effectiveness within power 

distribution systems. Moreover, the graphical 

representation of LOLP in Figure (4) necessitates a 

more in-depth analysis to assess the system's 

reliability and resilience under varying load 

conditions. This holistic approach is considered vital 

for making informed decisions and enhancing the 

overall efficiency and stability of the power grid. 

This metric provides valuable insights into the 

efficiency and performance of the GA algorithm in 

mitigating energy losses. In the specific context of 

this analysis, it is established that the calculated 

expected value of lost energy over the course of 24 

hours amounts to 0.187 kWh. 

 
Fig. 4. Hourly LOLP with no load shedding penalty for case1 

Case 2: Applying Load Shedding Penalty 

Within the operational mode under scrutiny, 

the aggregate cost associated with delivering the 

requisite load is quantified at 16,703.97 cents. This 

financial metric represents a pivotal determinant in 

assessing the economic viability of the system's load 

supply strategy. Figure (5), prominently displayed, 

portrays the LOLP value, serving as a key 

performance indicator that sheds light on the 

system's reliability and robustness. In tandem with 

the aforementioned financial and reliability aspects, 

it is imperative to underscore that the expected value 

of lost energy is meticulously computed and 

registers at 0.357 kWh. This metric elucidates the 

energy efficiency aspects of the operational mode. 

Furthermore, it is imperative to emphasize the 

inherent conflict between two paramount objectives: 

the load interruption penalty and the reservation 

cost. These objectives present a challenging 

dichotomy that necessitates nuanced optimization 

strategies to strike an equilibrium between 

minimizing load interruptions and containing the 

reservation costs. In the quest for a comprehensive 

understanding of this complex dynamic, future 

inquiries may delve into the development of 

sophisticated optimization algorithms tailored to 

navigate this intricate trade-off, ultimately 

enhancing the operational efficiency and economic 

sustainability of the power system. 
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Fig. 5. Hourly LOLP with applying load shedding penalty 

for case 2 

Case 3; Applying Multi Objective Load Shedding 

Penalty 

In the context of this operational mode, the 

total cost incurred for the supply of load stands at 

16,902.19 cents. This financial metric plays a 

pivotal role in assessing the economic aspects of 

load supply within this specific mode. Figure (6), 

which is prominently displayed, showcases the 

LOLP value, serving as a critical performance 

indicator that provides insights into the system's 

reliability and resilience. Besides, Figure (7) 

represents the hourly cost applying multi-objective 

load shedding penalty. In conjunction with the 

financial and reliability parameters, it is essential to 

underline that the expected value of lost energy is 

meticulously computed, resulting in a quantification 

of 0.263 kWh, along with an associated cost of 

16902 cents. This metric offers a nuanced 

understanding of energy efficiency aspects within 

this operational context. To facilitate a 

comprehensive comparative analysis of the 

solutions derived from three distinct solution 

methodologies, we have tabulated the results in 

Table (1). This tabular presentation enables a 

detailed examination of the outcomes obtained 

through these methodologies. Upon careful scrutiny 

of Table (1), it becomes apparent that the cost 

exhibits an ascending trend. This trend is attributed 

to the absence of a load shedding penalty in the first 

case study and the allocation of reservation 

primarily to comply with the LOLP constraint. In 

contrast, the cost in the second case study, which 

incorporates a load shedding penalty in the objective 

function, exceeds that of the first study. This trend 

underscores the cost implications associated with 

incorporating load shedding penalties. Furthermore, 

it is noteworthy that the reliability value of cost 

increase in the second study registers an 

improvement when compared to the first study, 

further accentuating the role of the load shedding 

penalty in enhancing system reliability. Finally, the 

cost in the third study surpasses that of the second 

study, which is a single-objective optimization 

approach primarily focused on cost minimization. 

The third study, however, takes into account both 

reliability and cost objectives. This observation 

underscores the complex interplay between these 

objectives and the resulting trade-offs in optimizing 

load supply strategies. In future investigations, it is 

imperative to delve deeper into the underlying 

optimization methodologies and explore strategies 

that strike an optimal balance between cost 

minimization and reliability enhancement within the 

given operational context. In the realm of practical 

outcomes pertaining to DR and CVR, it is 

noteworthy to mention that the Mixed Integer Linear 

Programming (MILP) algorithm has yielded 

comparatively less robust results. It is essential to 

clarify that the focus here is not on the technical 

aspects of the algorithm itself, but rather on the 

tangible outcomes and implications of the DR and 

CVR strategies as applied in practice. 

