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Abstract 

This paper presents a long-term optimal control treatment of human immunodeficiency virus (HIV) infection. HIV destroys 

the body immune system, increases the risk of certain pathologies, damages body organs such as the brain, kidney, and heart, 

and causes death. Unfortunately, this infectious disease currently has no cure; however, there are effective retroviral drugs for 

improving the patients’ health conditions. In this paper, two treatment drugs are considered to decrease the free HIV virus 

particles in the blood. Since excessive use of these drugs is not without harmful side effects, the prescription dosage should be 

minimum. Thus, we formulate an optimal control problem to reduce the HIV virus particles in the blood by using minimum 

drugs. To solve the obtained optimal control, direct method and spline functions are utilized. The main advantage of the direct 

method to the indirect method is the low computational cost of this solution. Spline functions are tools used in the direct 

solving approach to achieve the better solutions. Also, three different models are considered in this paper to evaluate the 

effectiveness of the proposed method in different conditions. In addition, in the end, we compare the results from the proposed 

approach with the results of the problem solving by indirect method. Furthermore, the sensitivity analysis is checked to 

demonstrate the performance of control system against parametric uncertainties. 
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1. Introduction 

HIV infection without control and treatment is 

very dangerous and deadly and according to the 

World Health Organization (WHO), this virus is the 

major cause of death from infections and disease. 

After years of discovering the disease, it is still very 

difficult to control the spread of the disease. These 

problems are due to the lack of appropriate medical 

facilities, as well as the unwillingness of people to 

take preventive measures. These problems are due 

to the lack of appropriate medical facilities, as well 

as the unwillingness of people to take preventive 

measures. Another major challenge is that in most 

parts of Africa, Europe and Asia, many infected 

people are not even aware of the disease due to 

illiteracy, lack of medical equipment and other 

factors. In addition, many people who are aware of 

their illness do not intentionally take precautions 

when they engage in sexual intercourse. Current 

measures to control the disease include prohibiting 

the reuse of used syringes, the use of condoms, 

treatment of infections and screening. It is 

noteworthy that in order to effectively control the 

spread of the disease, people susceptible to the 

disease should be protected from exposure, and 

sufferers should be adequately informed of the 

measures available to ensure that they do not 

transmit the disease to other people. Since there is 

currently no cure for this disease, it is important to 

examine different strategies to control the spread of 

the disease in order to minimize the spread of the 

disease. Hence, the need for better understanding 

and knowledge of the important parameters in the 

transmission of disease and the development of 

optimal and effective strategies for the prevention 

and control of the spread of this disease is very 

necessary. 

  Optimal control is a well-known approach 

that has been utilized to find optimal methods for 
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controlling a dynamic system. Today, the usefulness 

of the optimal control theory for studying different 

models in the treatment and control of the spread of 

various diseases, including HIV, is well known. 

To investigate the dynamics of this disease, 

different dynamical models have been presented. 

Infection of the disease is modeled by considering 

certain aspects of its dynamics. In [1] the minimum 

duration of treatment periods and the optimal 

multidrug method for HIV type 1 infection 

presented. In [2], an optimal treatment approach 

considering age-structured model of HIV infection 

is presented. In [3], the evolution of the infection is 

modelled by an ordinary differential equation 

system which includes both immune response and 

multi-drug effects. A system of ordinary differential 

equation, which describes the HIV and T cells in the 

immune system is utilized in [4]. The model in ref 

[5] is given by the components of the basic three-

component model which are the concentration of 

susceptible 4CD T+  cells, 4CD T+ cells infected by 

the HIV viruses and free HIV virus particles in the 

blood. A HIV model of on ordinary differential 

equation, which includes immune response, 

neutralizing antibodies and multi-drug effects is 

improved in [6]. There are also various formulations 

of optimal control problems in this field. 

Minimizing the population of viruses and the cost of 

medication [7], the maximization of T cells with 

minimization of therapeutic drug [8-9], and various 

other optimal control formulations mentioned 

below. 

Initial efforts have been made to formulate 

simple mathematical models of AIDS in gay 

communities. Compared to the current 

epidemiological data on HIV infection and the 

incidence of AIDS, these models have been used to 

assess the impact of various processes on the early 

epidemic after the introduction of the virus [10]. 

  A detailed analysis of the dynamic model for 

describing the pathogen of HIV infection has been 

proposed which the immune deficiency syndrome 

(AIDS) can be explained by two phenomena: 

infection to HIV from the population of 4CD T+ cells 

and the production of HIV with Increased 

reproduction capacity [11]. 

