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Abstract 

Microgrids (MGs) contain a diverse mix of energy resources to provide safe and secure power to the consumers. Batteries are 

utilized in MGs for further energy security assurance as well as cost minimization. In this paper, an efficient approach is 

introduced for simultaneous energy management and optimal battery sizing to accomplish economic MG operation. Also, 

demand response programs are employed to further reduce MG operation costs (OCs) and strike a balance between supply and 

demand. The objectives sought in this context are the optimal values for DG generation levels, level of consumer participation 

and the respective incentive payments, battery charge and discharge levels and the amount of power exchange with upstream 

network within a 24-hour scheduling cycle so as to minimize OCs and maximize MG operator’s (MGO) profit as a result of 

demand response. In order to address the hybrid energy management system (EMS) and battery sizing problem, the proposed 

model is solved using whale optimization algorithm (WOA) in MATLAB software for a grid-connected MG. The results 

indicate that battery charge and discharge is significantly lowered through optimal battery sizing incorporated into the proposed 

approach. 
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1. Introduction

Currently, distribution grids are undergoing 

substantial change due to increasing MGs. 

Characterized by high flexibility and autonomous 

operation, MGs improve the economic operation, 

reliability and environmental conditions. MGs 

provide a controllable infrastructure for integration 

of distributed energy resources (DERs) such as wind 

turbines (WT), photovoltaic generation (PV) and 

energy storage systems (ESS) into the main grid [1]. 

When MGs comprise several resources, their 

operators need an efficient control strategy for their 

stable and economic operation. 

 Through resource data processing and power 

exchange planning, EMS can guarantee stable 

energy supply for the consumer and economic 

operation for MG [2]. Therefore, different 

optimization techniques and planning strategies are 

considered to yield the best efficiency when 

incorporated into EMS schemes. These include 

game theory techniques [3], Mixed integer linear 

programming (MILP) [4] and Mixed Integer 

Nonlinear Programming [5]. In case of large-scale 

nonlinear problems, optimization techniques such as 

SIPSO [6] and Gravitational Search Algorithm [7] 

yield better energy management results. Some 

research works have also drawn comparisons 

between Genetic Algorithm (GA), Simulated 

Annealing (SA), Coco Search Algorithm (CSA), 

Particle Swarm Optimization (PSO) and Internal 

Search Algorithm (ISA) as applied to EMS, though 

not considering batteries [8]. 

Demand response (DR) is an efficient tool to 

achieve optimal energy management and increased 

efficiency of energy grids [9]. Recently, several 
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research works have been dedicated to improved DR 

implementation and their role in balancing the 

energy supply and demand when DERs are used as 

energy resources. This can bring several operational 

and economic benefits for MGs [10]. The combined 

EMS-DR approach is a powerful tool for MG 

economic optimization. The combined EMS-DR 

planning model has been solved using GA [11], 

WOA [12], Differential Evolution (DE) and 

modified PSO (MPSO) [13] leading to improved 

EMS application within MGs. However, ESS, 

despite being utilized in the studies, have not been 

addressed in adequate detail. 

PV and WT integration in the MG leads to 

lower costs and emissions. However, their 

operational limitations pose different challenges to 

the operators. These challenges can be partly 

overcome by utilizing batteries. Thus, renewable 

energy resources (RESs) and ESS are utilized and 

modeled simultaneously within MGs [14]. Among 

different storage technologies, battery energy 

storage systems (BESSs) are more attractive thanks 

to their high power and energy density [15]. These 

technical advantages along with fast energy transfer 

capabilities, makes batteries a highly viable solution 

for MG as well as power system applications. A 

thorough comparison is carried out in [16] between 

different battery technologies and their application. 

Economic energy planning combined with optimal 

battery sizing is an interesting problem for small 

towns, villages and MGs. Battery storage 

performance and planning within MGs has gained 

significant research interest but its optimal sizing to 

achieve an economic grid is still underway. 

Different approaches and techniques have been 

introduced for determining optimal battery size [17-

20]. Also, based on the planning and operational 

objectives, some researches may exclude the 

batteries’ capital costs and installation costs [21, 22]. 

