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Abstract 

Increasing penetration of renewable energy resources, especially wind power in power system 

operation, has some technical and economic effects because of the variable and uncertain nature of 

these resources. Therefore, it is very important for system operators to consider these behaviors 

necessary to solve the problem in this regard, especially generation scheduling problem. One of the 

most important strategies to increase the benefit of power system operation is to manage and control 

of wind power generation using pumped storage plants. A pumped storage plant can be used to provide 

added value to a wind farm to manage power output uncertainties. This paper presents a new approach 

for solving the weekly generation scheduling including wind farms and pumped storage plants. The 

hybrid PSO mechanism is suggested to solve this scheduling problem based on implementation of 

bacterial foraging concepts. The proposed PSO is applied to two test systems (which are included two 

wind farms and one pumped storage plant) and the results of this modified PSO are compared with 

the conventional PSO. Evaluation of the results of these test systems’ solutions show that better 

optimal schedules are obtained. 

 

 

Keywords: Generation scheduling, Bacteria foraging, particle swarm optimization, wind power 

generation. 

  

1. INTRODUCTION 
 

In recent years, the conventional energy 

resources have caused the increase of  

 

 

 
concerns in front of decision makers to install 
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solar and so on. The most challenging issue 

to cope with using renewable energies with 

other resources in power system operation is 

the stochastic behavior. The main 

characteristic of this behavior is twofold; 

uncertainty and variability. Therefore, these 

factors make some difficulties for system 

operators to manage and control the power 

system situation to meet load during different 

time periods. 

A very important task in the operation of 

power system concerns the optimal 

generation scheduling (GS) considering 

technical and economical constraints over a 

time horizon. The GS problem consists of 

determining the optimal operation strategy 

for the next scheduling period, subject to a 

variety of constraints. One of the most 

important strategies for increasing profits of 

system operator is to integrate the wind 

power resources with limited energy 

resources such as pumped storage plants. A 

pumped storage plant can be used to provide 

added value to a wind farm which takes part 

in the market in comparison with separate 

participation of them. The possibility of 

storing energy in pumped storage plants can 

significantly reduce the risk of self-

scheduling for wind power producers in the 

market. Pumped storage units can be used to 

store the excess energy from wind power and 

provide the reserve and flexibility needed in 

systems with large amounts of wind power. 

Several studies have been tried to develop a 

decision approach to set different objective 

functions such as profit maximization [1], 

carbon emission reduction [2] curtailment 

reduction [3]. Pumped storage would also 

benefit the system by balancing wind power 

in a market [4] or in an isolated power system 

[5].  

This paper extends GS problem by 

introducing additional constraints to 

represent the wind farms generation with 

pumped storage plants into the problem 

formulation. The main contributions of this 

work are as follows: 

1. A new generation scheduling 

formulation is presented which integrates 

both wind power generation and pumped 

storage plants, 

2. A hybrid particle swarm optimization 

is presented based on the concept of 

bacterial foraging, 

3. The results of different bacterial 

foraging concepts implemented in PSO 

are presented and compared. 

 In next section, problem formulation of 

GS and the related constraints are discussed. 

The wind turbine and pumped storage models 

are presented in this Section. In section 3, the 

hybrid particle swarm optimization has been 

developed by some aspects of bacterial 

foraging concepts. The test systems (which 

have six and fifteen conventional units) are 

used to present the optimization method 

capabilities in section 4. The results of 

conventional and passive congregation PSO 

are compared to the results of proposed 

hybrid PSO with some modifications based 

on bacterial foraging concepts. Conclusion of 

this paper is presented in Section 5.  

 

2. PROBLEM FORMULATION 
 

The main concept of this paper is based on 

coordination of conventional units, wind 

farms and pumped storage plants. Therefore, 

this cooperation can be defined by different 

objective functions between different owners 
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especially GenCos. In general, this problem 

can be called the generation scheduling (GS) 

which is formulated in this paper based on 

coordination of these three types of 

generating units to obtain the maximum 

profit. Thus, it is assumed that these players 

can estimate their participation in the power 

market based on own forecasted load to 

maximize their own profit. 

 At first, the model of both wind turbine 

and pumped storage unit will be presented 

and based on these models the GS 

formulation will be introduced in two main 

parts: the objective function and all different 

constraints during time horizon (168 hours of 

a week). 

 

2.1. Wind Farm Model 
 

The generated power varies with the wind 

speed at the wind farm (WF) site. The power 

output of a wind turbine can be determined 

from its power curve, which is a plot of 

output power against wind speed. A turbine 

is designed to start generating at the cut-in 

wind speed (Vci) and is shut down for safety 

reasons at the cut-out wind speed (Vco). Rated 

power Pr is generated when the wind speed is 

between the rated wind speed (Vr) and the 

cut-out wind speed. There is a nonlinear 

relationship between the power output and 

the wind speed when the wind speed lies 

within the cut-in and the rated wind speed as 

shown in Figure 1. 