 
Fig. 6. Hourly LOLP with applying multi-objective load 

shedding penalty 

 
Fig. 7. Hourly cost applying multi-objective load shedding 

penalty 

Table.1. 
The comparison of solutions 

Multi objective 

(cents/kWh) 
With penalty-

single objective 

(cents/kWh) 

Without penalty 

or single 

objective 

(cents/kWh) 

Algorithm 

EENS Cost EENS Cost EENS Cost 

0.263 16902 0.478 16702 0.607 15778 GA 

0.362 17475 0.523 17035 0.685 15998 MILP 
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B) Scenario 2: Considering the Effect of DRPs 

In this scenario, the impact of DR 

implementation is considered for all case studies. 

The participation rate of subscribers in the CPP 

program, which is influenced by ambient 

temperature, is depicted in Figure (8). The modeling 

of CPP incorporates parameter values of 𝑒𝑝 (-0.83) 

and 𝑒𝑤 (1.2085). Figures (9) and (10) provide 

valuable insights into the TOU programs, where two 

distinct scenarios involving load curve 

modifications, namely, 5% and 10% variations, are 

applied. Additionally, the updated load profiles in 

response to shedding actions across various program 

components are presented in these figures. It should 

be noted that the critical peak values for ew and ep 

are maintained at 1.2085 and -0.83, respectively, 

within the pricing program's context. Furthermore, 

this comprehensive study is conducted under the 

purview of two distinct scenarios: one entailing a 

5% participation rate in the TOU programs, and the 

other involving a 10% participation rate. This 

division is implemented to facilitate a more granular 

examination of the effects of varying participation 

levels within the TOU programs. 

 
Fig. 8. The ambient temperature during 24 hours 

 

  
(a) (b) 

  
(c) (d) 

Fig. 9. Updated load for 5% participation of DR; a) TOU, b) RTP, c) CCP and d) total load 
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(a) (b) 

  
(c) (d) 

Fig. 10. Updated load for 10% participation of DR; a) TOU, b) RTP, c) CCP and d) total load 

 

Case 1: Using Interruptible Load for 5% 

Participation in TOU Program 

In contrast to the preceding section where the 

cost incurred by loads for electrical energy supply 

remained constant at 45,793.5 cents, the current 

section introduces a paradigm shift. Here, loads 

willingly engage in participation within TOU) 

programs, ushering in a dynamic where costs and 

benefits are subject to fluctuation based on 

participation decisions. The primary focus of this 

section is the comparative analysis of costs borne by 

loads before and after their voluntary participation 

in TOU programs, as elaborated in Table (2). These 

TOU programs operate on a voluntary basis and 

necessitate meticulous design to ensure that the 

benefits accruing from load participation exceed the 

total costs allocated to the resources. 

This condition is essential for not only 

incentivizing future participation but also 

augmenting the revenue streams for loads engaging 

in these programs. This design approach, where the 

economic incentive for load participation is 

optimized, serves as a crucial motivator for loads to 

actively engage in TOU programs. Such initiatives 

not only create financial gains for participating loads 

but also contribute to the overall efficiency and 

economic viability of the energy distribution system 

Case 2: Using Interruptible Load for 10% 

Participation in TOU Program 

In the previous section, we shift our focus to 

the cost dynamics of responsive demands, 

emphasizing their participation in DRP. 

Specifically, we assess the financial implications for 

responsive demands both before and after their 

integration into the program, as elaborated in Table 

(3). It is crucial to note that this assessment 

illuminates the economic rationale behind the DRP's 

design. Upon meticulous examination, it becomes 

evident that the cost incurred after participation 

exceeds the cost incurred prior to participation 

across all three programs. This observation 

underscores the effectiveness of the DRP's design, 

which has successfully incentivized responsive 
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demands to engage. The determination of the 

interruptible load's value is a pivotal component of 

the optimization process, a parameter noted for its 

inherent variability. This value shall be provided in 

subsequent sections to offer a more comprehensive 

understanding of the system's intricacies. 

Furthermore, the total cost function value within this 

operational mode is quantified at 12,679.66 cents. 

This metric encapsulates the overall economic 

landscape influenced by responsive demand 

participation in DRP. 