Economic operation has a high priority in MG 

planning and operation and therefore has turned into 

a major research area. Accordingly, optimal EMS 

scheme is studied for both supply and demand sides. 

In the demand side, DR is also included in the 

studies leading to EMS-DR program within MGs. 

However, few researchers have considered battery 

capacity sizing along with EMS-DR. This 

unexplored area can provide further advantages in 

economic operation of MGs. In this paper, optimal 

battery sizing problem is considered besides EMS-

DR in order to minimize the OCs. In addition, 

optimal battery size can increase the longevity of 

energy storage system. In fact, simultaneous 

optimization of EMS-DR and battery storage size is 

crucial for minimizing total OCs. The approach 

considered in this paper attempts, in the first place, 

to approximate an optimal size for batteries and then 

achieves an exact battery sizing. Given the obtained 

exact optimal battery size, EMS-DR problem is then 

solved for minimum OC and maximized MGO 

profit using WOA technique.  

The paper sections are organized as follows. In 

section 2, the mathematical model of the considered 

problem is presented and in section 3, the WOA 

technique is explained as the solution algorithm. 

Numerical results and their validation for optimal 

MG operation are demonstrated in section 4 and, 

finally, section 5 draws the conclusions. 

2. Problem Modeling 

The MG model considered in this study 

encompasses controllable loads, DGs, RESs (PV 

and WT) as well as batteries connected to the utility 

grid. Obviously, all elements should be individually 

modeled along with their respective technical 

characteristics and constraints. Generation and DR 

model along with the objective functions and related 

constraints are given in sections 2.1 to 2.4, 

respectively. 

A)  Generation model 

DG generation cost is represented by a second-

order function as (1) [23]: 

𝐶𝐹𝑖,𝑡 = 𝑎𝑖(𝑃𝑖,𝑡)
2
+ 𝑏𝑖𝑃𝑖,𝑡   (1) 

Where 𝑎𝑖and 𝑏𝑖 are fuel cost coefficients, 𝑃𝑖,𝑡 

is the generated power by DGs, and 𝐶𝐹𝑖,𝑡 is the fuel 

cost in $.  

Based on the available resources and the 

energy prices, the MGO can decide whether to sell / 

buy energy to / from the utility grid. The exchanged 

power with the grid for each hourly interval is 

expressed as (2): 

𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦,𝑡 =∑(𝑃𝑏,𝑡𝑏𝑡
𝑢−𝑃𝑠,𝑡(1 − 𝑏𝑡

𝑢))

𝑇

𝑡=1

   ∶      𝑏𝑡
𝑢 ∈ [0,1] (2) 

Where 𝑃𝑏,𝑡 and 𝑃𝑠,𝑡 are, respectively, the 

purchased and sold power from/to the utility grid. 

𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦,𝑡 is the amount of power exchanged with the 

utility grid and 𝑏𝑡
𝑢

 is a binary variable indicating 

whether the MG sells or buys energy to/from the 

grid at each interval. Positive exchange with the grid 

denote the sale and purchase of energy by the MG, 

respectively. 

The cost of power exchange with the utility 

grid is obtained by (3): 

𝐶𝑈𝑡 =∑(𝛾𝑏,𝑡 𝑃𝑏,𝑡

𝑇

𝑡=1

𝑏𝑡
𝑢 − 𝛾𝑠,𝑡𝑃𝑠,𝑡(1 − 𝑏𝑡

𝑢)) ∶  𝑏𝑡
𝑢 ∈ [0,1] (3) 

 

Where 𝛾𝑏,𝑡  is the buying price and 𝛾𝑠,𝑡 is the 

selling price of energy by the MG. 𝐶𝑈𝑡 is the cost of 
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power exchange with the utility grid which can be 

positive or negative based on the sold or purchased 

power by the MG. Also, the output power of the 

battery as another generation resource is formulated 

as (4): 

𝑃𝑏𝑎𝑡𝑡,𝑡 =∑(𝑃𝑑𝑖𝑠,𝑡 𝑏𝑡
𝑏𝑎𝑡𝑡 − 𝑃𝑐ℎ,𝑡 (1 − 𝑏𝑡

𝑏𝑎𝑡𝑡 )) ∶ 𝑏𝑡
𝑏𝑎𝑡 ∈ [0,1] 

𝑇

𝑡=1

 (4) 

Where 𝑃𝑑𝑖𝑠,𝑡 and 𝑃𝑐ℎ,𝑡 are the discharge and 

charging power of the battery. 𝑏𝑡
𝑏𝑎𝑡𝑡

 is the 

indication variable to distinguish between charge 

and discharge mode of the battery for each interval. 