 Therefore, the wind power generated 

corresponding to a given wind speed can be 

obtained from: 

 

 
Fig. 1. Power curve of a wind turbine. 
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where the constants A, B, and C are presented 

as follows [6]: 
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 The application of the common wind 

power generation model is illustrated in this 

paper by applying it to a wind turbine rated 

power at 2 MW, with cut-in rated, cut-out 

wind speeds of 3.5, 12.5, and 25 m/s, 

respectively. 

 

2.2. Pumped-Storage Model 
 

The pumped-storage plant (PS) is composed 

of an upper and lower reservoir. Typically, a 

reversible pump-turbine makes the storing of 

energy in off-peak hours possible that it can 
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be sold during peak hours which provides the 

operation to be economically profitable. 

Thus, the pump-turbine will work as a turbine 

when water is released from the upper 

reservoir to the lower one, injecting its 

production to the network. Likewise, when 

pumping is taking place, the energy is 

consumed to store water in the upper 

reservoir, which will be available later on for 

generation mode.  

 The variables associated to the pumped-

storage plant are considered in terms of 

energy in the model. Thus, in each period, the 

state of the upper and lower reservoirs will be 

determined by the energy stored in them at 

the end of the period. Similarly, the volume 

capacity of both reservoirs will be expressed 

as maximum and minimum energy levels that 

can be stored in the reservoirs [7]. The energy 

stored in each lower and upper reservoirs of 

pumped storage plant has an upper and a 

lower capacity limitation which are: 
 

min max( )Eu Eu t Eu         (2) 

 

min max( )El El t El           (3) 

 

 In this paper, contribution of pumped 

storage plant in reserve power market is not 

considered. 

 

2.3. Generation Scheduling Model 
 

The main objective of a GS problem is to 

maximize the total profit of its generating 

units in the scheduled horizon. While the 

operation is constrained by a number of 

system and generating units’ constraints, 

total revenue is obtained from both energy 

and reserve market based on energy and 

reserve power forecasted prices. The time 

horizon of this problem is one week with 

hourly intervals. The objective function of 

GS problem is defined as follows: 
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 This objective function is subjected to 

many constraints; including: the forecasted 

demand, the reserve power requirement, the 

generating units’ constraints, and the wind 

power and pumped storage generation. To 
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comply system demand, it is required to have 

the following equation satisfied: 
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 The reserve requirement should be 

satisfied. The operating reserve requirement 

has two parts: one is in form of a percent of 

total system load (e.g. 5%) and the other one 

is a surplus reserve which is chosen to 

compensate the errors in prediction of 

actually produced wind power. Thus, the 

reserve for wind power errors (RESW) can be 

obtained by assessing the recorded data on 

wind speed at wind turbine site [8]. In this 

study, the RESW is assumed 10%. 
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 The generating unit constraints should be 

also satisfied. Therefore, the wind power 

availability is written as follows: 
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 And the maximum and minimum 

generation of the conventional units are: 
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 Consider a pumped storage unit having 

an efficiency of pumping ( ) with an initial 

energy stored in the lower and upper 

reservoirs. Also, assume that within a time 

period of study horizon, the stored energy in 

both reservoirs is the same as initial states. 

The maximum and minimum energy storing 

in upper and lower reservoirs of pumped 

storage plant should be calculated and 

satisfied as follows: 
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3. IMPLEMENTATION OF PSO WITH 

BACTERIAL FORAGING CONCEPTS 
 

Particle Swarm Optimization (PSO) was 

firstly proposed by Kennedy and Eberhart 

[10] in 1995. This technique was inspired by 

the choreography of a bird flock and can be 

seen as a distributed behavior algorithm that 

performs multidimensional search. 

According to PSO, either the best local or the 

best global particle to help it which fly 

through a hyperspace affects the behavior of 

each particle. Moreover, a particle can learn 

from its past experiences to adjust its flying 

speed and direction. Therefore, by observing 
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the behavior of the flock and memorizing 

their flying histories, all the particles in the 

swarm can quickly converge to near-optimal 

geographical positions with well-preserved 

population density distribution. 

 

3.1. Overview of the Conventional PSO 
 

Bird flocking optimizes a certain objective 

function. Each agent knows its best value so 

far ( pbest ) and its position. Moreover, each 

agent knows its best value so far, in the group 

( pbest ) among pbest 's. Each agent tries to 

modify its position using the following 

information: 

• The distance between the current position 

and its best position so far. 

