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Abstract 

BTI is a major reliability concern in nanoscale digital design, and addressing it during design 

space exploration in high levels of abstraction is essential to enhance reliability. Aging prediction 

model appropriate for these levels should have short runtime. In addition, the model must predict 

the new-observed stochastic effects of aging. A machine learning (ML)-based model for 

predicting stochastic aging effects is proposed in this paper. First, a large enough training set is 

obtained by Monte Carlo (MC) simulations, and then, the ML-based model is trained and 

developed to predict aging statistical characteristics. Various ML algorithms, such as Ridge, 

Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest, and stacked 

generalization are evaluated. Results show that ensemble algorithms have high efficiency in aging 

prediction. When compared to the MC-based approach, the proposed technique shows that the 

aging prediction runtime is reduced by more than 99%, while accurate prediction of the statistical 

properties of stochastic aging is obtained with an accuracy of up to 98%. This improvement is 

achieved by offline data collecting and model training which needs a noticeable runtime. 

However, it is a one-time offline task and has no impact on prediction runtime. 
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1. INTRODUCTION 
 

Reliability has become more challenging as 

technology has advanced into deep 

nanometer nodes, and therefore, reliability 

analysis and lifetime optimization of  

 

 

 
nanometer digital systems have been 

manifested as an important necessity in the 

design flow of modern digital circuits. A 

complementary metal-oxide-semiconductor 

(CMOS) circuit may fail due to reliability 

effects, which are either spatial or temporal. *Corresponding Authors Email:     
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Fabrication-induced reliability issues 

resulting from the growing complexity 

required for fabricating nanoscale CMOS 

circuits, combined with aggressive scaling 

into atomic sizes, are known as spatial 

effects. Temporal effects, which are observed 

during circuit operation, may be permanent 

or transient. For example, soft errors induced 

by cosmic rays cause transient errors. Due to 

their importance, techniques for hardening 

the circuits against soft errors are under 

special investigation today. Permanent 

effects on the reliability of circuits, such as 

accelerated transistor aging, often arise from 

the aging effects on circuit components [1]. 

 After the production of circuits and after 

the beginning of their operation, aging effects 

are observed on the behavior of circuit 

components as run-time deviations from their 

ideal behavior. Interconnects wear out due to 

electron migration effect. In addition, 

transistors suffer from aging phenomena. 

Transistor aging effects impose serious 

constraints and challenges in the design of 

emerging Nano-sized digital systems.  

 Transistors wear out due to aging 

phenomena, which includes time dependent 

dielectric breakdown (TDDB), bias 

temperature instability (BTI), and hot carrier 

injection (HCI), among which BTI is a 

serious mechanism of transistor aging. BTI 

increases the switching delay of the 

transistors and hence the delay of 

combinational paths. Finally, circuit fails due 

to timing violation [2].  

 Aging effects and phenomena were first 

observed in the 1970s. Since then, many 

studies have been conducted to identify these 

phenomena and their mechanisms; and 

research is still ongoing. Efficient aging 

related models have been developed based on 

these studies. Initially, the models predicted 

the aging-induced degraded delay of circuits 

as a deterministic function of operating 

conditions such as workload and 

temperature. However, as the dimensions of 

the components continued to shrink, 

stochastic behaviors appeared in the aging 

effects in circuits. This means that two 

exactly identical transistors may show 

different aging rates even under exactly the 

same operating conditions. 

 Various methods have been proposed to 

deal with the destructive effects of aging on 

circuit performance [3]. Initially, most aging 

optimization methods focused on low levels 

of abstraction, which are close to the physical 

source of transistor aging. An accurate 

understanding of aging mechanisms is 

available, and therefore, effective models for 

predicting and evaluating the aging severity 

may be developed in these low levels [4]. 

Over time, high levels of abstraction came to 

the attention of designers to deal with the 

complexities of designing modern systems, 

which led to a shift in the design paradigm of 

complex digital systems. Design criteria such 

as reliability, as a major challenge in era of 

nanometer digital circuits, should be 

considered in the earliest stages of design. 