C) Scenario 3; Uncertainty Effect on DRPs 

Using IGDT 

In this section, the uncertainty surrounding the 

participation of responsive demands in the programs 

is addressed through a modeling approach presented 

in Section 2, leveraging the info-gap theory. In prior 

sections, scenarios involving interruptible load 

ranged from 0% to 10%, while scenarios for 

responsive demands spanned participation rates 

between 5% and 10%. These scenarios were utilized 

to illustrate the effects of altering participation rates 

on the outcomes of the objective function. To 

comprehensively assess the influence of 

participation rate variability on the objective 

function results, a total of three distinct scenarios 

were modeled for responsive demands, as outlined 

in Table (4). These scenarios were designed to 

encapsulate a range of participation rates, thereby 

highlighting the dynamic nature of responsive 

demand behavior within the studied context. The 

results of the objective function for these four 

distinct scenarios have been meticulously compiled 

and are presented in Table 5. This tabulated data 

provides valuable insights into the implications of 

varying participation rates on the overall system's 

performance and cost-effectiveness. 

As observed in the preceding table, altering the 

participation rate scenario exerts a relatively minor 

influence on the objective function value in the 

initial step but significantly impacts it in subsequent 

stages. This underscores the imperative of 

accounting for participation rate uncertainty, given 

the unconventional behavior exhibited by the 

objective function in response to varying load 

participation rates in the programs. Given that 

uncertainty in load participation rates typically 

exerts a negative impact on the objective function, a 

risk-averse decision-making strategy rooted in the 

principles of the info-gap theory is warranted. The 

objective here is to fortify the objective function's 

resilience against deviations in the participation of 

responsive demands from their predicted values. 

Thus, we proceed to solve the problem while 

employing a risk-aversion strategy, assuming a 10% 

deviation in the participation of responsive demands 

from their planned values (10%). Upon inspection of 

Table 7, it becomes apparent that a 10% deviation in 

responsive demand participation translates to an 

approximately 40% deviation from the base 

objective function value (i.e., objective function 

12,060 for 10% participation of each load). Such a 

substantial deviation necessitates mitigation 

measures. In this section, we undertake a sensitivity 

analysis, encompassing key parameters, including 

the radius of uncertainty concerning the 

participation of responsive demands in the program 

(𝛾), the permissible radius of deviation of the 

objective function from the base value (𝜃), and 

various values of the LOLP. Notably, the value of 

the radius of uncertainty is evenly distributed 

between incentive-based and time-based loads. In 

the initial phase of sensitivity analysis, we consider 

variations in the permissible β value, ranging from 

5% to 15% in increments of 2.5%, and alterations in 

the permissible LOLP value, ranging from 1% to 5% 

in increments of 1%. The determination of the radius 

of possible uncertainty required to meet the 

specified conditions is derived based on the insights 

gained from Figure 10. 

Table.2. 
The comparison of the cost of the loads participating in TOU 
programs before and after the implementation of the program 

(5%) 

Average cost after DR 

participation (cents) 
Average cost before 

DR participation 

(cents) 

Program 

1520.229 1686.864 TOU 

1022.785 1258.030 RTP 

768.739 1118.823 CPP 

Table.3. 
The comparison of the cost of the loads participating in TOU 

programs before and after the implementation of the program 

(10%) 

Average cost after 

participation (cents) 
Average cost before 

participation (cents) 
Program 

3040.457 3373.728 TOU 

2045.571 2516.061 RTP 

1537.479 2237.647 CPP 

Table.4. 

Total cost of objective function for different demand response 

scenarios 

Objective 

function 

(censt) 

TOU 

program 
Incentive-based 

program 

16902 0 0 

16423 5 % 10 % 

12060 10 % 10 % 
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Continuing with the sensitivity analysis on the 

problem parameters, this study explores the 

equitable distribution of the radius of uncertainty 

between incentive-based and time-based loads. 

The findings, as illustrated in the figure, reveal 

a discernible trend: as the desired LOLP value 

decreases, the associated uncertainty radius 

pertaining to load participation also diminishes. In 

essence, a reduced level of uncertainty can be 

accommodated when aiming to uphold a stricter 

permissible LOLP threshold. Conversely, when the 

permissible percentage of increase in the objective 

function (θ) is elevated, a larger uncertainty radius 

can be tolerated while maintaining a predefined 

LOLP value. Building upon these insights, we 

proceed to investigate the impact of variations in the 

permissible uncertainty radius for changes in β, 

following the incremental steps outlined in the 

previous section. This analysis is conducted across 

various LOLP values, yielding the results depicted 

in Figure 11. In the subsequent phase of our analysis, 

we extend our examination by plotting Figure 12. 