• The distance between the current position 

and best position of the group. 

 Suppose that the search space is D-

dimensional; then, the ith particle of the 

swarm can be represented by a D-

dimensional vector, 1 2( , ,..., )i i i iDX x x x= . 

The velocity (position change) of this particle 

can be represented by another D-dimensional 

vector 1 2( , ,..., )i i i iDV v v v= . The best 

previously visited position of the ith particle 

is denoted as 1 2( , ,..., )i i i iDpbest p p p= . 

Defining pbest  as the best particle in the 

swarm, then the swarm is updated according 

to the following equation (Conventional 

PSO): 
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 In this velocity updating process 

( )1cfk = , the values of parameters such as

wf , 1c  and 2c  should be determined in 

advance. In general, the weighting factor  

( wf ) of equation (14) is set to the following 

equation: 
 

max min
max

max

wf wf
wf wf iter

iter

−
= −           (15) 

 

 The model using (15) is called inertia 

weights approach (IWA) [11]. Using the 

above equation, the diversification of 

characteristic is gradually decreased and a 

certain velocity, which gradually moves the 

current searching point, closes to pbest, and 
gbest can be calculated. Moreover, in order to 

guarantee the convergence of the PSO 

algorithm, the constriction factor is defined 

as [12]. In this constriction factor approach 

(CFA), the basic system equations of the PSO 

can be used. 
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 The current position (searching point in 

the solution space) can be modified by the 

following equation: 
 

1 1k k k

id id idx x v+ += +                     (17) 

 

3.2. Overview of the Congregation PSO 
 

According to the local-neighborhood variant 

of the PSO algorithm (LPSO) [13], each 

particle moves toward its best previous 

position and toward the best particle in its 

restricted neighborhood. As the local-

neighborhood leader of a particle, its nearest 

particle (in terms of distance in the decision 

space) with the better evaluation is 

considered. Since the constriction factor 

approach generates higher quality solutions 
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in the basic PSO, the LPSO with the 

constriction factor has been introduced in 

[14]. However, it has been shown recently 

that more biological forces than those 

adopted in the state-of-the-art PSO are 

essential for preserving the swarm’s 

integrity. Specifically, Parrish and Hammer 

[15] have proposed mathematical models to 

show how these forces organize the swarms. 

These can be classified in two categories: the 

aggregation and the congregation forces. 

 Aggregation refers to the swarming of 

particles by nonsocial, external physical 

forces. There are two types of aggregation: 

passive aggregation and active aggregation. 

Passive aggregation is a swarming by 

physical forces such as the water currents in 

the open sea group the plankton [15]. Active 

aggregation is a swarming by attractive 

resources such as the place with the most 

food. The second term in the conventional 

PSO algorithm (14) (the global best position) 

represents the active aggregation [15], [9]. 

 Congregation, on the other hand, is a 

swarming by social forces, which is the 

source of attraction of a particle to others, and 

it is classified in two types: social and 

passive. Social congregation usually happens 

when the swarm’s fidelity is high such as 

genetic relation. Social congregation 

necessitates active information transfer. For 

example, ants that have high genetic relation 

use antennal contacts to transfer information 

about location of resources [15], [9]. Finally, 

passive congregation is an attraction of a 

particle to other swarm members, where there 

is no display of social behavior since particles 

need to monitor both environment and their 

immediate surroundings such as the position 

and the speed of neighbors. Such information 

transfer can be employed in the passive 

congregation. In this paper, the global 

variant-based passive congregation PSO 

(GPAC PSO) [9] that is enhanced with the 

constriction factor approach [14], [16], is 

employed. The swarms of the enhanced 

GPAC are manipulated by the velocity 

update, 
 

1

1 1

2 2

3 3

[ ( )

( )

( )]

k k k k k

id id id id

k k k

md id

k k k

rd id

v cfk wf v c r pbest x
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c r pcong x
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+ −
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   (18) 

 

where 
k

idpbest  is the best previous position of 

the ith particle; 
k

mdlbest  is either the global best 

position ever attained among all particles 

(similar to conventional PSO or CPSO) or the 

local best position of particle-i (namely, the 

position of its nearest particle-m with better 

evaluation similar to LPSO), and k
rdpcong  is 

the position of passive congregator (position 

of a randomly chosen particle-r) [17]. 

 

3.3. Concept of Bacterial Foraging Method 
 

Bacterial foraging optimization algorithm 

proposed by Kevin Passino [18] is a new 

optimization method based on nature inspired 

algorithm. Application of group foraging 

strategy of a swarm of E. coli bacteria in 

multi-optimal function optimization is the 

key idea of this new algorithm. Natural 

selection tends to eliminate animals with 

poor foraging strategies and favors the 

propagation of genes of those animals that 

have successful foraging strategies since they 

are more likely to enjoy reproductive success. 