However, transistor-level models for 

evaluating and predicting the aging of 

circuits are not suitable for use at high levels 

of abstraction due to their large execution 

time and complexity. In addition, aging 

effects are stochastic in new technology 

nodes, and therefore, aging models must be 

upgraded to be able to predict these stochastic 

behaviors [5]-[7]. 
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 In this paper, a model for predicting the 

aging severity of circuits is proposed which 

is suitable for high levels of abstraction, e.g. 

high-level synthesis (HLS). This model 

predicts the aging severity of circuits 

according to workload and operating 

conditions, such as temperature, based on 

machine learning (ML) approaches. The 

model predicts the distribution of the circuit 

aging by means of a mean value and standard 

deviation. The key point of the model is its 

short runtime while gives precise results. 

Therefore, it is suitable for high levels of 

abstraction, in particular the design space 

exploration in HLS. To the best of our 

knowledge, it is the first time that such a 

model is developed. 

 The rest of the paper is organized as 

follows. Related works and background 

topics are reviewed in Section 2. The 

proposed approach and experimental results 

are introduced in Section 3 and Section 4, 

respectively. The paper concludes with 

Section 5. 

 

2. BACKGROUND AND RELATED 

WORKS 
 

Analyzing and predicting the severity of 

aging is an important part of designing 

circuits in an age-aware manner. In this 

section, we classify and review related 

works. 

 

2.1. Transistor-Level Aging Prediction 
 

BTI gradually degrades the threshold voltage 

of the transistors and thus their ON current. 

As a result, the delays of the combinational 

paths increase over time. Whenever the 

increased delays cause the timing constraints 

to be violated, the circuit fails. Therefore, 

aging effects restrict the operational lifetime 

of circuits. BTI consists of two similar 

phenomena, NBTI (negative BTI) and PBTI 

(positive BTI), which affect PMOS and 

NMOS transistors, respectively. 

 NBTI is observed when a negative gate-

source voltage (so called Negative BTI) is 

applied to a PMOS transistor. PBTI is 

activated by applying a positive voltage to the 

gate-source of a NMOS transistor. In other 

words, when a MOSFET transistor turns on, 

its threshold voltage is degraded due to BTI 

effects. This is called the stress phase. When 

the transistor is turned off (by applying the 

appropriate gate voltage), the BTI effect 

enters the recovery phase, where a peculiar 

property of this phenomenon is observed. In 

the recovery phase, the threshold voltage 

degradation is partially compensated. 

However, the recovery rate does not keep 

pace with the degradation rate, and therefore, 

after consecutive stress and recovery phases 

(which is called dynamic BTI), the threshold 

voltage of the transistor increases, Fig. 1. 

This long-term degradation of the threshold 

voltage depends on the duty cycle of the input 

signal, named also as Signal probability (SP), 

and is computed deterministically by 

Equation 1 [4]. 
 

2 2 2[ / (1 )]n n
th v clk tV K T  − = −  (1) 

 

 In the above equation, 𝐾𝑣 is a technology-

dependent constant. 𝛼 is workload 

specification that denotes the input duty cycle 

or SP. 𝑇𝑐𝑙𝑘 is the clock period. Also, 𝛽𝑡 is 

calculated based on the technology and 

workload specifications and n is a constant 

equal to 1/4 or 1/6 depending on technology. 
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 Static BTI is the case that a transistor is 

under constant stress (duty cycle = 1).  It is 

clear that the static BTI effect has a higher 

severity when compared to the dynamic BTI 

since constant stressing is applied and there 

is no time to recover the degradation in the 

static NBTI, Fig. 1. Threshold voltage 

degradation due to the static BTI is computed 

deterministically as follows [4]: 
 

2[(1 ) . ] n
th oxV A t C t = + +  (2) 

 

where A and C are technology-dependent 

constants, 𝑡𝑜𝑥 is oxide thickness, 𝑡 is the total 

stress time, and n is a technology-dependent 

factor equals to 1/4 or 1/6. δ is a constant and 

equals to 0.5. 