𝑃𝑏𝑎𝑡𝑡,𝑡 represents the battery power and when 

positive (negative), indicates a discharge (charge) by 

the battery. Taking into account the battery capital 

cost, the total cost of utilizing the battery at hour t is 

obtained by (5): 

𝐶𝐵𝑡 =∑𝐶𝑜𝑝𝑒 . (𝑃𝑑𝑖𝑠,𝑡 𝑏𝑡
𝑏𝑎𝑡𝑡 − 𝑃𝑐ℎ,𝑡(1 − 𝑏𝑡

𝑏𝑎𝑡𝑡 )) + 𝑇𝐶𝑃𝐷

𝑇

𝑡=1

    

∶     𝑏𝑡
𝑏𝑎𝑡 ∈ [0,1] 

(5) 

𝑇𝐶𝑃𝐷 =
1

365
(
𝑟. (1 + 𝑟)𝐿𝑡

(1 + 𝑟)𝐿𝑡 − 1
) . 𝐶𝑐𝑎𝑝. 𝐶𝑏𝑎𝑡𝑡 (6) 

Where 𝐶𝑜𝑝𝑒 denotes the cost of battery 

operation in both charge and discharge modes, r is 

the interest rate for the battery’s capital cost, Lt is 

the battery lifetime, 𝐶𝑐𝑎𝑝 is the battery capital cost, 

𝐶𝑏𝑎𝑡𝑡 is the battery capacity, TCPD is battery’s total 

cost per day and 𝐶𝐵𝑡 is the resulting total battery 

cost.  

The first and second terms in (5) represent the 

battery operation and financing costs, respectively. 

In our proposed approach, the optimal size of the 

battery is obtained by minimizing the total OC of the 

MG. The optimal battery sizing also takes account 

of the related constraints as outlined later. 

B) Demand response model 

Electricity consumers gain income out of DR 

incentives and endure costs of reduced power. Thus, 

their benefit can be expressed by (7): 

𝐵𝐶𝑗,𝑡 = 𝑅𝐶𝑗,𝑡 − 𝐶𝐶𝑗,𝑡 (7) 

Where 𝐵𝐶𝑗,𝑡 is the customers’ benefit function, 

𝑅𝐶𝑗,𝑡 is the incentive payment they receive and 𝐶𝐶𝑗,𝑡 

is their cost functions corresponding to their 

dissatisfaction with the reduced power. Thus, it 

would be rational for the consumers to participate in 

DR program when  𝐵𝐶𝑗,𝑡 ≥ 0 which guarantees the 

minimum benefits for consumers. 

The consumers’ cost function is a second-order 

function as (8) [12]: 

𝐶𝐶𝑗,𝑡 = 𝑘1,𝑗𝑃𝐶𝑗,𝑡
2 + 𝑘2,𝑗𝑃𝐶𝑗,𝑡 − 𝑘2,𝑗𝑃𝐶𝑗,𝑡𝜃𝑗,𝑡 (8) 

Where 𝑘2,𝑗, 𝑘1,𝑗 are both the coefficients of the 

cost function. 𝑃𝐶𝑗,𝑡 is the amount of reduced power 

and 𝜃𝑗,𝑡 represents the level of customer 

dissatisfaction ranging from 0 to 1.  

Accordingly, the MGO’s benefit function to be 

maximized is given by (9) [24]: 

𝑚𝑎𝑥 BU =∑∑(𝜆𝑗,𝑡𝑃𝐶𝑗,𝑡 − 𝑅𝐶𝑗,𝑡)

𝐽

𝑗=1

𝑇

𝑡=1

  (9) 

Where BU is the MGO’s benefit function and 

 𝜆𝑗,𝑡 is the cost of not supplying power to a customer. 