After many generations, poor foraging 

strategies are either eliminated or shaped into 

good ones. The control system of these 
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bacteria that dictates how foraging should 

proceed can be subdivided into four sections 

namely Chemotaxis, Swarming, 

Reproduction and Elimination and Dispersal 

[18], [19]. 

 Each bacterium can move in the different 

ways. It can swim in the same direction or it 

may tumble and alternate between these two 

modes of operation for the entire lifetime. In 

each decreasing step, each bacterium position 

is updated based on (19): 
 

( 1, , ) ( , , ) ( ) ( )b bj k l j k l C b j  + = +       (19) 

 

where b is the index of the bacterium, and 

),,( lkjb  is the position of the bth bacterium in 

the jth step of chemotaxis, the kth stage of 

reproduction, and the lth stage of elimination-

dispersal. The cost function of the bth 

bacterium is determined based on its position 

and is represented by ),,,( lkjbJ . minJ  is 

represented by the minimum fitness value. In 

the swim stage, the cost function of 

bacterium at position ),,1( lkjb +  becomes 

better than the cost value at position ),,( lkjb , 

another step will be taken in the same 

direction. This sequence will continue up to 

upper limit of swim steps (NST). To consider 

of the repellant and attractant effects of each 

bacterium, the cost function (20) is added to 

the actual cost function. Then, the cost 

function can be updated by (21). 
 

1

( , ( , , )) ( , ( , , ))
B

b

CC CC

b

N
J P j k l J P j k l 

=

=   (20) 

( , , , ) ( , , , ) ( , )CCJ b j k l J b j k l J P= +        (21) 
 

 

• Reproduction process 

The original set of bacteria, after getting 

evolved through several chemo tactic stages, 

reaches the reproduction stage. Here, best set 

of bacteria gets divided into two groups. The 

least healthy bacteria eventually die and 

replace with the other healthier bacteria, 

which split into two bacteria and then placed 

in the same location. This keeps the 

population of bacteria fixed. It reduces 

unpromising diversity in the searching space 

to accelerate the process. A reproduction step 

is executed after specified chemotactic steps. 

• Elimination-dispersal process 

Gradual or sudden changes in the local 

environment where a bacterium population 

lives may occur due to various reasons. 

Events can occur such that all the bacteria in 

a region are killed or a group is dispersed into 

a new part of the environment. While this 

may destroy the progress achieved through 

the chemotactic process thus far, it may 

happen that the bacterium may find itself 

closer to new source of nutrients. It increases 

global searching ability. One elimination-

dispersal step is undertaken after specified 

reproduction steps are completed. 

 

3.4. Modified GPAC PSO with Bacteria 

Foraging Concept 
 

The PSO is a heuristic optimization method 

which is developed and based on social 

practices of individuals within a group for 

food finding. This approach is a population-

based algorithm like the genetic algorithm. 

All particles move in steps throughout a 

region and the objective function at each 

particle evaluate at each step. During this 

search procedure, the members of the entire 

population are maintained constant. 

Therefore, the traditional PSO has some 

disadvantage from the premature  
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Fig. 2. Flowchart of hybrid PSO. 

 

convergence when it tries to find the global 

optimization. This is caused to present some 

modifications to add filtering operation (such 

as crossover and/or mutation) or 

diversification methods to improve PSO 

performance. 
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 In this paper, the concept of reproduction 

and elimination/dispersal processes are 

implemented in particle swarm optimization 

method. As mentioned in previous part, both 

reproduction and stagnation/elimination 

approaches are completed at fixed number of 

searching steps. Like reproduction in 

bacterial Foraging (BF), we use this concept 

in our proposed hybrid PSO. Based on the 

reproduction concept, a constant percentage 

of all particles with the worst value of fitness 

function have been replaced by the existing 

particles with the best value of fitness 

function (PSO+BFO type 1). In this paper, 

reproduction stage is executed after each 

%35 of maximum iteration of PSO algorithm. 

 Same as above approach, to avoid 

premature convergence into a local optimum, 

the elimination/dispersal concept is used in 

our proposed hybrid PSO. This concept can 

be implemented by elimination of a fixed 

percentage of all particles with the same 

value or lowest value of fitness function and 

replaced by same number of new particles 

(PSO+BFO type 2). This stage is performed 

after each %25 of maximum iteration of PSO 

algorithm. The process of the modified PSO 

algorithm can be summarized as follows (Fig. 

2). 