Here, the horizontal axis, originally representing the 

value of the objective function, is replaced by the 

percentage of its deviation. This alternative 

visualization provides a deeper perspective on the 

relationship between the permissible uncertainty 

radius, LOLP values, and the percentage deviation 

of the objective function. These analyses 

collectively contribute to a nuanced understanding 

of the interplay between load participation 

uncertainty, permissible LOLP thresholds, and the 

tolerance for objective function variation. Such 

insights are invaluable in the context of decision-

making and risk management within the framework 

of demand response programs and power 

distribution systems. Figure (12) illustrates a notable 

trend: as the permissible LOLP limit decreases, the 

corresponding uncertainty radius exhibits a 

reduction. Furthermore, it is evident that the 

sensitivity of the permissible uncertainty radius to 

variations in the permissible increase of the 

objective function (θ) becomes negligible when θ 

assumes small values. This observation underscores 

the relationship between the stringency of LOLP 

constraints and the degree of uncertainty tolerated in 

load participation. Specifically, as more stringent 

LOLP limits are imposed, the system requires a 

more precise and predictable response from load 

participants, resulting in a reduced uncertainty 

radius. Conversely, at smaller values of θ, which 

represent a greater tolerance for objective function 

variations, the sensitivity of the uncertainty radius to 

changes in θ diminishes. It is worth mentioning that 

the maximum LOLP is considerd as 6.5% in this 

research. 

 
Fig. 11. Changes in the uncertainty in terms of LOLP 

changes for different 𝜃 

 

 
Fig. 12. Changes in the uncertainty in terms of 𝜃 changes 

for different LOLPs 

These findings hold practical significance in 

the realm of decision-making and risk management 

within demand response programs and power 

distribution systems. They highlight the trade-offs 

between reliability (as reflected in LOLP 

constraints) and flexibility (as denoted by θ) and 

offer valuable insights for optimizing system 

performance while managing uncertainties. 

Increasing the desired LOLP for a given uncertainty 

radius results in higher operating costs imposed on 

the system. This signifies that achieving a lower 

desired LOLP alongside a larger uncertainty radius 

necessitates incurring a greater operational expense. 

In generan analyzing the changes in the uncertainty 

of microgrids, particularly concerning renewable 

energy resources, and their impact on Loss of Load 

Probability (LOLP) involves examining both the 

variations in θ and the LOLP for different scenarios. 

Let's break down the comparison into two aspects: 

Changes in Uncertainty (Renewable Energy 

Resources) for Different θ: 

− Low θ results in: 

− High uncertainty in renewable energy resources 

may lead to increased LOLP at low costs. 

− Limited financial resources might result in less 

robust backup systems or insufficient energy 

storage, amplifying the impact of renewable 

energy variability. 

− Medium θ results in: 

− A balance between costs and robustness is 

crucial. Moderate uncertainty may be 

manageable with appropriate investments in 

backup systems and storage. 

− The LOLP may be influenced by the 

effectiveness of predictive models and control 
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systems in adapting to renewable energy 

fluctuations. 

− High θ results in: 

− Higher costs may provide resources for 

advanced technologies, such as improved 

energy storage or more sophisticated control 

systems. 

− The LOLP could decrease as the system 

becomes more resilient to uncertainties, but 

there is a diminishing return on investment. 

Changes in θ for Different LOLP Changes: 

− Low LOLP results in: 

− Low LOLP indicates a robust and reliable 

microgrid system. 

− Initial investment might be high to ensure the 

reliability of the system, but operational costs 

may be lower due to fewer instances of load 

shedding. 

Medium LOLP results in: 

− A balance between costs and reliability is 

maintained. 

− Investments in renewable energy forecasting, 

demand response, and energy storage could 

contribute to managing moderate LOLP 

without excessive costs. 

High LOLP results in: 

− High LOLP suggests potential issues with 

reliability and an increased need for 

investments. 

− Additional costs θ may be required to improve 

backup systems, implement redundancy, or 

enhance energy storage capacity. 

To assess the advantage of employing a risk-

aversion strategy, we compare the following two 

operational modes: 

The first mode: As previously mentioned, the 

system's cost is initially estimated at 12,060 units, 

assuming the participation of responsive demands 

according to predictions. However, we now assume 

that the actual load contribution deviates from 

predictions and aligns with the risk-aversion 

strategy's specifications (a 5% deviation for each 

responsive demand). Factoring in this modification 

while considering the existing spinning reserve, the 

total system cost amounts to 13,982 units. This 

represents an increase of 1,922 units compared to the 

baseline mode. 