In some circumstances, power transfer to distant 

regions and loads becomes costly for the MGO. This 

is defined as the “value of power interruptibility”. In 

(9), the first term is the MGO’s revenue from not 

supplying power to a particular customer (𝑃𝐶𝑗,𝑡). 

The second term is the MGO’s cost paid in the form 

of incentives to the customers.  

The supply-demand balance may not be 

reached even after incorporating DR programs and 

customer load reduction (𝑃𝐶𝑗,𝑡
𝑝𝑟𝑜). For these cases 

it is proposed to impose mandatory curtailments 

(𝑃𝐶𝑗,𝑡
𝑚𝑎𝑛𝑑) accompanied by much higher incentive 

payments. Thus, the customers will gain higher 

revenues in peak periods in exchange for power 

reductions beyond 𝑃𝐶𝑗,𝑡
𝑝𝑟𝑜. The curtailment in 

excess of 𝑃𝐶𝑗,𝑡
𝑝𝑟𝑜 is formulated as (10)  [12]: 

𝑃𝐶𝑗,𝑡
𝑚𝑎𝑛𝑑

=

{
 
 

 
 
∑∑(𝑃𝐶𝑗,𝑡

𝑜𝑝𝑡 − 𝑃𝐶𝑗,𝑡
𝑝𝑟𝑜)  ∶      𝑖𝑓  (𝑃𝐶𝑗,𝑡

𝑜𝑝𝑡 > 𝑃𝐶𝑗,𝑡
𝑝𝑟𝑜)

𝑇

𝑡=1

𝐽

𝑗=1

0                                               ∶    𝑖𝑓  (𝑃𝐶𝑗,𝑡
𝑜𝑝𝑡 ≤ 𝑃𝐶𝑗,𝑡

𝑝𝑟𝑜)

 (10) 

 

Where 𝑃𝐶𝑗,𝑡
𝑜𝑝𝑡 is the optimal power reduction 

of the customers. The paid penalty to the customers 

related to 𝑃𝐶𝑗,𝑡
𝑚𝑎𝑛𝑑   is expressed as (11): 

𝐶𝐶𝑀𝑗,𝑡 = {
𝜇  𝐶𝐶𝑗,𝑡(𝑃𝐶𝑗,𝑡

𝑚𝑎𝑛𝑑)  ∶      𝑖𝑓  (𝑃𝐶𝑗,𝑡
𝑜𝑝𝑡 > 𝑃𝐶𝑗,𝑡

𝑝𝑟𝑜)

0                                ∶    𝑖𝑓  (𝑃𝐶𝑗,𝑡
𝑜𝑝𝑡 ≤ 𝑃𝐶𝑗,𝑡

𝑝𝑟𝑜)
   (11) 

Where 𝜇 is the penalty payment coefficient and 

𝐶𝐶𝑀𝑗,𝑡 is the incentive payment for mandatory 

power curtailment. 

C)  Object functions 

Generally a fair and rational interaction is 

expected to be established between generation and 

DR within a MG. EMS and optimal economic 

operation is therefore employed to achieve this goal. 

The first objective function aims at minimizing the 

OC of generation sources within the MG as in (12): 

𝐹1 =∑(∑𝐶𝐹𝑖,𝑡

𝐼

𝑖=1

+ 𝐶𝑈𝑡 + 𝐶𝐵𝑡)

𝑇

𝑡=1

 (12) 

 

The second objective function tries to 

maximize the MGO’s benefit from DR. Since the 
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overall objective function is a minimization 

problem, (9) is made negative as in (13): 

𝐹2 =∑∑(𝑅𝐶𝑗,𝑡 − 𝜆𝑗,𝑡𝑃𝐶𝑗,𝑡
𝑜𝑝𝑡)

𝐽

𝑗=1

𝑇

𝑡=1

 (13) 

Both 𝐹1 and 𝐹2 objective functions are 

expressed in $ but different weight factors are used 

in accordance with the objectives of the proposed 

model. Thus, using different weighting factors, the 

two objective functions are transformed into a 

single-objective function to be minimized, as (14): 

 
min 𝑐𝑜𝑠𝑡 =𝑤1 (𝐹1) + 𝑤2(𝐹2) 

(14) 

Where 𝑤1 and 𝑤2 are the weighting factors the 

sum of which is equal to unity. More often, however, 

they are taken equal to balance between different 

objectives. 

