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Abstract 

Approximately one half of the blood flow is made up of the Red Blood Cells (RBCs). Moreover, the geometry of the RBCs 

relative to the vessel diameter greatly effect on the physics and dynamics of the blood flow. It means the quantitative 

understanding through the vessels is important in multifarious pathologies. To simulate RBCs, one of the modelling concerns 

is related to the details required for the sufficient accuracy and another is about the cost of computational methods. The 

mesoscopic models of RBCs combined both parameters accuracy and optimality. Then to achieve some of these goals in this 

study a numerical model called Low-Dimensional (LD) model along with DPD method are used to simulate Red Blood Cells, 

RBCs, in blood flows. LD-DPD model is developed due to new formulation of single particle in DPD and is able to capture 

the essential mechanics properties of these suspensions economically because of the low number of particles. The advantage 

of LD model is the use of spherical particles compared to the standard DPD which assumes point particles. For instance, in 

this study, to simulate a RBC, only10 colloidal particles are required. Also it is proved in this work different parameters are 

effective to determine the RBC radius and using this method, it is easy to investigate them until to match this simulation with 

the real one. 
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1. Introduction 

The amount of the blood flow which is 

occupied by the red blood cells (RBCs), is 

considerable (approximately one half of the blood 

flow) [1,2]. A normal red blood cell has deformable 

biconcave shape [3,4]. The size and deformability of 

the RBCs relative to the vessel diameter and then 

their geometry greatly effect on the physics and 

dynamics of the blood flow. Then in multifarious 

pathologies, the blood flow has a key role because 

of the RBCs. For instance, the blood flow can be 

modeled as a homogeneous fluid in vessels with 

diameters more than 200 µm [5,6]. However, for 

modeling smaller vessels, such as arterioles and 

venues, it is necessary to consider the blood flow as 

a two-phase suspension of RBCs [7,8]. Therefore, 

for simulating the blood flow, quantitative 

understanding through the vessels is important 

[9,10]. To simulate blood flow a number of 

numerical models have been developed based on the 

molecular level [11,12], description at a continuum 

level [13,14] and also at the mesoscopic scale 

[15,16]. 

Combination of nonlinear solid deformations 

and fluid flow in continuum models often was 

annoyed because of significant computational cost. 

Detailed molecular models are also confined by the 

required computational expense. With these 

circumstances, mesoscopic models of RBCs 

combine both parameters accuracy and optimality. 

Therefore, modelling of red blood cells is done using 

mesoscopic models [17,18]. 

In several works the red blood cells was 

exhibited by a network of springs considering the 
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bending force and conservation of surface-area and 

volume for the body [19,20]. 

To predict the dynamics of a solid particle in a 

post stenotic blood vessel region a numerical model 

is developed in [21]. In this research, discrete phase 

model (DPM) based on a Lagrangian approach is 

used and spherical particles are injected in the flow 

from the stenosis and tracked  

A multiscale numerical model which is able to 

predict mechanical, rheological and dynamical 

properties for Red blood cells is presented in [22]. 

These properties are in agreement with experiments. 

A comparison with the rheological properties of the 

membrane and results obtained for example in 

optical magnetic twisting cytometry is done. These 

results are obtained for example in optical magnetic 

twisting cytometry. It is find for the accurate 

representation of the rheological and dynamical 

properties of the RBC, a purely elastic membrane 

model is not sufficient and an accurate viscoelastic 

model for the membrane is necessary. 

To examine some parameters such as the cell 

layer development process, the effects of cell 

deformability and aggregation on hemodynamic and 

hem-rheological behaviours, in [23] immersed-

boundary lattice Boltzmann algorithm is used. In 

this work Morse potential is used to model the 

aggregation among cells. Also in providing valuable 

information on microscopic blood flows immersed-

boundary lattice Boltzmann numerical model was 

useful. 

To investigate RBC motion numerically in 

[24] a combination of mesoscale methods is used. 

The low dimensional-RBC based on dissipative 

particle dynamics method combined with a hybrid 

lattice Boltzmann method-immersed boundary 

method. In this combined model the computational 

cost decrease compared to the microscale models. 