The latest works in this field include the 

following: 

  In [12] a dynamical model for considering the 

impact of awareness programs on HIV/AIDS 

outbreak was presented. A control scheme is 

introduced to represent the effectiveness of an 

awareness program. The designed optimal strategy, 

is characterized in terms of the optimality system, 

based on Pontryagin’s maximum principle. The 

simulations have been done using the Forward-

Backward Sweep Method with a progressive-

regressive Runge-Kutta fourth order. 

  In [13] a delayed model considering the 

relationship between HIV and the immune system 

during the natural course of infection has been 

proposed. An optimal control scheme considering 

time delays in both state and control variables was 

formulated that maximizes the number of uninfected 

4CD T+ cells as well as CTL immune response cells, 

keeping the drug therapy as low as possible. 

  In [14] a state space model with two control 

signals as drug therapies to block the infection of 

new cell and prevent the production of new free 

virions was presented. The main concern was to 

apply optimal control signal using Pontryagin’s 

principle to maximize the concentration of 

uninfected 4CD T+  cells in the body with minimum 

drug therapies. 

In [22-26], some applications of direct 

approach for solving the optimal control problem in 

robotic trajectory planning in difference operating 

conditions have been investigated.  

  In most of the research on the treatment of 

HIV and AIDS with optimal control, indirect 

methods have been used to solve the problem. In this 

paper, direct method and Spline functions are used 

to solve the optimal control problem. Two main 

advantages of the direct approach to the indirect 

approach, are the less computational cost, and 

achievement to better solutions due to the higher 

free parameters in problem solving. Also, ability of 

adding different constraints in problem formulation 

is another advantage of this method. Furthermore, 

this approach have the appropriate robustness 

against the parametric uncertainties of model. 

  The paper is organized as follows. The 

dynamic model of HIV infection is presented in 

section II. In section III, the optimal control problem 

is formulated. In section IV, the optimal control 

problem is solved by using indirect and direct 

method. .Simulation results are given in section V 

.Sensitivity analysis is presented in section VI and 

finally, the conclusion of the paper is presented in 

section VI. 

2. Dynamic Model 

Mathematical model of HIV infection of 

4CD T+ cells for the time interval 
0 f

t t t  is as 

follows [15-19]: 

0 0

max

0 0

0 0

1 , (t ) T

, (t )

, (t ) V

dT T I
q T rT kVT T

dt T

dI
kVT I I I

dt

dV
I V V

dt





 

 +
= − + − − = 

 

= − =

= − =

 
(1) 
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Which T(t) is the concentration of uninfected 

4CD T+ , I(t) is the infected 4CD T+ , and V(t) is the 

free HIV virus particles in the blood. 

It is considered that the healthy 4CD T+ cells 

are produced by body from precursors in the bone 

marrow and thymus with a constant rate q. Antigen 

or mitogen stimulate T cells and then multiply 

through mitosis at a rate r. The logistic growth of the 

healthy 4CD T+ cells is described by 
max

1
T I

T

 +
− 

 
, 

while the proliferation of infected 4CD T+ cells is 

neglected. The maximum concentration of 4CD T+

cells in the body is denoted using 
max

T . 

The interaction between the viruses V with 

uninfected T cells causes the HIV infection. T cells 

are destroyed at rate kVT− and I cells are generated 

at rate kVT due to the infection.  ,  ,  are 

represented as natural turnover rates of uninfected T 

cells, infected I cells and virus particles V, 

respectively. Also, I is assumed that each infected 

cell produces   virus particles over its lifetime. In 

addition, it is assumed that all of the parameters 

values in the above equations are positive. 

The dynamic of the healthy T cells without the 

HIV infection is as follows: 

0 0

max

1 , (t ) T
dT T

q T rT T
dt T


 

= − + − = 
 

 (2) 

  It can be shown that T cell concentration 

converges at 0T  as follows [20]: 

( ) ( )
20 max

max

4

2

T qr
T r r

r T
 

 
= − + − + 

  
 (3) 

In this representation, 
0

R  defined as the 

number of cases one infected case generates on 

average over the course of its infections period, in 

an otherwise uninfected population. For
0

1R  , the 

infection will die out in the long run, but if 
0

1R  , 

the infection will be able to spread in a population. 

Therefore, the greater value of 
0

R , causes difficulty 

in control of epidemic. 