 Step 1) Initialization and Structure of 

Particles: In the initialization process, a set of 

particles is created at a random order. In this 

paper, the structure of a particle for GS 

problem is composed of a set of elements 

(i.e., generation, reserve, wind power and 

pumped storage outputs of all units in each 

time interval). Therefore, particle i ’s position 

at iteration 0 in period of t  can be represented 

as the vector of  

0 0 0 0 0
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 Thus, the dimension of each particle in 

this study is TNNND SWG ++= )2( . Note that it 

is very important to create a group of 

individuals satisfying the constraints (8) to 

(13). This procedure must be repeated for all 

of time periods.  

 Step 2) Position Updating Considering 

Constraints: After creating the initial position 

of each particle, the velocity of each particle 

is also created at random. To modify the 

position of each particle, it is necessary to 

calculate the velocity of each particle, which 

is obtained from (14) or (18). In this position 

updating process, the values of parameters 

such as wf , 1c , 2c  and 3c  should be determined 

in advance based on which parameters’ 

values have been obtained the best outputs’ 

results. The resulting position of a particle is 

not always guaranteed to satisfy the 

equality/inequality constraints due to 

over/under velocity. If any element of a 

particle violates its inequality constraint due 

to over/under speed, then the position of the 

particle is fixed to its maximum/ minimum 

operating point.  

 Step 3) Update of Pbest and Gbest: The 

Pbest of each particle at any iteration and 

Gbest are updated with respect to cost 

function. 

 Step 4) Modified PSO Based on bacterial 

foraging: As mentioned before, based on 

fixed number of iterations, both concepts of 

reproduction and stagnation/elimination  
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Fig. 3. Forecasted hourly load. 

 

approaches are applied on particles.  Update 

of Pbest and Gbest: The Pbest of each particle 

at any iteration and Gbest are updated with 

respect to cost function. Based on 

reproduction approach, a fixed number of 

particles are replaced by the particles that 

have better value of fitness function. Then, 

this procedure goes back to step 2 to update 

the positions, but based on 

stagnation/elimination approach, a fixed 

number of particles that have worst value of 

fitness function must be selected to replace 

by new particles. Thus, this procedure has to 

come back to step 1. 

 Step 5) Stopping Criteria: This process is 

terminated if the iteration approaches to the 

predefined maximum iteration. 

At the end, both concept of reproduction and 

elimination/dispersal is applied together into 

PSO method at different time of execution of 

PSO algorithm (at fixed number of maximum 

iteration). The abbreviation of this approach 

is PSO+ BFO type 1&2. 

4. RESULTS OF TEST SYSTEMS 
 

To examine the merits of the proposed 

method, two test systems are simulated in this 

section. In both test systems, two wind farms 

and one pumped storage plant are included. 

Each wind farms have 20 wind turbine units 

with 2 MW power output. The forecasted 

load shaped in percentage at each time 

interval of the study period is shown in Figure 

3.  

 The variation of available wind power 

generations of these two wind farms during 

the study time are shown in Figure 4. The 

forecasted market prices for energy and 

reserve power are shown in Figure 5. In this 

study, the RESW is assumed to be 10% of the 

total available wind power of two wind 

farms.  

The pumped storage plant has the efficiency 

of 80% and the maximum capacity of 

generating and pumping modes are 90 and 80 

MW respectively. The maximum and 
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Fig. 4. Available power generation of wind farms. 

 
Fig. 5. Forecasted prices of energy and reserve power. 

 

minimum capacity of energy storage in upper 

dam is assumed 1250 and 450 MWh and for 

lower dam are 800 and 0 MWh 

consecutively. The running cost of pumped 

storage plants are ignored in both generating 

and pumping modes. 

 

4.1. Test System #1 
 

This test system has six conventional 

generating units, two wind farms and one 

pumped storage plant (briefly: 

6C+2W+1PS). The input data of 6 

conventional units of this test case is shown 
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in Table 1. The annual peak load is predicted 

to be 300 MW for this study. 

 Careful selection of the parameters 

settings is important to produce competent 

results in this simulation. There are several 

parameters to be determined for the 

implementation of the proposed PSO. In this 

paper, some parameters have been 

determined through the experiments. The 

values of maxw , minw  and max iter  are 

assumed as 0.5, 0.3 and 200 in a row. The 

other parameters such as 1c , 2c  and 3c  are 

selected after many runs on the test system 

#1. The values of 1c  and 2c  are varied from 

0.1 to 1.0 in; 10 steps (each one is 0.1). It is 

assumed that 3 0.0c = when we employ the 

conventional PSO (CPSO).  

 Table 2 shows the best result of these 

variations. For example, the maximum total 

profit is obtained at 1 0.9c =  and 2 0.8c =  in 

conventional PSO for 10 particles (grey area 

in Table 2). Now, with these values of 1c   

 

Table 1. Generator characteristics and cost function coefficients. 