 The above equations are true for older 

technology nodes where the effects of BTI on 

those relatively large transistors are 

somewhat deterministic. In the era of deep 

nanometer technologies, the amount of 

threshold voltage shift is stochastic and 

should be described by statistical 

distributions. 

 The increase in the threshold voltage 

(during the stress phase) is due to the 

charging of individual defect traps which 

already exist in the gate oxide and the 

compensation of this degradation (in the 

recovery phase) is due to the discharging of 

these traps. On the one hand, the number of 

traps in individual transistors in advanced 

technology nodes is relatively small 

(proportional to the decreasing gate area), 

and on the other hand, the charging and 

discharging of these traps is a stochastic 

process. Consequently, a drastic time-

dependent variation in the BTI effects in 

these deeply scaled devices (and hence in the 

circuit lifetime) is observed [8]. 

 

Fig. 1. Static and Dynamic NBTI. 

 

 To describe the stochastic behavior of 

BTI effects, in the atomic trap-based model 

[6], each transistor is characterized by 

parameters n (number of defects), 𝜏𝑐 (defects 

capture time), and 𝜏𝑒 (defects emission time). 

The time it takes to charge (in the stress 

phase) and discharge (in the recovery phase) 

a defect is described as 𝜏𝑐 and 𝜏𝑒, 

respectively. These time constants are 

dependent on voltage and temperature. The 

probability density function (PDF) of widely 

distributed defect capture and emission 

times, as well as their correlations, are 

defined by capture/emission time (CET) 

maps [7, 8], as shown in Fig. 2a. 

Experimental data can be used to build CET 

maps [9]. By integrating the CET map over 

the entire time domain, defect density (𝑁𝑇𝐷) 

(per unit area) of available traps is 

determined. Consequently, the average 

number of defects n (in a transistor with the 

size of W and L) is calculated as follows [6]: 
 

TDn N WL=   (3) 

 

 Depending on workload, only a fraction 

of available traps will be involved (occupied) 

and participate in the degradation of the 

threshold voltage. By alternative stress and 
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recovery phases by applying high and low 

digital voltages, the probability of occupancy 

of traps, denoted by 𝑃𝑂𝐶𝐶, (Fig. 2b) can be 

computed as a function of the frequency (f), 

duty factor (α), and total time (t), Equation 

(4). In this equation,  𝜏𝑐 is the capture time 

and 𝜏𝑒 is the emission time of defects. 
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 The initial CET map is multiplied with 

the occupancy probability map to generate 

CET-active map (Fig. 2c). This map 

describes the distribution of the occupied 

traps as a function of the applied stress 

waveform. By taking advantage of this map, 

the ratio of active (occupied) traps to total 

traps which is denoted by ρ (corresponding to 

the applied workload) is easily computed as 

follows [7]: 
 

( , ) ( , , , , )

( , )
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c e c e

f P t f d d

f d d

      


   
=



 (5) 

 

 Then, for a specific device and stress 

waveform, the mean number of occupied 

traps, 𝑛𝑇, is computed simply by multiplying 

the mean number of available traps in that 

device (𝑛) with the ratio of occupying of 

traps (ρ); i.e. 𝑛𝑇 = 𝜌 ∙ 𝑛. Each occupied trap 

has a certain contribution to threshold voltage 

degradation. The average impact of defects 

that is denoted by 𝜂 can be determined 

experimentally. By knowing 𝑛𝑇 and 𝜂, the 

total Cumulative Distribution Function 

(CDF) for Δ𝑉𝑡ℎ can be obtained from the 

following equation [6,7]: 
 

0
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! !

Tn i
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th th
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−

=

 = −    (6) 

 

 The mean and the standard deviation of 

the distribution can be used for describing 

transistor-aging features. 

 

2.2. Gate-Level BTI 
 

Timing analysis is an inevitable step in the 

design of digital circuits. Transistor-level 

simulations are able to analyze the timing of 

circuits with high accuracy. However, these 

methods are very time consuming and are not 

applicable to large circuits. Therefore, static 

timing analysis (STA) is widely used in 

timing analysis of large digital circuits, which 

includes thousands or even millions of gates. 