In [17, 20], the basic reproduction number is 

defined by: 
0

0

k T
R




=  (4) 

This number represents the average number of 

secondary infection caused by a single infected cell 

in an entirely susceptible T cell population 

throughout its infectious period. In [17], have been 

proved that if 
0

1R  , the relevant equilibrium point 

( )0
,0,0T  is stable, i.e., the virus is removed and no 

HIV infection remains. But, if 
0

1R  , the relevant 

equilibrium point ( )0
,0,0T  will be unstable and the 

HIV infection continues. In this situation, a unique 

chronic infection equilibrium ( ), ,T I V  exists and 

will be unstable for a range of r.  

3. Optimal Control strategy for HIV Treatment 

There is a highly active antiretroviral therapy 

(HAART) which decreases the rate of HIV 

progression. This therapy can increase the survival 

time about 11-19 years [8]. HAART is prescribing 

concurrently of at least two antiretroviral drugs: 

reverse transcriptase inhibitors (RTT) and protease 

inhibitor (PI). The HIV infection is decreased using 

RTIs which blocks the integration of the viral code 

into the 4CD T+ helper cell and PIs lessen the HIV 

replication [20]. RTIs, PIs, or a combination of the 

two can be prescribed to patients to reduce the 

amount of virus in their bodies.  

The mathematical model with controls with 

time –dependent incorporated drugs is given as 

follows: 

( )

( )

( )

1 0 0

max

1 0 0

2 0 0

1 2

1 1 , (t ) T

1 , (t ) I

1 ,V(t ) V

0 1,0 1

dT T I
q T rT u kVT T

dt T

dI
u kVT I I

dt

dV
u I V

dt

u u





  

 +
= − + − − − = 

 

= − − =

= − − =

   

 
(5) 

 

The control signals 
1

u  and 
2

u  are the 

effectiveness of RT inhibitor and the protease 

inhibitor, respectively. 

This treatment methodology may cause the 

harmful effects for the patients, such as lactic 

acidosis and mitochondrial damage. But, 

discontinuity of drug treatment can lead to a fast 

come back of viral replication. 

Thus, an optimal control strategy is formulated 

in order to minimize the virus population and the 

dosage of prescribing drugs: 

( ) ( )2 22

1 2 1 1 20
, (t) (t) (t)

2

ft C
J u u C V u u dt

 
= + + 

 
  (6) 

The constant weights 
1

C  and 
2

C  used to 

balance the quantity of virus particles and the 

treatment drugs, respectively. 

Therefore, the optimal control problem can be 

written as follows: 

( ) ( )2 22

1 2 1 1 20
, (t) (t) (t)

2

ft C
Min J u u C V u u dt

 
= + + 

 
  (7) 
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( )

( )

( )

 

1 0 0

max

1 0 0

2 0 0

1 2 0

1 1 , (t ) T

1 , (t ) I

1 ,V(t ) V

0 1,0 1, ,
f

dT T I
q T rT u kVT T

dt T

dI
u kVT I I

dt

dV
u I V

dt

u u t t t





  

 +
= − + − − − = 

 

= − − =

= − − =

    

 
(8) 

4. Solving of Optimal Control Problem 

A) Indirect Method 

Indirect method is based on Pontryagin’s 

minimum principle. The optimal control solution is 

obtained by writing the Hamiltonian function and 

necessary conditions. 

First, the Hamiltonian function is obtained as 

follows: 

( ) ( )

( )

( )( ) ( )( )

( ) ( ) ( ) ( )

2 22

1 1 2

1 1

max

2 1 3 2

11 1 12 1 21 2 22 2

(t), u(t), (t), (t)
2

1 1

1 1

1 0 1 0

C
H X C V u u

T I
q T rT u kVT

T

u kVT I u I V

u u u u

 

 

     

   

= + +

  +
+ − + − − −   

  

+ − − + − −

+ − + − + − + −

 
(9) 

  Where 
1
 , 

2
  and 

3
  are the co-state 

variables and 
11 12 21 22

(t), (t), (t), (t) 0     are 

penalty multipliers satisfying: 

( ) ( )

( ) ( )

*

11 1 11 1 1 1

*

21 2 22 2 2 2

1 0, 0 0,

1 0, 0 0,

u u at u u

u u at u u

 

 

− = − = =

− = − = =
 (10) 

 

Then, the necessary conditions are written as 

follows: 

( )

( ) ( )

( )

( ) ( )

1

*1

1 1

max

* *

1 1 1 2

max

2

*2

1 2 2 3

max

3

*3

1 1 1 2 3

2

1

1

1

d H

dt T

d r
r T

dt T

r
I u kV

T

d H

dt I

d r
T u

dt T

d H

dt V

d
C u kT

dt




  