Parameters Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Wind 1 Wind 2 

,maxG
P  (MW) 50 60 100 120 100 60 80 80 

min,GP
(MW) 10 10 10 10 10 10 0 0 

Variable O&M 

Cost ($/MWh) 
0.9 0.9 0.8 0.8 0.8 0.9 3 2 

a ($/hr) 500 650 700 450 500 600 - - 

b ($/MWh) 25 26.5 18 16 15 27.5 - - 

c ($/MW2h) 0.01 0.012 0.004 0.006 0.004 0.01 - - 

 

Table 2. Best Results in Conventional PSO for Different Values of  

Constants ( 1 20.1 , 1.0c c  and 3 0.0c = ). 

Approach Population 1c  2c  
Total Profit 

(K$) 

Conventional 

PSO with 

IWA 

10 0.1 0.8 892.056 

10 0.2 0.9 870.658 

10 0.3 0.7 874.541 

10 0.4 1.0 878.025 

10 0.5 0.8 899.260 

10 0.6 0.9 885.996 

10 0.7 0.7 879.682 

10 0.8 1.0 891.693 

10 0.9 0.8 901.032 

10 1.0 0.9 867.792 
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Table 3. Best results in GPAC approaches of PSO for different values of constants  

( 31.0 2.0c  ). 

Approach Population 1c  2c  3c
 

Total Profit 

(K$) 

Proposed 

PSO with 

IWA 

10 0.1 0.8 1.4 902.367 

10 0.2 0.9 1.2 891.409 

10 0.3 0.7 1.8 902.141 

10 0.4 1.0 1.3 926.909 

10 0.5 0.8 1.3 894.826 

10 0.6 0.9 1.7 915.157 

10 0.7 0.7 1.8 884.873 

10 0.8 1.0 1.0 895.284 

10 0.9 0.8 1.8 895.507 

10 1.0 0.9 1.4 919.127 

 

 
Fig. 6. Convergence index for best results of GPAC PSO (Test Case #1). 

 

and 2c , the variation of 3c  in GPAC PSO 

model is selected from 1.0 to 2.0 in step 0.1. 

Table 3 shows the value of 3c  for the best 

result of objective function (grey area in 

Table 3). Figure 6 shows the convergence of 

GPAC PSO when the best value is selected 

for 3c  ( 3 1.3c = ). The negative value of total 

profit is shown in this figure. 

 The results of GS problem of test system 

#1 which is executed by GPAC PSO with 

selected coefficients of Table 3 are presented 

in Figures 7. The power generation of 

conventional units, wind farms and pumped 

storage plant is shown in this figure. 

 Now, the proposed PSO with bacterial 

foraging concepts is implemented in three 

different aspects as mentioned in previous 

section. Figure 8 shows the convergence of 

the different PSO methods such as 

 



Signal Processing and Renewable Energy, September 2019                                                                                        15 

 

 
Fig. 7. Individual output generation of all unit’s categories and total demand (PSO during setting 

coefficients process-best output of Table 3). 
 

 
Fig. 8. Convergence index for particle swarm method and modified PSO with BF implementation in 

Test System #1. 

 

conventional PSO and GPAC PSO with our 

proposed PSO with bacterial foraging 

concepts (BFO type 1, type 2 and type 1&2). 

The GPAC PSO is used to apply all three 

different types of bacterial foraging concepts. 

The best results are obtained in BFO type 

1&2 which is developed based on both 

concepts of reproduction and 

elimination/dispersal approaches. Figure 9  
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Fig. 9. Individual output generation of all units’ categories and total demand (PPSO with bf type 1& 2-

best output of Table 4). 

 

Table 4. Best results in different approaches of PSO for 100 iterations and 100 runs. 

Approach Pop. 1c  2c  3c
 

Total Profit (K$) 

Min. Ave. Max. Std. Dev. 

Conventional 

PSO 
10 0.3 0.9 - 812.851 828.099 862.491 7.6364 

GPAC PSO 10 0.3 0.9 1.9 818.683 854.764 903.521 21.4819 

PPSO with BF 

Type 1 
10 0.3 0.9 1.9 823.477 862.963 909.145 21.1182 

PPSO with BF 

Type 2 
10 0.3 0.9 1.9 818.874 858.833 916.173 23.5166 

PPSO with BF 

Type 1 & 2 
10 0.3 0.9 1.9 816.526 859.899 919.539 24.7124 

 

 

shows individual output of different types of 

power generation in the best value of 

objective function (proposed PSO with BFO 

type 1&2). 