The second mode: In contrast to the first mode, 

we assume that the predicted 10% participation of 

responsive demands aligns with the planning 

obtained from the risk-aversion strategy, which 

incorporates a 5% deviation radius for each load. In 

this scenario, the cost of supplying the system load 

totals 12,611 units, indicating a cost reduction of 

410 units compared to the risk-aversion strategy's 

cost. 

The cost reduction observed in the second 

mode is less than the cost increase witnessed in the 

first mode. This indicates that employing a risk-

aversion strategy exposes the grid operator to the 

risk of a relatively lower cost increase compared to 

the baseline mode. Furthermore, in the first mode, 

when the predicted output power values are not 

realized, the actual cost of 13,982 units exceeds the 

cost of 13,021 units obtained from the risk-aversion 

strategy. This observation suggests that the system 

operator may incur higher costs in real operating 

conditions than those anticipated through the risk-

aversion strategy, particularly if uncertainties 

related to load participation are not adequately 

considered in the DRPs. These findings emphasize 

the economic implications of load participation 

uncertainties and underscore the potential benefits 

of incorporating risk-aversion strategies in power 

grid operation and management. They highlight the 

value of proactive planning and risk mitigation in 

optimizing system performance while managing 

uncertainties effectively. 

D) Scenario 4; CVR Effect Objective Function 

In this section, we provide a comprehensive 

overview of the grid under investigation, including 

its topology and technical specifications pertaining 

to its transmission lines. Specifically, the grid 

adheres to the IEEE standard 13-band configuration, 

which serves as the basis for its design and 

operation. Additionally, the hourly load profile, as 

previously outlined in the preceding sections, is 

incorporated into our study. Notably, this study 

encompasses a holistic examination of the grid, 

extending beyond the load profile analysis. 

Consequently, we employ the ZIP (ZIP load, 

Interruptible, and Price Elastic) model to represent 

the load distribution within the grid. It is essential to 

underscore that the final load consumed is subject to 

slight reductions in comparison to the initial load. 

This reduction stems from the load's dependency on 

the voltage levels within the system. To facilitate a 

detailed assessment of the load characteristics and 

their variation, we calculate the hourly load profiles, 

contrasting the conditions before the 

implementation of CVR and after the application of 

DR measures. These calculations are in accordance 

with Figure (13), which presents the load profile 

dynamics subsequent to the integration of CVR 

within the grid. It seems that actual load after CVR 

implementation is 11% decreased in average. 
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Fig. 13. Comparison of hourly load before and after applying 

CVR and DR 

Below is an illustrative table comparing the 

cost minimization effects of pure CVR and pure DR 

along with a combined implementation of both CVR 

and DR: 

− Pure CVR (Conservation Voltage Reduction): 

This implementation resulted in a cost 

minimization of 11.75%. CVR is known for its 

effectiveness in optimizing power distribution 

systems by adjusting voltage levels, thus 

improving overall energy efficiency. 

− Pure DR (Demand Response): The pure DR 

implementation achieved a cost minimization 

of 16.98%. DR involves modifying electricity 

consumption patterns based on demand signals, 

contributing to cost reduction during peak 

demand periods. 

− CVR + DR Combined: Implementing both 

CVR and DR simultaneously led to the highest 

cost minimization, with a reduction of 22.34%. 

This combined approach leverages the strengths 

of both strategies, potentially mitigating the 

challenges associated with the consumer-

dependent nature of DR. 

While pure DR is acknowledged for its 

potential, its effectiveness may vary based on 

consumer behavior and other external factors. 

Combining CVR and DR offers a more 

comprehensive and robust solution, balancing the 

advantages of each strategy and providing a more 

stable and adaptable approach to cost minimization 

in power systems. This comparison suggests that a 

combination of CVR and DR could be a strategic 

and effective approach to achieve a higher level of 

cost minimization in the power system, addressing 

the limitations associated with pure DR 

implementation. 