  




   




  


= − 


→ = − − +



+ + − −

 

= −



→ = + − −

 

= −



→ = − + − − +


 
(11) 

* * * *

2 1 1 2 11 12

1

*

2 2 3 21 22

2

0 0

0 0

H
C u kV T kV T

u

H
C u I

u

   

   


= → + − − + =


 = → − − + =



 
(12) 

 

where 
*

1
u  and 

*

2
u  can be found as follows: 

( ) * *

2 1 11 12*

1

2

*

* 3 21 22

2

2

kV T
u

C

I
u

C

   

   

 − + −
=




+ − =



 (13) 

By considering the bounds of the controls, 

optimal control pair of the optimal control problem 

(7), is obtained as follows: 

( ) ( )

( )

( )

* * * *

2 1 2 1

2 2

* *

2 1*

1

2

* *

2 1

2

1

0 0

1 1

kV T kV T
if

C C

kV T
u if

C

kV T
if

C

   

 

 

− −



 −

= 

 −
 


 
(14) 

* *

3 3

2 2

*

* 3

2

2

*

3

2

1

0 0

1 1

I I
if

C C

I
u if

C

I
if

C

   

 

 







= 


 


 (15) 

 
And in a compact notation: 

( ) * *

2 1*

1

2

min max 0, ,1
kV T

u
C

  −    
=    

    

 (16) 

*

* 3

2

2

min max 0, ,1
I

u
C

    
=    

   
 (17) 

B) Direct Method 

  In direct method, the variables of optimal 

control problem are approximated with various 

functions. There are three approaches based on kind 

of approximation: approximation of state variables, 

approximation of control variables and 

approximation both of them.  

  Also, there are different functions that can be 

used to approximate problem variables. 

  In this paper, both of state and control 

variables are approximated with spline functions as 

follows: 

,

1

ˆ(t) (t),
cx

N

k k r

k

T B
=

=  

,

1

Î(t) (t)
cy

N

k k r

k

B
=

=  

,

1

ˆ (t) (t)
cy

N

k k r

k

V B
=

=  

1 ,

1

û (t) (t)
cy

N

k k r

k

B
=

=  

(18) 
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2 ,

1

ˆ (t) (t)
cy

N

k k r

k

u B
=

=  

Where 
ˆ(t)T

, 
Î(t)

, 
ˆ(t)V

, 1̂
(t)u

 and 2
ˆ (t)u

 are 

the approximation of state and control variables 

(t)T
, 

I(t)
, 

(t)V
, 1

(t)u
 and 2

(t)u
. Also, k


, k


, 

k


, k


 and k


 are unknown coefficients and 

,
(t)

k r
B  is the Spline basis function that is defined as 

follows: 

1

,0

1
(t)

0

i i

i

t t t
B

otherwise

+
 

= 


 

, , 1 1, 1

1 1

(t) (t) (t)i i k

i k i k i k

i k i i k i

t t t t
B B B

t t t t

+

− + −

+ + + +

− −
= +

− −
 

(19) 

 

By approximating of state and control 

variables with spline functions, optimal control 

problem is transformed to a nonlinear programming 

problem as follows: 

( )
( )

1

0 2 22

1 2

ˆ ( , t)
ˆ , ,

ˆ ˆ( , t) ( , t)
2

f
k

t

k k k

k k

CV

Min J dtC
u u



  
 

 
 

=
 
+ + 
 


 

(20) 

( )
( )

( )
( ) ( )

( )( ) ( ) ( )

( )
( )( ) ( ) ( ) ( )

( )
( )( ) ( ) ( )

( ) ( )  

max

1

1

2

1 2 0

ˆ ,
ˆ ,

ˆ ˆ, ,
ˆ , 1

ˆ ˆˆ1 , , ,

ˆ ,
ˆ ˆ ˆˆ1 , , , ,

ˆ ,
ˆ ˆˆ1 , , ,

ˆ ˆ0 , 1,0 , 1, ,

k

k

k k

k

k k k

k

k k k k

k

k k k

k k f

dT t
q T t

dt

T t I t
rT t

T

u t kV t T t

dI t
u t kV t T t I t

dt

dV t
u t I t V t

dt

u t u t t t t


 

 


  


    


     

 

= −

 +
+ − 

 
 

− −

= − −

= − −

    

 
(21) 

 

To demonstrate the computational efficiency 

of the proposed method, simulations are performed. 