Also the combined method was able to model the 

deformation of red blood cell accurately. Then as a 

benchmark test, the deformation index as the 

function of the capillary number of RBC motion 

through a narrow cylindrical tube has been 

performed. Therefore, the relationship between the 

RBC diameter and the force value derived by the 

low dimensional-RBC method is compared with 

numerical and experimental data.  

Despite the promising results of above 

mentioned methods, their high computational cost 

for modelling the vessels with diameters larger than 

20-50 μm is still inconvenient. Therefore, the 

simulation methods that provide a mesoscale model 

of blood flow in large vessels are very limited in 

numbers. In the biological processes associated with 

small arteries, which usually require an explicit 

modelling of red blood cells, it is common to use 

molecular-level models with each single red blood 

cell expressed with hundreds to tens of thousands of 

particles. Running such multi-particle simulation 

will be very expensive; for example, simulating the 

flow in a 500μm long and 50μm in diameter arteriole 

in which only 35% of volume has been occupied by 

RBCs require simulating millions to hundreds of 

millions of particles [25,26].  

In the present work, we use a low-dimension 

(LD) model based on dissipative particle dynamics 

(DPD) as an effective approach to overcome the 

problem of high computational cost associated with 

the simulation of red blood cells. This RBC 

modelling procedure consists of only 10 colloidal 

particles that have been attached to each other by 

worm-like chain (WLC) springs. Simulation of each 

colloidal particle starts with a single particle of DPD 

based on new DPD formulation, and is then 

augmented by adding non-central dissipative shear 

forces between the particles in the standard DPD, 

where the angular momentum among particles is 

also conserved by these forces [27,28].  

To model the bending rigidity of red blood 

cells, bending resistance is incorporated into the ring 

model as an angular bending force depending on the 

angle between two consecutive spring. In fact, a big 

advantage of this model over existing mesoscale 

methods is the presence of spherical particles with 

non-zero volume (unlike the methods such as DPD 

which assume the particles as volume-less points). 

In this model, the number of particles required for 

simulation and thus the computational cost 

associated with modelling of larger vessels are 

decreased based on assumption of a radius for each 

particle. Therefore, particle radius can be counted as 

one of the most fundamental parameters of this 

model. It needs to be mentioned that in this model, 

the particle radius is considered as an input 

parameter and plays a decisive role, for example, in 

calculating the values of the forces and momenta 

applied to each particle. In addition, during scaling 

and converting the DPD dimensions into physical 

units, the radius of red blood cell needs to be known. 

Contributions of this research to the literature 

include determination of desirable particle radius, 

factors and parameters affecting this radius, and the 

mechanism of these effects. The results obtained for 

the RBC radius are evaluated and validated 

according to the findings regarding equilibrium 

length (spring length) between two adjacent colloids 

in a blood cell as well as geometrical investigation, 

and will be described in detail. 

This introduction discussed the importance of 

simulation of blood cells and vessels, and mentioned 

the strengths and shortcomings of notable studies 

previously carried out on this subject. In the second 

section, the governing equations of the low-

dimensional DPD model are introduced, and the 

model is then used to simulate the red blood cells. In 

the third section, the radius of red blood cells is 
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determined, and parameters associated with this 

radius are investigated. In that section, the 

equilibrium length between two adjacent colloids in 

a blood cell is also calculated with respect to these 

parameters. Then, the accuracy of the results is 

analysed by geometric arguments. In the last section, 

the overall conclusions of this work are described. 

2. The Low-Dimension Model Based on 

Dissipative Particle Dynamics 

In the present study, the red blood cell is 

modeled as a ring of 10 colloidal particles connected 

to each other via worm-like chain (WLC) springs. 

Each colloidal particle was simulated by a single 

particle of DPD. In this formulation, the dissipative 

forces acting on a particle are divided explicitly into 

two separate components: central and shear (non-

central) components. It has been shown that the new 

formulation of DPD method leads to accurate 

prediction of hydrodynamic forces and momenta for 

a single DPD particle and accurate prediction of 

hydrodynamics of colloidal particles. In the 

following, we will review this new formulation [29]. 