In order to perform timing analysis, STA 

takes advantage of gate delay models. 

Various methods have been proposed to 

incorporate aging effects into the gate delay 

model. Methods based on lookup tables 

(LUTs) are common in STA [10]. The effects 

of aging can also be easily incorporated into 

these LUTs. However, since the aging 

severity of a gate depends on various factors 

(especially workload and temperature), in 

practice, LUT-based aging-aware STA 

approaches require a large number of lookup 

tables which is not desirable. 

 An alternative method is to obtain the 

delay degradation of a gate as a function of 

aging-induced shift in the parameters of its 

internal transistors. These methods first 

calculate the threshold voltage degradation of 

the transistors (based on workload) and then  
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Fig.2. CET and CET-active maps [7]. 

 

determine the gate delay according to these 

parameter degradations using gate delay 

models. In [4], a compact model is proposed 

to predict the upper bound of the threshold 

voltage drift. An efficient model is proposed 

in [11] that considers the aging effects of 

individual transistors of a gate on its delay. In 

this method, aging effects on the transition 

time (slope) of the gate output are also 

considered. A method for analyzing the aging 

of circuits by taking into account the 

stochastic effects of aging is proposed in [8]. 

A machine learning-based aging prediction 

method is proposed in [12], which decreases 

the estimation runtime significantly and is 

suitable for situations where extensive aging 

analysis is required, e.g. in design 

exploration. However, it does not consider 

stochastic effects. 

 

3. PROPOSED APPROACH 
 

3.1. Problem Statement 
 

Aging effects in circuits are manifested as an 

increase in their delay. Therefore, by 

incorporating the aging effects into timing 

analysis approaches, the aging severity of a 

circuit can be obtained as an increasing delay 

of the circuit over time. Transistor-level 

timing simulations are accurate but very time 

consuming. In addition, the simulation needs 

to be repeated for each new workload (input 

SP). Therefore, these methods are not 

applicable to large digital circuits. Due to 

their short execution time, aging-aware STA-

based approaches can be used as a remedy for 

analyzing large circuits. 

 To meet the challenging requirements of 

digital system design, technology scaling has 

been introduced as an effective solution. 

Nowadays, manufacturing a complex system 

on a chip (SoC) is possible by taking 

advantage of Nano-sized transistors. In order 

to increase design productivity, a paradigm 

shift in digital design flow has emerged, with 

a greater emphasis on higher levels of design 

abstraction. Consequently, computer-aided 

design (CAD) tools now widely support 

design methodologies based on high-level 

synthesis (HLS) algorithms. 

 HLS explores the design space by taking 

advantage of processes such as scheduling 

and binding [12]. Due to the increasing 

importance of accelerated transistor aging, 

the lifetime of circuits should be addressed in 

the early stages of design. To do this, on the 

one hand, aging prediction models must be 
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fast enough for efficient exploration of the 

design space; and on the other hand, the 

(newly discovered) stochastic nature of 

Nano-sized transistor aging effects must be 

included in the analysis of circuit life. 

 

3.2. Proposed ML-based Stochastic Aging 

Model 
 

Transistor aging causes circuit delay to 

increase over time. The aging rate (or just 

aging for simplicity) is the rate of delay 

degradation in comparison to the zero-time 

(fresh) delay; i.e.: 
 

( ) ( )

( )

D aged D fresh
aging

D fresh

−
=  (7) 

  

 In this equation, D(fresh) and D(aged) 

denote the fresh and the aged delay, 

respectively. The aging rate is calculated at 

the end of year 10 in this paper. The aged 

delay is determined by a number of variables, 

including workload characteristics, effective 

temperature, and supply voltage [1]. It has 

been shown that the signal probability (SP) of 

an input signal (workload) is sufficient for 

aging analysis [11]. A vector of SPs of 

individual input signals (bits) can 

characterize the workload of a multi-input 

(multi-bit). For example, an 8-bit adder has 

two 8-bit ports, A(a7-a0) and B(b7-b0), and 

one bit for input carry (ci). Hence, workload 

features of this FU are represented by a vector 

of the primary input SP values as SP= 

(SP(ci)‚ SP(b7)‚ …‚ SP(b0)‚ SP(a7)‚ …‚ 

SP(a0)) [12]. 