D)  Constraints  

Different technical constraints encountered in 

MG operation are presented in this section. At each 

time interval, the total amount of non-renewable and 

renewable generation and the power exchange with 

the upstream grid as well as the battery power should 

equal the load demand. Otherwise, the customers 

implement the power reduction schemes. The load-

generation balance constraint is expressed as (15): 

∑𝑃𝑖,𝑡

𝐼

𝑖=1

+ 𝑃𝑤𝑖𝑛𝑑,𝑡 + 𝑃𝑝𝑣,𝑡 + 𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦,𝑡 + 𝑃𝑏𝑎𝑡𝑡,𝑡

= 𝑃𝑑𝑒𝑚𝑎𝑛𝑑,𝑡 −∑𝑃𝐶𝑗,𝑡
𝑜𝑝𝑡

𝐽

𝑗=1

 
(15) 

All generation resources should be operated 

within their allowable limits as (16): 
𝐷𝐸𝑅𝑥

𝑚𝑖𝑛 ≤ 𝐷𝐸𝑅𝑥,𝑡 ≤ 𝐷𝐸𝑅𝑥
𝑚𝑎𝑥 

(16) 

Where 𝐷𝐸𝑅𝑥
𝑚𝑎𝑥 and 𝐷𝐸𝑅𝑥

𝑚𝑖𝑛 are the 

maximum and minimum allowable generation limits 

for resource x, respectively.  

For simultaneous EMS and battery sizing 

problem, the battery constraints should be taken into 

account. The battery charge should not fall below a 

specified level. Thus the battery state of charge 

(SOC) at each interval is expressed by (17) and (18) 

[25]: 

 𝐶ℎ𝑎𝑟𝑔𝑒: 𝑆𝑂𝐶𝑡+1 = 𝑆𝑂𝐶𝑡  . (1 − 𝜉 . ∆𝑡) +
𝜂𝑐ℎ×𝑃𝑐ℎ,𝑡 𝑏𝑡

𝑏𝑎𝑡𝑡

𝐶𝑏𝑎𝑡𝑡
  (17) 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒: 𝑆𝑂𝐶𝑡+1 = 𝑆𝑂𝐶𝑡 . (1 − 𝜉 . ∆𝑡) −
𝑃𝑑𝑖𝑠,𝑡 (1 − 𝑏𝑡

𝑏𝑎𝑡𝑡)

𝐶𝑏𝑎𝑡𝑡 × 𝜂𝑑𝑖𝑠
 (18) 

Where 𝜂𝑐ℎ and 𝜂𝑑𝑖𝑠 are the charge and 

discharge efficiencies, respectively. 𝐶𝑏𝑎𝑡𝑡 is the 

battery capacity and 𝜉 is the battery self-discharge 

parameter. 𝜉 is used in this paper for a more realistic 

modeling of the battery to help further reduce the 

overall cost.  

The battery SOC limitation is expressed by 

(19): 
𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 

(19) 

Equation (19) impacts the selection of 

minimum and maximum battery energy. Also, at 

each interval the battery can be charged or 

discharged with a certain min/max power rate, as 

given in (20): 
𝑝𝑏𝑎𝑡𝑡

𝑚𝑖𝑛 ≤ 𝑝𝑏𝑎𝑡𝑡,𝑡 ≤ 𝑝𝑏𝑎𝑡𝑡
𝑚𝑎𝑥 

(20) 

Where 𝑝𝑏𝑎𝑡𝑡
𝑚𝑎𝑥  and 𝑝𝑏𝑎𝑡𝑡

𝑚𝑖𝑛  are the 

maximum charge and discharge level of the battery 

with the following conditions: 

If: 

𝑝𝑏𝑎𝑡,𝑡 > 0 , the battery is discharging; 

𝑝𝑏𝑎𝑡𝑡,𝑡 < 0, the battery is charging;  

𝑝𝑏𝑎𝑡𝑡,𝑡 = 0, the battery is inactive. 