The simulation includes a set of particles with 

mass of m, position of ir , linear velocity of
v
iv , and 

angular velocity of i ; defined as = −ij i jr r r , 

=ij ijr r , =
r r

/ij ij ije r r  and = -
r v v
ij i jv v v . The following 

relations give the force and momentum acting on 

particle i: 

i ij

j

i ij ij ij

j

F F

T r F

ìï =ïïïï
í
ï = - l ´ïïïïî

å

å

r r

r rr             (1) 

Here, the factor λij (introduced in [30]) is a 

weight that reflects different contributions of 

various types of particles (e.g., solvent or colloid) 

with differing sizes, while the angular momentum is 

conserved. This factor is defined as follows: 

i

ij

i j

R

R R
l =

+
            (2) 

If Ri=Rj (where
 
Ri and Rj refer to the radius of 

the particles i and j, respectively) then λij=1/2. The 

force applied on particle i by particle j is given by 

the following equation: 

U T R

ij ij ij ij ijF F F F F= + + +
r r r r%

                                                (3) 

where,
r
U
ijF is the conservative force, 

r
T
ijF is the 

translational force, 
r
R
ijF  is the rotational force and 

r%
ijF  

is the random force, which all will be short range 

explained. The conservative radial force can have 

the standard DPD form. 
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where, cr is the cut-off radius. The translational 

force is expressed as: 
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This force, namely the drag, is due to the 

translational velocity
r
ijv  of particle i relative to j. 

The mentioned force is decomposed into two 

components: one along the line connecting the 

centers of the particles and another perpendicular to 

that line. The drag coefficients are expressed by g ||
ij

and g ^
ij , respectively, for central and shear 

components. It should be noted that the central 

component of the force is the same as dissipative 

force in the standard DPD. The rotational force is 

defined by the following equation: 
2 ( ) ( )^ é ù= - ´ W + Wê úë û

r rr rR

ij ij ij ij ij i ji jF f r rg l l
          

(6) 

In addition, the random force is given by the 

following equation: 

1
( ) tr[ ] 2

3

^
é ù
ê ú= + ×
ê ú
ë û

r r%
ij

A

ij ij ij ij ij ijF dt f r d d es sW 1 W        (7) 

where, || ||2ij B ijk Ts g= and 2ij B ijk Ts g^ ^=

meaning that the fluctuation-depreciation theorem is 

satisfied. 

The generalized weight function, 

= -( ) (1 / )scf r r r with s= 0.25 [31] or 

= -( ) 1 ( / )kcf r r r with k=60 [32] are used in (5) to 

(7). In (7), Wijd is the matrix of independent Wiener 

increments, which is assumed to be a symmetric 

matrix under the influence of particle interactions. 

When ij
⊥  0, the relations of the standard DPD will 

be given, in which case the shear component of the 

forces will be ignored.  

Colloidal particles are simulated as single DPD 

particles and similar to the solvent particles but with 

a larger size. The particle size can be adjusted by 

conservative force coefficient ija [(in (4)]. However, 

the standard DPD linear force, which is defined by 

the (4), is too soft for modelling of hard-sphere 

particles. To solve this problem, in this method, an 

exponential conservative force is defined for 

colloid-colloid and colloid-solvent interactions, but 

solvent-solvent interactions are still modelled with 

DPD linear force. The use of such hybrid 
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conservative interactions leads to absence of any 

overlap between colloidal particles dispersed in the 

solvent. Moreover, here the time step does not need 

to be very small, like the time steps required for the 

Lennard-Jones potential [33]. The conservative 

force, which is defined as an exponential radial 

function, is in the form of following formula: 

/
( )

1

0

ìïï - <ïï= -í
ïï ³ïïî

e
ij ij c ij

ij

b r r bij e

ij cbU

ij

e

ij c

a
e e r r

F e

r r

                (8) 

where, ija and ijb are adjustable parameters and e
cr  

is the cut-off radius of the exponential function. This 

exponential function for the conservative force and 

also the standard linear force in DPD is plotted in 

Fig. 1. The size of colloidal particle can be 

controlled by adjusting the value of ija in (8). 

 
Fig. 1. Distribution of exponential function for conservative 

force in comparison with the standard linear force (here 

/ e
ij cr r r= and /U

ij ijF F a= ) 

 

When constructing the model of cell, particles 

of an RBC are allowed to overlap with each other. 