 The maximum, average and minimum of 

objective function of GS is presented by 

application of PSO coefficients which is set 

in previous part. Table 4 shows the best result 

of this GS problem employing 100 iterations 

and 100 trails in different PSO methods. 

 Table 4 shows that the maximum value of 

total profit has been obtained in the proposed 

PSO with BFO type 1&2 with respect to other 

PSO methods. Nevertheless, based on the 

average values, the proposed PSO with BFO 

type 1 has the higher total profit than other 

PSO methods. Maximum total profit of test 
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system in this weekly scheduling is 919.539 

thousand dollars per week. 

 

4.2. Test System #2 (15C+2W+2PS) 
 

The other test system has 15 conventional 

units; two wind farms and one pumped 

storage plants that the data for these wind 

farms and pumped storage plants are given in 

previous section. The input data of all 

conventional units of this test system is 

categorized in Table 5 [20, 21], and also, the 

total peak load is 2630 MW. The data for 

other units is as same as the data in test 

system #1. 

 After execution of PSO parameter 

selection procedure, the value of these three 

coefficients set to 1 0.8c = , 2 0.3c =  and

3 1.3c = . Now, the proposed PSO with 

bacterial foraging concepts is implemented in 

three different aspects as mentioned in 

previous section. Figure 10 shows the 

convergence of the different PSO methods 

such as conventional PSO and GPAC PSO 

with our proposed PSO with bacterial 

foraging concepts (BFO type 1, type 2 and 

type 1&2). The GPAC PSO is used to apply 

all three different types of bacterial foraging 

concepts. The best results are obtained in 

BFO type 1&2 which is developed based on 

both concepts of reproduction and 

elimination/dispersal approaches. Figure 11 

shows individual output of different types of 

power generation in the best value of 

objective function (proposed PSO with BFO 

type 1&2). 

 The maximum, average and minimum of 

objective function of GS are presented by 

application of PSO coefficients which is set 

in previous part. Table 6 shows the best result 

of this GS problem employing 100 iterations 

and 100 trails in different PSO 

  

 

Table 5. Generator characteristics and cost function coefficients. 

Unit min,GP
 (MW) max,GP

 (MW) a ($/hr) b ($/MWh) c ($/MW2h) 
Variable O&M 

Cost ($/MWh) 

1 150 455 671 10.1 0.000299 0.3 

2 150 455 574 10.2 0.000181 0.3 

3 20 130 374 8.8 0.001126 0.8 

4 20 130 374 8.8 0.001126 0.8 

5 150 470 461 10.4 0.000205 0.3 

6 135 460 630 10.1 0.000301 0.3 

7 135 465 548 9.8 0.000364 0.3 

8 60 300 227 11.2 0.000338 0.4 

9 25 162 173 11.2 0.000807 0.8 

10 25 160 175 10.7 0.001203 0.9 

11 20 80 186 10.2 0.003586 0.8 

12 20 80 230 9.9 0.005513 0.9 

13 25 85 225 13.1 0.000371 0.9 

14 15 55 309 12.1 0.001929 0.9 

15 15 55 323 12.4 0.004447 0.9 
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Fig. 10. Convergence index for particle swarm method and modified PSO with BF implementation in 

Test System #2. 

 

 
Fig. 11. Individual output generation of all units’ categories and total demand in Test System #2 (PSO 

with BFO type 1&2). 

 

methods. Table 6 shows that the maximum 

value of total profit has been obtained in the 

proposed PSO with respect to conventional 

PSO method. 

 

5. CONCLUSION 
 

This paper presents a new approach to solve 

the GS problem based on the hybrid PSO 

algorithm. A new formulation for GS 

problem is developed to manage the 

uncertainties of wind power generation with 

pumped storage plant. Hybrid PSO is 

obtained by implementation of bacterial 

foraging concept. The reproduction process 

and stagnation/elimination step are two main 

concepts of bacterial foraging optimization 

that are applied to conventional PSO to 
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Table 6. Best Results in Different Approaches of PSO for 100 Iterations and 100 Runs. 

Approach Pop. 1c  2c  3c
 

Total Profit (M$) 

Min. Ave. Max. Std. Dev. 

Conventional 

PSO 
10 0.8 0.3 0.0 13.0462 13.0686 13.1151 0.014309 

GPAC PSO 10 0.8 0.3 1.9 13.0784 13.1051 13.130 0.011460 

PPSO with BF 

Type 1 
10 0.8 0.3 1.9 13.0727 13.1042 13.1282 0.010777 

PPSO with BF 

Type 2 
10 0.8 0.3 1.9 13.0942 13.1261 13.1620 0.013908 

PPSO with BF 

Type 1 & 2 
10 0.8 0.3 1.9 13.0909 13.1254 13.1822 0.014456 

 

 

establish hybrid PSO. This new GS model is 

applied to a test system and solved using 

conventional and hybrid PSO methods. The 

results have been shown that the best utility 

profit has been obtained by modified particle 

swarm optimization with bacterial foraging 

concepts. 