 

3. Whale Optimization Algorithm 

WOA is a nature-inspired metaheuristic 

algorithm imitating the humpback whale hunting 

strategy. Using a special hunting method called 

bubble-net approach, whales search for and 

surround their prey through creating bubbles in a 

spiral form (similar to digit 9). The activities of 

initial whale population are mainly divided into two 

tasks: One group is deployed for exploration of the 

prey while the second group tries to hunt (exploit) 

the detected prey. Through mathematical modeling 

of these two phases, an optimal value can be 

obtained. Further details are explained in [26].  

Using the WOA technique, an overview of the 

EMS model can be achieved as shown in Fig. 1. 

Using the input data, the multi-objective function is 

converted into a single-objective function and the 

battery sizing task can be accomplished. Due to the 

nonlinearity of simultaneous EMS and battery sizing 

problem, the optimization task is performed by 

WOA method in MATLAB software on an example 

MG. 

4. Simulation results 

This section presents simulation results and 

analysis for the proposed approach on a MG with 

controllable loads. A large scale MG with large 

consumers (equivalent to aggregated loads) is 

studied which consists of 10 DG units and a WT 

unit, one PV unit, one battery set and seven 

customers. 
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Fig. 1. Proposed flowchart for simultaneous EMS and battery 

sizing optimization problem 

WT and PV data are taken from [27] and their 

OCs are assumed zero. Maximum power rating for 

PV and WT are 150MW and 165MW, respectively. 

DG units are always on and no startup costs are 

considered for them. Also, DG cost function 

coefficients are taken from [24]. 

Maximum traded power between MG and the 

main grid is assumed 150 MW and the MGO’s daily 

budget is taken as $150000. It is assumed that the 

MGO knows the customers’ cost function 

coefficients (𝑘1,𝑗 𝑎 𝑘2,𝑗). The MGO has also 

received the hourly energy reduction bids from the 

customers (𝑃𝐶𝑗,𝑡
𝑝𝑟𝑜) to derive the customer priority 

(𝜃𝑗,𝑡). This way, a more accurate DRP can be 

implemented and realistic incentives can be paid 

[12]. The hourly values of power interruptibility for 

the seven customers are adopted from [24]. All 

customers have bid their highest offer for t=21. In 

order to determine the incentive payments for 

𝑃𝐶𝑗,𝑡
𝑚𝑎𝑛𝑑, the value of μ is calculated based on the 

mutual contracts between MGO and the customers 

which is assumed 2 have. The total daily demand of 

the MG is 40911MWh and two peak periods, 

namely during hours 12 and 20 occur [24]. 

MGs as well as power systems may utilize a 

big battery set with high capacity  [28]. Therefore, 

in this paper a single large battery set is considered. 

Battery-related parameters are given in Table 1. The 

battery is assumed to charge/discharge within two 

hours. 

Table.1. 
Internal Parameters values of battery 

value Parameters 

95% 𝜂𝑐ℎ , 𝜂𝑑𝑖𝑠 
30% 𝑆𝑂𝐶𝑚𝑖𝑛 
90% 𝑆𝑂𝐶𝑚𝑎𝑥 
5% 𝜉 (kWh/month) 
6% r 

3 Lt (year) 
4 𝐶𝑜𝑝𝑒($/MWh) 

20000 𝐶𝑐𝑎𝑝($/MWh) 

 

Simultaneous EMS and battery sizing is a 

complex optimization problem for which WOA 

technique is employed. The output of WOA should 

determine the most economical power supply 

conditions alongside the optimal battery size. 

Parameters in WOA are randomly initialized. The 

number of search agents is considered 200 with a 

maximum iteration of 500. Given the MG scale, the 

maximum and minimum battery capacity is assumed 

as known, meaning that the search space of WOA is 

predetermined. The whales are randomly initialized 

within the search space. Through the evaluation of 

objective functions for each whale, the best results 

are updated. This process is maintained until the 

stopping criterion, i.e. maximum number of 

iterations, is reached. 

 
Fig. 2. Optimal value of energy capacity using MG OC for 

different battery sizes. 

The trade-off approach can also approximate 

the battery capacity [17]. Fig. 2 illustrates the 

optimal battery sizing using the MG OC 

minimization. The range of optimum battery 

capacity is determined by the trade-off method. 