This means that colloidal particles of an RBC will 

continue to interact with each other based on soft 

standard DPD linear force [(see (4)]. The colloidal 

particle diameter is chosen to be equal to the radius 

of the ring; and so the final format for each RBC is 

in the form of closed-torus shown in Fig. 2. This 

form has a good agreement with the RBC model 

provided by Pan [34] and can assure us of the 

correctness and accuracy of the written code. The 

worm-like chain (WLC) spring force, which 

connects all particles in each cell belonging to a red 

blood cell, is expressed by the following equation 

[35]: 

2 max

max

1 1

4
4(1 )

é ù
ê ú
ê ú
ê ú= - +
ê ú
ê ú-ê ú
ë û

r
ijU B

WLC

ijp

rk T
F

r L

L

l
                  (9)

 

where, rij
 
is the distance between two adjacent beads, 

λp
 
is the persistence length, and Lmax is the maximum 

allowed length for each spring. Each cell also has a 

bending resistance, so this bending resistance is 

inevitably applied in the form of angular bending 

forces depending on the angle between two adjacent 

springs in the ring RBC model. This bending force 

has been derived by differentiation of cosine 

bending potential in the following form: 

[1 cos ]= -COS

ijk b ijkU k q                                          (10) 

where, bk  is the bending stiffness, qijk  is the angle 

between two consecutive springs or the inner 

product of 
r
ijr and

r
jkr . Thus, the bending force acting 

on particle jis obtained from the differentiation of 

above mentioned potential: 
COS
ijkCOS

j
j

U
F

r


= −


                                                  (11) 

The random force coefficients for different 

interactions can be obtained based on the 

relationship 2ij B ijk Ts g= with Bk T =0.1. The 

Number density of particles in the solvent and at the 

walls are considered to be ns = nw =3. 

 

 
Fig. 2. The exhibition of closed-torus LD-RBC model which has 

a very good agreement with that which provided by Pan [34] 

3. Results of parameters affecting the geometry 

of the RBC  

Determination of the RBC radius is essential 

for modelling, especially when using LD model, 

where particle radius affects, for example, the values 

of the forces and momenta applied on each particle. 

In addition, knowing the RBC radius is a prerequ-

isite for scaling and converting the DPD dimensions 

to physical units. So assessing this radius and 

identifying the factors affecting this parameter 

seems necessary. To measure the radius of modelled 

RBC, it is sufficient to calculate the longest distance 

between the centers of particles positioned on a RBC 

diameter. For example, the values of parameters 

listed in Table 1 are used for the RBC shown in Fig. 

2. 



239                            International Journal of  Smart Electrical Engineering, Vol.10, No.4, Fall 2022                            ISSN:  2251-9246  

EISSN: 2345-6221 

 
Table 1.  

Parameters of conservative force [(in (4)], WLC spring force 

and bending resistance used for RBC simulation 

Nc a (4) Lmax λp kb 

10 500 1.3 0.0005 50 

 

The radius of modelled RBC was calculated 

using the parameters in Table 1. Fig. 3 shows the 

changes in the radius size with time in during the 

construction. The fluctuations observed in the early 

steps are related to moments when colloidal particles 

of RBC have not yet reached equilibrium, or in other 

words, the red blood cell has not yet formed. This is 

because in each simulation, the distribution of 

colloids constituting the red blood cell is initially 

random and reaches the equilibrium during the 

process. 

After several RBC simulations, it was 

observed that factors such as the coarse graining 

parameter (Nc), conservative force coefficient [a in 

(4)] and parameters in WLC spring force like 

persistence length and maximum allowed length 

(Lmax) affect the size of modeled red blood cell; as 

changing them led to variations in the RBC radius. 

Different simulations were conducted by different 

values of these parameters to observe the 

mechanism of their effect on the size of RBC radius. 

Note that since the purpose of the simulations was to 

investigate specific parameters, other factors were 

kept constant at values given in Table 1. 

A) Impact of Nc on the size of modeled RBC 

First, the influence of parameter Nc was 

investigated. For this purpose, simulations were 

conducted with values shown in Table 1 and 

different values of Nc. The simulations results are 

shown in Table 2, and plotted in Fig. 4.  