The numerical values of model parameters are given 

based on three references in Table 1 (model 1 [21], 

model 2 [3, 6, 8, 16], model 3 [15, 17, 18]). 

Long term horizons considered as

0
0 , 500

f
t days t days= =

 and the constant weights 

of cost function are considered as 1 2
0.1, 10C C= =

.The basic reproduction number 

0

0
1

k T
R




= 

 for all 

three models. 

  Fig. 1 to 3 show the state variables without 

control for three models. It can be seen that, there is 

a sharp decrease in the concentration of uninfected 

4CD T+ cells over 500 days. Also, the concentration 

of infected 4CD T+  cells has increased over the 

period. In addition, there are HIV virus particles in 

the blood after this time. Overall, model 3 has the 

worst conditions between the three models. 

Table.1. 
Model Parameters 

Parameter Model 1 MODEL 2 Model 3 Unit 

q  10 10 0.1 ( )3 1mm day− −  

  0.02 0.02 0.02 ( )1day −  

r  0.03 0.03 3 ( )1day −  

k  56.5 10−  52.4 10−  32.7 10−  ( )3 1mm day− −  

  0.35 0.24 0.3 ( )1day −  

  1500 1000 10 - 

  31.2 2.4 2.4 ( )1day −  

maxT  1500 1500 1500 ( )3mm −  

( )0T t  1000 1000 1000 ( )3mm −  

( )0I t  0 0 0 ( )3mm −  

( )0V t  0.001 0.001 0.001 ( )3mm −  

0T  1000 1000 1490 - 

0R  3.12 10 16.76 - 

 

Fig. 1. Model 1: state variables without control 

 

Fig. 2. Model 2: state variables without control 
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  The state variables with control for three 

models are illustrated in Fig 4 to 6. It is clear that the 

concentration of uninfected 4CD T+ cells is 

converged to 0T  at the end of treatment period in all 

their models.  

  Also, the infected cells and the virus 

population are reduced closed zero over the 

treatment window.  

  The control signals for three models are 

shown in Fig. 7 to 9. It can be seen that the protease 

inhibitor 
2

u  is prescribed more often than the 

reverse transcriptase inhibitor
1

u , for the most part 

of the treatment because it is the less toxic drug. 

  A numerical index called the integral of the 

square of control signal for the result of proposed 

method and indirect method is calculated and given 

in Table 2. As seen in Table 2, the numerical index 

obtained from the direct method is lower than the 

numerical index obtained from the indirect method 

which suggests that the amount of treatment drug in 

direct method is less than the amount of treatment 

drug in the indirect method. 

Also, the simulation run times of two methods 

are given in Table 3. It is clear that the 

computational cost of direct method is less than 

indirect method. 

 

Fig. 3. Model 3: state variables without control 

 

Fig. 4. Model 1: state variables with control 

 

Fig. 5. Model 2: state variables with control 

 

Fig. 6. Model 3: state variables with control 

 

Fig. 7. Model 1: control signals 

 

Fig. 8. Model 2: control signals 
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Fig. 9. Model 3: control signals 

Table.2. 
The Integral of the Square of Control Signal 

Method Model 1 Model 2 Model 3 

Indirect method 1.03 0.97 1.12 

Direct method 0.98 0.94 1.08 

Table.3. 
Simulation Run Times 

Method Model 1 Model 2 Model 3 

Indirect method 0.015 (s) 0.011 (w) 0.018 (s) 

Direct method 0.0034 (s) 0.0031 (s) 0.0038 (s) 

5. Sensitivity Analysis 

In this section sensitivity analysis is presented 

to study the impact of model parameters 

uncertainties on the results. To simulate this 

condition, 20% are added to nominal model 

parameters in model 2. The simulation results are 

shown in Fig. 10.  

 

Fig. 10. State variables with control and parametric uncertainties 

As seen in Fig. 10, the performance of system 

is preserved in presence of parametric uncertainties 

in model. 

6. Conclusions 

In his paper, long term optimal control for HIV 

treatment was presented. The HAART strategy with 

two drugs was considered for HIV-infected patient. 

Due to side effects of drugs, an optimal control 

problem was formulated to reduce the free HIV 

virus particles in the blood and the prescribing 

drugs. To solve optimal control problem direct 

method and spline functions was utilized. Finally, 

the proposed method was simulated and he 

simulation results demonstrated the effectiveness of 

proposed method in treatment of HIV infection. 

Also, the obtained results was compared to indirect 

method which the direct method had the better 

performance in minimization of drug dosages and 

simulation run times. 
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