 For deep-nanometer transistors, the aging 

rate should be described as a statistical effect 

by means of a probability distribution with a 

mean value (µ) and standard deviation (σ). 

For a given primary input SP vector, the 

aging severity probability distribution of a 

circuit can be computed statistically by 

exploiting a Monte Carlo simulation. In the 

Monte Carlo simulation, the circuit is 

simulated iteratively and, in each iteration, 

different samples of the threshold voltage for 

individual transistors are chosen. The 

threshold voltage for each transistor is 

sampled according to its (aging-induced) 

degradation distribution. It should be noted 

that the distribution of the degraded threshold 

voltage of a transistor depends on the input 

SP for that transistor, which is calculated by 

propagating the primary SP vector towards 

that transistor. At the end of the Monte Carlo, 

the distribution, the mean value, and standard 

deviation of the aging severity (for the given 

primary SPs) can be determined. 

 In each Monte Carlo iteration, the number 

of occupied defects for each internal 

transistor (which depends on workload) is 

determined according to the Poisson 

distribution (with an average of 𝑛). The effect 

of each occupied defect on the degradation of 

the threshold voltage is determined according 

to an exponential distribution (with an 

average of 𝜂). The value of 𝜂 has been 

determined experimentally and has been 

reported in research papers for a specific 

technology node [6]. The value of 𝜂 for the 

intended technology can be determined by 

appropriate scaling. Finally, by summing the 

effects of all occupied defects, the total 

aging-induced degradation of the threshold 

voltage of each internal transistor is 

determined [7]-[8]. 

 After determination of the (degraded) 

threshold voltage of all of the internal 

transistors of a gate, the degraded delay of the 

gate is determined (based on the new 
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parameters of its internal transistors). This is 

performed by exploiting the gate delay 

model. The gate delay model determines the 

degraded delay by considering the original 

delay, input transition time, and the delay 

sensitivity to threshold voltage shift. 

Sensitivity values are calculated by 

simulation in the phase of standard cells 

characterization. For a more accurate timing 

analysis, the degradation of the transition 

time (slope) of the gate output is also 

calculated (in a similar approach as delay 

determination) [11]. The total delay of the 

circuit is determined by exploiting STA 

methods. STA is performed in a block-based 

approach. Aging-induced degraded delays 

and output transitions of the gates are used in 

STA. Finally, at the end of the Monte Carlo 

simulation, the probability distribution of 

aging severity is determined, and the 

statistical characteristics of the aging severity 

are obtained. 

 By repeating the Monte Carlo simulation 

for different workloads (primary SPs) and 

operating conditions, a large-enough set of 

(SP, aging distribution) pairs can be obtained. 

Due to the relatively short runtime of the 

STA-based aging analysis (compared to 

transistor-level methods), a large set of these 

pairs can be obtained in a reasonable time. 

Block-based STA has a time complexity of 

O(n), with n being the number of gates. 

Therefore, it can be applied to large circuits. 

 After obtaining the training set, a 

machine learning (ML) regression technique 

is developed to estimate statistical 

characteristics of stochastic aging severity. In 

other words, the mean value and standard 

deviation of the distribution of stochastic 

aging-induced delay degradation are 

predicted by the model. The detailed steps of 

the workflow are depicted in Fig. 3. 

 

3.3. ML-based Estimation Models 
 

Due to their efficiency, ML techniques are 

becoming popular in digital design and 

related CAD tools. In this section, it is shown 

that ML regression models provide a fast and 

precise aging estimation. Various ML-based 

models can be used for developing aging 

estimation framework, where each of them 

has different efficiency. Here, a number of 

effective methods for ML-based regression 

are introduced. 