Considering the MG scale, the battery sizing is 

initially carried out for a capacity of 10 to 200 MWh. 

Based on the trade-off method this is narrowed to 

145-175MWh (see Fig. 2). Selection of a higher or 

lower battery capacity range will incur extra OCs 

though the MGO may be willing to consider that 

option as well. Using very large battery capacity is 

counter-intuitively not desirable in all cases. In very 

high capacities, abrupt charge and discharge of the 
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battery may result in higher OCs. Therefore an 

optimum point should be sought for the battery 

capacity in MGs as well as for other power 

networks. 

Table 2 presents a comparison of the resulted 

battery capacity using trade-off method versus the 

proposed sizing approach. As mentioned, using the 

trade-off method, the optimal range of the battery 

capacity was obtained between 145 and 175 MWh. 

Considering initial SOCs of 30%, 60% and 90%, the 

trade-off method yields optimal capacities of 170, 

160 and 150 MWh, respectively. Although fairly 

acceptable, the results can be more exactly and 

optimally determined using the proposed sizing 

method. Using the proposed method, optimal 

capacities of 165.29, 154.02 and 149.75 MWh are 

obtained for initial SOC levels of 30%, 60% and 

90%, respectively.  

Table.2. 
 Optimal operation results for different scenarios 

 Without battery With battery 

Trade-off method Proposed sizing method 

Initial 

SOC=30% 

Initial 

SOC=60% 

Initial 

SOC=90% 

Initial 

SOC=30% 

Initial 

SOC=60% 

Initial 

SOC=90% 

Battery sizing (MWh) - 170.00 160.00 150.00 165.29 154.02 149.75 
Fuel cost ($) 770060 765920 764800 764450 766900 765780 765540 

Trade cost ($) 115340 109960 109870 107570 106830 107010 107170 

OC of Battery ($) 0 2064 1740 1442 2006 1675 1440 
Customers Incentive ($) 96215 102930 102380 104560 103920 103040 99363 

Mandatory Curtailment (MWh) 281.79 563.92 576.56 574.73 572.79 570.43 558.42 

Normal Curtailment (MWh) 2657.00 2667.20 2638.90 2680 2678.60 2660.80 2601.00 

Diesel Generation (MWh) 35501 35337 35285 35265 35377 35326 35313 

Trade with utility grid (MWh) 3098.00 3036.90 3040.10 2988.10 2975.90 2974.20 2975.60 

Total OC of MG ($) 426902 422226 421256 419879 420809 420063 419320 

TCPD ($) - 3485 3280 3075 3388 3157 3070 

OC+TCPD ($) - 425711 424536 422954 424197 423220 422389 

 

Besides the optimal battery capacity, Table 2 

also includes the MG economic operation 

conditions. As observed, the proposed sizing 

method delivers the lowest OC through determining 

the most optimal battery capacity. Considering 

different scenarios, it is realized that without the 

battery, DG generation level as well as power 

exchange with the grid are increased. The power 

import from the upstream to cover the demand leads 

to higher OCs. Also, when using the battery, the 

stress on the utility grid DGs is reduced and higher 

DR contributions are achieved. This is due to the 

higher flexibility offered by the batteries which 

helps with the realization of a smart planning 

scheme for critical periods and further cost 

reductions.  

In the simulations, similar weights are 

allocated by the operator to each objective term. By 

adopting this policy, the objective functions are 

treated in a fair and rational manner. Thus, the 

planned operation scheme encompassing the 

optimal levels for the generation of each DER, 

BESS charge and discharge, exchange power with 

the utility grid, and 𝑃𝐶𝑗,𝑡
𝑜𝑝𝑡 is obtained. It is highly 

recommended to start the operation cycle with a 

high initial SOC so as to significantly reduce the 

MGs OCs. However, this may be impossible in 

some cases. Therefore, here the worst case results, 

corresponding to the lowest initial SOC (=30%), are 

presented. 

 
Fig. 3. Output power from the DERs, DR and total demand 

(Proposed sizing method with initial SOC=30%). 