The results of Table 2 and the corresponding 

plot clearly show the increase in RBC radius with 

the increase of Nc value. There is an obvious 

geometry-based justification for this increase in the 

RBC radius. As increasing the number of colloids in 

each red blood cell while keeping other parameters 

constant means that the distance between the centers 

of consecutive colloids (spring length) remains 

almost constant, and only the angle between the 

lines connecting the centers of adjacent colloids 

(angle θ) in the RBC decreases. This leads to an 

increase in the radius of modelled red blood cell (see 

Fig. 2). 

B) Effect of conservative force coefficient on 

the size of modeled RBC 

Another parameter whose effect on RBC 

radius needs to be considered is the conservative 

force coefficient [(a in (4)]. During the modelling, 

Equation 4 must be used for the conservative force 

for colloids of a single red blood cell. The colloids 

that are in different red blood cells must be modelled 

with the force expressed in form of (8). The RBC 

radius was calculated with different values for 

conservative force coefficient [(a in (4)] and the 

results are shown in Table 3, and plotted in Fig. 5. 

This figure shows a direct relationship between the 

conservative force coefficient and the RBC radius. 

To determine the reasons behind the increasing 

trends observed in the Fig. 5, the equilibrium length 

between two adjacent colloids of an RBC was 

examined. In an RBC which is in equilibrium, two 

kinds of forces include of linear conservative forces 

(as the repulsive forces) and WLC spring forces (as 

the attractive forces) lead to a certain equilibrium 

distance between adjacent colloids. 

 
Fig. 3. Time evolution of the size of RBC radius based on the 

parameters listed in Table 1 

Table 2 
 Effect of coarse graining parameter (Nc) on the radius of 

modeled RBC. 

The radius of  

modeled RBC 

Coarse graining 

 parameter (Nc) 

1.29 6 

1.98 10 

3.81 20 

 

 
Fig. 4. Effect of parameter Nc on the radius of modelled RBC 
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Fig. 5. Radius of modeled RBC as a function of conservative 

force coefficient (a in Equation 4). 

 
Table 3 

 Effect of conservative force coefficient [a in (4)] on the radius 

of modeled RBC 

The radius of  

modeled RBC 

The conservative force 

coefficient [a in )4)] 

1.98 500 

2.4 1000 

2.64 1500 
2.78 2000 

2.88 2500 

2.96 3000 
3.02 3500 

3.07 4000 

3.12 4500 
3.15 5000 

 

In Figs 6 and 7, the difference between these 

two forces are plotted against the distance between 

the centers of two neighbouring colloids with 

coefficients of a=500 and a=2000. Comparing these 

two plots shows that the equilibrium distance (in 

which the resultant of two forces is zero, or FWLC-

FC=0) increases with the increase of conservative 

force coefficient. In fact, spring forces that act as 

attractive force between two adjacent colloids in an 

RBC are responsible for keeping the particles 

integrated. Here, for any given spring force, an 

increase in conservative force coefficient (which 

acts as a repulsive force against the spring force 

between the colloids) leads to an increase in 

equilibrium distance between two adjacent colloids 

in an RBC. 

Fig. 8, shows the changes in equilibrium 

distance versus changes in conservative force 

coefficient [(a in (4)] shows the same behavior 

observed in Fig. 5 for RBC radius. Fig. 5 and Fig. 8 

show that from a=500 to a=1000 equilibrium 

distance between adjacent colloids and RBC radius 

have undergone drastic but similar changes. Both 

figures also show a rather sharp increase in 

equilibrium distance and RBC radius until a=3500; 

the point beyond which both parameters have 

undergone a gradual decline. 

 

 
Fig. 6. Difference between linear conservative force and WLC 

spring force versus the distance between centers of two adjacent 
colloids with a=500 in (4) 

 

 
Fig. 7. Difference between linear conservative force and WLC 

spring force versus the distance between centers of two adjacent 

colloids with a=2000 in (4) 

 