 Ridge regression model falls into the 

category of linear regression algorithms and 

is fitted by using the L2 regularization 

method. This model can be used to check the 

linearity of the relationship between features. 

This model has a hyper-parameter, called 

alpha, which is set manually to tune the 

regularization. 

 Artificial Neural Network (ANN) 

discovers the non-linearity relationship in 

data. The ANN-based nonlinear model is 

relatively complex and shows very high 

efficiency in many applications. For 

developing this model, we should decide 

about the number of hidden-layers and the 

number of neurons of each hidden-layer. 

 Support Vector Machine (SVM) for 

regression (SVR) can be used to develop 

models with lower complexity compared 

with ANN. SVM techniques are very popular 

in ML, where using kernel tricks, such as 

Radial Basis Function (RBF)extend their 

efficiency. 

 Random Forest (RF) approach constructs 

a multitude of decision trees that are trained  
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Fig. 3. Workflow. 

 

 

Fig. 4. Standard cell characterization. 

 

using a training set. RF discovers the 

importance of different features in a 

regression model. This model falls into the 

category of ensemble algorithms. 

 Stacked Generalization, also called 

stacking, is an ensemble machine-learning 

model that combines some ML algorithms. 

Some base estimators pass their individual 

predictions to a final regression model. This 

final regression model computes the final 

prediction based on the results of base 

estimators. Stacking regression takes 

advantage of multiple ML algorithms, and 

therefore, mitigates over-fitting and under-

fitting problems. 

 

4. EXPERIMENTS  
 

4.1. Experimental Setup 
 

Standard cells of the library are characterized 

by exploiting extensive sensitivity analysis. 

By performing this analysis, the delay 

sensitivity of each gate to the threshold 

voltage shift of all its internal transistors is 

obtained. At the same time, the fresh (zero-

time) delay and the degradation of the output 

transition time of gates are determined. All of 

these values are obtained using extensive 

HSPICE simulations, with the 7nm 

predictive technology model (PTM) [13], for 

different values for load capacitances and 

operating conditions such as temperature. To 

do this, the required netlists are generated by 

a Python script. The results are then read and 

the corresponding LUTs are filled with 

another Python script, Fig. 4. These LUTs are 

necessary for aging-aware STA which is used 

for data collection and training set 

generation. 

 To perform STA analysis, a Verilog 

description of the circuits is first developed, 

and then synthesized by Synopsys Design 

Compiler under simultaneous constraints of 

speed and area. In order to perform the 
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synthesis flow, a 7-nm standard-cell library is 

developed by scaling the cells of NanGate 

45nm Open Cell Library [14], an open-source 

standard-cell library based on 45nm bulk 

CMOS technology. However, the proposed 

method is not limited to any particular 

standard-cell library and technology node. 

 For a given workload, the SP values of all 

internal nodes of the gate-level description of 

the circuit are obtained by propagating the SP 

values of the primary inputs of the circuit. 

Based on the SP values of the gate inputs, the 

mean value of the occupied traps of each 

internal transistor of the gate is determined 

(Equation 3). The average impact of each 

defect on threshold voltage degradation is 

also specified for the technology node. A 

Monte Carlo analysis, combined with aging-

aware STA, is performed to obtain the 

statistical characteristics of the degraded 

delay of the functional units (FUs) and some 

known benchmarks. These statistical values 

are obtained based on the distribution of the 

degraded threshold voltage of each internal 

transistor. Most of these tasks are performed 

using python scripts as depicted in Fig. 3. 

 Data collection for training the model is 

essential to ML techniques. By repeating the 

MC for different workloads and 

temperatures, a large enough training set for 

a ML-based prediction model is obtained. 

Two separate training sets, one set in form of 

(Primary SPs, the mean value) pairs and the 

other set in form of (Primary SPs, the 

standard deviation) pairs, are used to develop 

two regression models. 