Fig. 3 demonstrates the optimal level of RES 

generation, battery charge/discharge, power 

exchange with the utility grid, sum of DG generated 

powers, optimal power reduction by customers and 

the total demand. The optimal power reduction by 

customers (𝑃𝐶𝑗,𝑡
𝑜𝑝𝑡) is the sum of 𝑃𝐶𝑗,𝑡

𝑛𝑜𝑟𝑚 and 

𝑃𝐶𝑗,𝑡
𝑚𝑎𝑛𝑑 indicating the DR level of the MG. Power 

purchase from the utility grid is mainly carried out 

at peak periods, in particular at 12 and 20. Due to 

lower power consumption during hours 22 to 9 AM 

as well as from 14 to 19, the excess power is sold to 

the utility grid. The battery is charged during early 

hours so as to be available for the first peak period 
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between 11 and 12 AM. The battery is again charged 

during hours 14 and 15 in preparation for the second 

peak period. During peak hours 20 and 21, in 

addition to power purchase from the utility grid, the 

battery is also discharged to help balance the supply 

and demand. Thus, the battery plays a significant 

role in cost reductions and flexible operation of the 

MG. At the end of the day, the battery is again 

charged for the next daily cycle. A significant part 

of the OCs is related to DG fuel which is in turn 

dependent on the DG capacity and the load level. In 

peak periods, DGs generate their maximum power 

to help maintain the supply demand balance. 

Occasionally, a circumstance might occur when all 

generation resources are at their maximum 

generation level, the battery has been discharged and 

the customers have implemented 𝑃𝐶𝑗,𝑡
𝑝𝑟𝑜 of power 

reduction and still the supply-demand balance 

cannot be met. In this case, the role of mandatory 

reduction 𝑃𝐶𝑗,𝑡
𝑚𝑎𝑛𝑑  is highlighted. It is worthy to 

note that 𝑃𝐶𝑗,𝑡
𝑚𝑎𝑛𝑑 is not only important for supply-

demand balance but it may also help, at times, lower 

the OCs. The total demand in this case study is 

40911MWh and the amount of reduced power varies 

for different scenarios. However, an average of 

7.8% optimal power reduction is witnessed across 

all scenarios. 

The daily battery SOC is depicted in Fig. 4. For 

an initial SOC of 30%, the battery gets charged at 

1:00 when demand is low. The minimum SOC is 

rarely reached and mostly witnessed at peak periods 

when the battery helps with the supply-demand 

balance. Most often, the battery is at its maximum 

SOC. The proposed approach prevents abrupt 

charge and discharge instances leading to higher 

battery life and avoiding extra costs. The SOC is at 

its highest at 24:00 guaranteeing the battery’s 

readiness for the next daily cycle. This further 

demonstrates the efficiency of the proposed 

approach for optimal energy management. 

 

Fig. 4. The value of the state of charge (SOC) of the battery for 

various scenarios.(Top figures for Trade-off method and bottom 
figures for proposed sizing method) 

5. Conclusion 

In this paper, a hybrid EMS-DR model 

including optimal battery sizing was introduced for 

MG economic operation. The economic operation 

model optimizes different related variable within a 

24-hour span, including the amount of reduced 

power by customers, paid DR incentives, optimal 

power allocation to DGs, optimal battery charge and 

discharge and the power exchange between the 

utility grid and MG. A large size of the used battery 

set will not guarantee the minimum OCs, rather an 

optimum capacity should be considered in the 

design of a MG. Economic operation through 

optimal battery capacity sizing leads to a remarkable 

decrease in the MG OCs and lowers the costs of 

supplying the load power. The proposed battery 

sizing method was demonstrated to have a great 

accuracy in determining the optimal battery size for 

economic operation of the MG. Optimal battery 

capacity was obtained for different initial SOC 

values. According to the results, higher initial SOCs 

will require lower battery capacity leading to fairly 

lower OCs. Therefore, it is recommended to use and 

plan for a high initial SOC. The DR program within 

the proposed approach achieved an average power 

reduction of 7.8% indicating the advantage of 

integrating DR with MG EMS to achieve optimal 

values for both supply and demand variables along 

with more efficient battery sizing. As demonstrated, 

the proposed approach is highly proficient and 

accurate for application in economic operation 

planning within MGs as well as power systems. 
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