 
Fig. 8. Equilibrium distance between two adjacent colloids in an 

RBC versus changes in conservative force coefficient 

C) The effects of spring force parameters on 

the size of modeled RBC 

This section discusses the effect of the two 

parameters of WLC spring force, i.e. the persistence 

length and maximum allowed length (Lmax) on the 

size of the modelled red blood cell. The results of 

performed simulations show that RBC size increases 

with the increase of both parameters. The trends of 
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increase in the RBC size due to increase in 

persistence length (λp) and maximum allowed length 

(Lmax) are shown, respectively, in Figs 9 and 10. The 

increase in both coefficients of WLC spring force 

has resulted in weaker binding force, whereas the 

linear conservative force acting as the repulsive 

force between the two adjacent colloids has 

remained constant. As a result, the distance between 

the two adjacent colloids (spring length) in an RBC 

has increased, and this has led to an increase in its 

radius. The independent impact of each coefficient 

on the equilibrium length was also investigated, and 

the results were plotted in in Figs 11 and 12. These 

figures show that, as expected, the increase in each 

parameter leads to larger spring length between two 

adjacent colloids in a red blood cell. 

4. Conclusion 

In biological flows in main arteries which are 

required an explicit modelling of red blood cells, 

simulating of a single RBC in molecular levels, can 

be expressed with hundreds to tens of thousands of 

particles. Representation of this multi-particle 

simulation is so expensive. For example, simulating 

the flow in a 500μm long and 50μm in diameter 

arteriole in which only 35% of volume has been 

occupied by RBCs require simulating millions to 

hundreds of millions of particles. In the present 

work, we use a low-dimension (LD) model based on 

dissipative particle dynamics (DPD) which is 

introduced for the first time by Pan et al. This model 

is an effective approach to overcome the problem of 

high computational cost associated with the 

simulation of red blood cells and despite the 

methods like DPD which assume point particles, 

uses spherical particles include of specific radius. In 

this model, the number of particles required for 

simulation and thus the computational cost 

associated with modelling of larger vessels are 

decreased based on assumption of a radius for each 

particle. This RBC modelling in this work consists 

of only 10 colloidal particles that have been attached 

to each other by worm-like chain (WLC) springs. To 

model the bending rigidity of red blood cells, 

bending resistance is incorporated into the ring 

model as an angular bending force. In fact, a 

fundamental parameter in this model over existing 

mesoscale methods is the radius of the particles. The 

particle radius is considered as an input parameter 

and plays a decisive role, for example, in calculating 

the values of the forces and momenta applied to each 

particle. In addition, during scaling and converting 

the DPD dimensions into physical units, the radius 

of red blood cell needs to be known. After several 

RBC simulations, it was observed that factors such 

as the coarse graining parameter (Nc), affect the size 

of modelled red blood cell and led to increase the 

radius. As increasing the number of colloids in each 

red blood cell while keeping other parameters 

constant means that the distance between the centers 

of consecutive colloids (spring length) remains 

almost constant, and only the angle between the 

lines connecting the centers of adjacent colloids 

(angle θ) in the RBC decreases. This leads to an 

increase in the radius of modelled red blood cell (see 

Fig. 2). Another parameter we investigate the effect 

of that is the conservative force coefficient [(a in 

(4)]. Increasing this coefficient results in 

augmentation the radius of the RBCs. It was said this 

increase is because of the increment in the 

equilibrium distance between two adjacent colloids 

in an RBC. The last parameters peruse the effects 

were the coefficients in WLC spring force like 

persistence length and maximum allowed length 

(Lmax). Increasing these two parameters led to 

weaken the spring force and therefore the increment 

in the equilibrium distance between two adjacent 

colloids in an RBC and increase in the radius of the 

RBCs. 

 
Fig. 9. Radius of modeled RBC as a function of persistence 

length (λp) 
 

 
Fig.10. Radius of modeled RBC as a function of maximum 

allowed length (Lmax) 
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Fig. 11. Spring length (equilibrium length) between two 

adjacent colloids in a red blood cell as a function of persistence 
length (λp) 

 

 
Fig. 12. Spring length (equilibrium length) binding two adjacent 
colloids in a red blood cell as a function of maximum allowed 

length (Lmax) 

Appendix 

cr  cut-off radius 
r
ijv  translational velocity of particle i relative 

to j 

g ||
ij , g ^

ij  drag coefficients 
r
U
ijF  conservative force 
r
T
ijF  translational force 

r
R
ijF  rotational force 

r%
ijF  random force 

v
iv  linear velocity 

i  angular velocity 

bk  bending stiffness 

qijk  angle between two consecutive springs or 

the inner product of 
r
ijr and

r
jkr  
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