 Scikit-learn [15], a free Python library 

that features various ML-based regression 

algorithms, is used to develop and evaluate 

the estimation models. RidgeCV method, 

which consists of the Linear Model package 

of the Scikit-learn, implements ridge 

regression with a built-in grid search and 

cross-validation for tuning the model 

parameters, such as the alpha parameter. In 

this work, we use three-fold cross validation 

and grid search of different alpha values 

(0.001, 0.01, 0.1, 1). 

 To find the best parameters of ANN, 

SVR, and RF models, the built-in 

GridSearchCV function is used. This 

function implements the grid search and 

cross validation for tuning parameters of any 

ML-based model. In this work, three-fold 

cross validation is used. ANN efficiency for 

aging estimation is evaluated using 

MLPRegressor function, which is 

implemented in the Neural Network package. 

SVR regression with the RBF kernel is used 

in this work. It is an implementation for 

support-vector-machines regression 

algorithms and exists in the sklearn.svm 

package. In addition, 

RandomForestRegressor method existing in 

the sklearn.ensemble package is used for 

evaluating the efficiency of Random Forest 

(RF) algorithm. 

 StackingRegressor function as an 

implementation of stacking regression 

algorithm in scikit-learn is used in this work. 

Random forest and SVR are used for the base 

estimators and a neural-network model 

performs the final prediction. The parameters 

of the base models are equal to the parameters 

of these models in previous experiments.   

 The efficiency of the proposed approach 

and estimation models is evaluated in the 

aging prediction of some FUs such as adder 

and subtractor. In addition, some of the 

ISCAS85 benchmark [16] circuits are used. 
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Fig.5. PDF of aging severity for an Adder 

corresponding to a given SP. 

 

Table 1. Data collection runtime and 

number of gates for each benchmark. 
 

Benchmark # gates 
Data collection 

runtime (s) 

Adder 492 670*1000 

Subtractor 511 652*1000 

Comparator 251 312*1000 

C432 160 236*1000 

C880 383 385*1000 

C1355 546 692*1000 

 

 Experiments were run as single threads 

on a personal computer with an Intel Core i7 

Q740 processor (1.73GHz, 6MB Cache) and 

4GB RAM. 

 

4.2. Experimental Results 
 

The probability distribution function (PDF) 

for aging severity corresponding with a given 

primary input SP vector is depicted in Fig. 5. 

This is obtained by exploiting a Monte Carlo 

simulation. The horizontal axis shows the 

aging severity (in percent) and the vertical 

axis denotes the corresponding probability. 

The mean value and standard deviation of 

aging severity are computed using this 

distribution, after completing the MC. 

 Data collection for producing the training 

set is performed by MC for each input SP 

vector. Each iteration of MC is based on the 

aging-aware STA method, and the MC 

simulation is completed after (up to) 500 

iterations. Finally, MC is repeated for 1300 

different input SP vectors to produce the 

desired pairs for training the model. The 

Runtime of data collection and number of 

gates are reported in Table 1 for different 

circuits. The runtime is shown as a 

multiplication of a MC simulation for a given 

SP by the number of repeating the MC 

(number of SP vectors for training set). 

 The proposed approach estimates the 

mean and standard deviation of aging 

severity distribution for the benchmark 

circuits and FUs, using various ML-based 

regression models. Best combination of 

parameters of the models for each regression 

algorithm is discovered by exploiting a grid 

search combined with cross validation. The 

runtime of training of each model is depicted 

in Table 2. Parameters of models are also 

listed in the table.  

 The runtime of the MC-based aging 

analysis for each circuit is shown in Table 3, 

which is approximately equal to the runtime 

of aging-aware STA (one iteration of MC) 

multiplied by the number of MC iterations. 

The runtimes of different ML-based 

regression methods are also reported in Table 

3. The machine learning method produces 

two separate models, one for estimating the 

mean value and the other for estimating 

standard deviation. The runtime shown in the 

table includes the total execution time of  
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Table 2. Training runtime and parameters of each ML-based regression model 
 

Estimation model Training runtime (s) Model Parameters 

Ridge 6.73 Alpha=0.1 

ANN 6841 

power-t=0.5 

alpha=0.001 

#neurons=100 

SVR 259 
gamma=0.001 

C=100 

Random forest 3184 
#estimators=150 

depth=20 

Stacking 3252 - 

 

Table 3. The runtime of aging analysis for different approaches. 
 