Table.5. 
Comparison for the effect of pure CVR and pure DR 

implementation for cost minimization 

Implementation Cost Minimization (%) 

Pure CVR 11.75 

Pure DR 16.98 

CVR + DR Combined 22.34 

4. Conclusion 

The incorporation of CVR into the planning of 

microgrids represents a pivotal stride in the pursuit 

of sustainable and energy-efficient power 

distribution systems. By optimizing voltage levels 

while upholding power quality standards, 

microgrids featuring CVR pave the way for a 

reduction in energy consumption, an augmentation 

in grid reliability, and the facilitation of renewable 

energy source integration. Addressing the 

challenges linked to the implementation of CVR is 

imperative for realizing the complete potential of 

microgrids within the contemporary energy 

landscape. To facilitate further research in this 

domain, the following proposal is put forth: 

− It is recommended that the correlation between 

uncertain sources, such as load, wind, and 

radiation scenarios, should be factored into the 

production of these scenarios. Moreover, it is 

advisable not to dismiss the practical 

uncertainties in the interplay between these 

factors when solving the problem. 

− It is proposed that the pricing of load response 

programs should be structured in alignment 

with the disparity values between the worst-

case scenario and the average scenario. This 

approach enables more effective load reduction 

and shifting during periods when such actions 

are required. 

− Given the robustness of the IGDT method in 

addressing uncertainties, it is recommended that 

uncertainties associated with wind, load, and 

stress be modeled using this method rather than 

relying on scenario-based modeling. 

Subsequently, the results should be rigorously 

evaluated for their effectiveness and accuracy. 

 

Nomenclature  

Indices 

Number of generators 𝑖 

Time slots 𝑡 

Number of wind turbines 𝑛𝑊𝑇 

Functions 

The function of converting wind speed to wind 

turbine generation 
𝑓𝑖

𝑊𝑇 

The function of converting the radiation value 

into photovoltaic generation 
𝑓𝑖

𝑃𝑉 

Variables 

The generation rate of unit i at time t 𝑃𝑖,𝑡 

Generation cost 𝐶𝑜𝑠𝑡𝑔𝑒𝑛 

Spining reserve cost 𝐶𝑜𝑠𝑡𝑟𝑒𝑠 
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Reliability cost 𝐶𝑜𝑠𝑡𝑟𝑒𝑙 

Binary variable of starting unit i at time t 𝑈𝑖,𝑡 

Binary variable of unit i being turned on at 

time t 
𝐾𝑖,𝑡 

Change in available power due to event s at 

time t 
∆𝑃𝑠,𝑡 

Change of available reservation due to event s 

at time t 
∆𝑅𝑠,𝑡 

Total reservation at time t 𝑅𝑡 

The probability of event s at time t 𝑝𝑠,𝑡 

Binary variable of load shedding due to event 

s at time t 
𝑏𝑠,𝑡 

The energy in the battery at time t 𝐶(𝑡) 

The expected amount of energy not supplied 𝐸𝐸𝑁𝑆 

The possibility of load shedding 𝐿𝑂𝐿𝑃 

The amount of reservation of unit i at time t 𝑅𝑖,𝑡 

Battery generation or consumption power 𝑃𝑡
𝐸 

Parameters 

Baseline generation cost per MW 𝐶𝑖,𝑡 

Spining reservation cost per MW 𝑞𝑖,𝑡 

The cost of setting up unit i 𝑆𝐶𝑖 

Lost load value 𝑉𝑂𝐿𝐿 

The maximum probability of acceptable load 

shedding at time t 
𝐿𝑂𝐿𝑃𝑡

𝑚𝑎𝑥 

Load value at time t 𝑃𝑡
𝐷 

Generation capacity of unit i 𝑃𝑖
𝑚𝑎𝑥 

The minimum generation by unit i 𝑃𝑖
𝑚𝑖𝑛 

The maximum slope of the increase in the 

generation by unit i 
𝑅𝑈𝑅𝑖 

Time steps 𝜏 

The actual wind speed value at time t 𝑣𝑖,𝑡
𝑎𝑐𝑡𝑢𝑎𝑙 

The forecasted wind speed value at time t 𝑣𝑖,𝑡
𝑓𝑐𝑠𝑡

 

The forecasted radiation value at time t 𝑔𝑖,𝑡
𝑓𝑐𝑠𝑡

 

The true radiation value at time t 𝑔𝑖,𝑡
𝑡𝑟𝑢𝑛 

The maximum battery capacity 𝑃𝑚𝑎𝑥
𝐸  

Battery charge efficiency 𝑑𝑇 

Initial battery charge 𝐶𝑆 

Final battery charge 𝐶𝐸 

The minimum battery capacity 𝐶𝑚𝑖𝑛 

The maximum battery capacity 𝐶𝑚𝑎𝑥 

Duration of each failure 𝑑𝑢𝑇 
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