 

NOMENCLATURE 
 

, ,g g ga b c  The coefficients of generating 

unit g  

1 2 3, ,c c c  Weighting factors called 

acceleration constants 

( )C b  The step size of the tumble for the bth 

bacterium, which determines the height of 

each random step 

cfk  Constriction factor in CFA 

D  Dimension of the particle 

( , )El s t  Lower reservoir energy level of 

pumped storage s  at time period t , in MWh 

max ( )El s  Lower reservoir energy capacity 

limit of pumped storage s , in MWh 

( )EP t  Forecasted energy price at time 

period t , in $/MWh 

( , )Eu s t  Upper reservoir energy level of 

pumped storage s  at time period t , in MWh 

max ( )Eu s  Upper reservoir energy capacity 

limit of pumped storage s , in MWh 

k

dgbest  Dimension d of the best particle in the 

swarm group until iteration k  

g  Index for thermal generator unit 

iter  Current iteration number 

( , , , )J b j k l  Cost function of the bth 

bacterium in the jth step of chemotaxis, the 

kth stage of reproduction, and the lth stage of 

elimination-dispersal 

k  The iteration numbers 

max iter  Maximum number of iterations 

( , )M s t  Commitment state of pumped 

storage s  at time period t  (generation mode 

= 1, pumping mode = 0) 

N  The size of the swarm 
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BN  Number of bacteria 

GN  Number of thermal generator units 

SN  Number of pumped storage plants 

STN  Number of the swim steps 

WN  Number of wind farms 

( )OMVCT g  Operation and maintenance 

variable cost of thermal unit g , in $/MWh 

( )OMVCW w  Operation and maintenance 

variable cost of wind unit w , in $/MWh 

k

idpbest  Dimension d of the own best 

position of particle i  until iteration k  

( , , )P j k l  The position of each member in 

the population of the b  bacterium at each 

stage 

( )dP t  System demand at time t , in MW 

,minGgP  Lower limit of thermal unit g , in 

MW 

,maxGgP  Upper limit of thermal unit g , in MW 

( , )GDP g t  Load contribution of thermal unit 

g  at time t , in MW 

, ,

k

GDi g tP  Load contribution of thermal unit g  

at time t for particle i  at iteration k , in MW 

, ,

k

GRi g tP  Reserve contribution of thermal unit 

g  at time t  for particle i  at iteration k , in 

MW 

, ,

k

Wi w tP  Generation of wind unit w  at time t  

for particle i  at iteration k , in MW 

, ,

k

Pi s tPS  Pumping mode of pumped storage s  

at time period t  for particle i  at iteration k , 

in MW 

, ,

k

gi s tPS  Generation mode of pumped storage 

s  at time period t  for particle i  at iteration 

k , in MW 

( )RP t  System reserve requirement at time t

, in MW 

( , )GRP g t  Reserve contribution of thermal 

unit g  at time t , in MW 

( , )WP w t  Generation of wind unit w  at time 

t , in MW 

,maxWP  Maximum generation of wind unit w

, in MW 

,max ( )gPS s  Maximum limit of generation 

mode of pumped storage s , in MW 

( , )gPS s t  Generation mode of pumped 

storage s  at time period t , in MW 

( , )pPS s t  Pumping mode of pumped 

storage s  at time period t , in MW 

,max ( )pPS s  Maximum limit of pumping mode 

of pumped storage s , in MW 

1 2 3, ,k k kr r r  Random numbers, uniformly 

distributed in [0,1] at iteration k 

rand  Random number, uniformly 

distributed in [0, 1] 

RESW  Uncertainty of wind power, in 

percent 

( )RP t  Forecasted reserve price at time 

period t , in $/MWh 

s  Index for pumped storage plant 
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t  Index for time 

T  Number of periods under study (168 

Hours) 

JJ  Total profits 

( , )U g t  Commitment state of unit g  at 

time t  (on = 1, off = 0) 

( , )V w t  Commitment state of wind unit w  

at time t  (on = 1, off = 0) 

k

idv  Dimension d of the velocity of particle i  

at iteration k 

w  Index for wind unit 

( , )avW w t  Maximum available wind power 

of wind unit w  at time t , in MW 

wf  Weighting function 

maxwf  Final value of weighting coefficient 

minwf  Initial value of weighting coefficient 

k

idx  Dimension d of the current position of 

particle i  at iteration k  

( )j  The direction angle of the jth step 

( )s  Efficiency of pumping mode of 

pumped storage s  
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