Circuit 
Runtime (msec) 

Rdg ANN SVR RF Stack MC 

add 0.73 1.68 1.22 1.57 2.45 1341 

sub 0.73 1.67 1.21 1.57 2.45 1304 

comp 0.72 1.68 1.19 1.57 2.45 624 

C432 0.73 1.67 1.19 1.57 2.45 472 

C880 0.72 1.68 1.22 1.57 2.45 771 

C1355 0.73 1.68 1.22 1.57 2.45 1384 

 

Table 4. The mean value of aging severity obtained by MC, and accuracy of ML models. 
 

Circuit 

The Mean value of aging severity 

Accuracy (compared to MC) % MC % 

Rdg ANN SVR RF Stack  

Add 94.3 98.1 97.3 97.9 98.5 7.84 

Sub 95.2 98.4 97.8 98.2 98.9 7.21 

comp 95.7 98.3 98.1 98.5 98.6 8.12 

C432 94.9 98.0 97.2 97.8 98.3 7.43 

C880 95.3 98.3 97.9 98.4 98.7 8.25 

C1355 95.4 98.5 97.8 98.2 98.9 7.49 

average 95.13 98.27 97.68 98.17 98.65 NA 
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Table 5. The standard deviation of aging severity obtained by MC, and accuracy of ML models. 
 

Circuit 

Standard deviation of aging severity 

Accuracy (compared to MC) % MC 

Ridge ANN SVR RF Stack  

Add 96.8 98.4 97.9 98.1 99.1 0.94 

Sub 96.7 98.5 98.2 98.3 98.9 0.76 

comp 97.1 98.7 98.3 98.5 99.2 0.81 

C432 96.6 98.7 98.1 98.4 99.3 0.89 

C880 97.2 98.6 98.1 98.8 99.1 0.68 

C1355 96.5 98.7 98.1 98.5 98.9 0.73 

average 96.82 98.6 98.12 98.43 99.08 NA 

 
these two models. The results show a 

significant reduction (more than 99%) in the 

runtime of aging analysis with ML-based 

methods compared to the MC method. This 

improvement is achieved with the cost of 

offline training runtime. 

 To evaluate the accuracy of the proposed 

method, the Monte Carlo method and the 

proposed ML-based models are used to 

extract statistical characteristics of stochastic 

aging severity for different circuits and 

corresponding to different workloads. The 

analysis is repeated for 100 different SPs. 

The average values of the mean value and 

standard deviation using MC for each circuit 

are shown in Table 4 and Table 5, 

respectively. The accuracy of the ML-based 

models compared to the MC results is also 

reported in these tables. The results show that 

the linear model has the weakest efficiency in 

aging analysis and the stacking method is the 

most efficient model. Ensemble algorithms 

such as random forest and stacking 

regression are effective for predicting aging 

characteristics. 

 It should be noticed that these values are 

obtained with significantly reduced runtimes, 

as depicted in Table 3. In summary, the 

experimental results show that the proposed 

method obtains the statistical characteristics 

of stochastic aging with up to 98% accuracy 

with more than 99% reduction in runtime. 

Therefore, the proposed approach is suitable 

for aging analysis for exploring the design 

space at high levels of abstraction. 

 

5. CONCLUSIONS 
 

In this paper, a SVR-based stochastic aging 

prediction model was developed. The 

training set was obtained by extensive Monte 

Carlo simulations, using different primary SP 

vectors. The proposed method reduced the 

prediction runtime up to 99%, while the 

results were accurate as 99%. Training the 

model needed significant time. However, it 



80                                                                                Esshaghi, Bazli, Esshaghi.  A Machine Learning-based Model … 

was performed once as an offline process, 

before the prediction, and had no impact on 

prediction runtime. The model satisfied the 

requirements of aging analysis at high levels 

of abstraction.  
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