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Abstract: In this study, the vibration of cracked plates is investigated using differential quadrature 

method and experimental modal analysis. The crack, which is assumed to be open, is modeled by 

the extended rotational spring. With its finite length, the crack divides the plate into six segments. 

Then, the differential quadrature is applied to the governing differential equations of motion and 

the corresponding boundary and continuity conditions. An eigenvalue analysis is performed on the 

resulting system of algebraic equations to obtain the natural frequencies of the cracked plate. To 

ensure the integrity and robustness of the presented method, experimental modal analysis is carried 

out on cantilever plates having open cracks with finite length and the results are compared with the 

proposed method. A numerical study is performed to show the effect of length, depth and location 

of the crack on natural frequencies of the plates. The results verify the accuracy and efficiency of 

differential quadrature method. 
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1. Introduction 

Plates are one of the mostly used structures in 

different industries. Crack in a structure results in 

reduction in local stiffness and therefore reduces its 

strength. Any changes in the stiffness of structure 

affect the modal parameters such as natural 

frequencies and mode shapes. Therefore, it can be a 

starting point in detection of faults in structures. The 

basic idea behind the vibration based inspection 

methods is that the damage in the structures can be 

identified and characterized based on the changes in 

dynamic properties like natural frequencies, mode 

shapes and damping. Parabhakara and Datta [1] 

investigated the stability and vibration of plates 

having local defects. They modeled the defect with 

reduction in elastic properties in its location and 

used the finite element method to solve the problem. 

Khadem and Rezaee [2] introduced modified 

comparative functions to analyze the vibration of 

simply supported rectangular cracked plates. They 

considered the elastic behavior of the plate at crack 

location as a line spring with a varying stiffness 

along the crack. Liew et al. [3] investigated the 

vibrating behavior of cracked rectangular plates 

using domain decomposition method. They assumed 

the plate to be an assemblage of small sub-domains 

with the appropriate shape functions, and derived a 

governing eigenvalue equation that could�be solved 

to obtain the vibration frequencies of cracked plate. 

Ismail and Cartmell [4] utilized an analytical 

approach to study the forced vibrations of a plate 

having a crack of variable angular orientation. Xing 

and Liu [5] used the method of separation of 

variables to obtain the closed form solutions for the 

free vibrations of rectangular Mindlin plates. Fan 

and Qiao [6] applied 2-D continuous wavelet 

transform on the mode shape of composite plate 

structures for damage detection. They confirmed 

their approach by an experimental modal test on 

some impacted composite plates.  

Natarajan et al. [7] investigated the linear free 

bending vibrations of functionally graded material 

plates with a through- center crack using a shear 

flexible finite element. Hu and Wu [8] developed a 

scanning damage index based on the ratio of modal 
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strain energy of the structure before and after 

damage to identify the surface crack in a plate 

structure. In order to compute the modal strain 

energy they used the differential quadrature method. 

By performing tests on an aluminum alloy thin plate 

with a surface crack, they validated their proposed 

method. Hosseini-Hashemi et al. [9] proposed a set 

of exact closed form characteristic equations to 

study the vibration behavior of moderately thick 

rectangular plates having arbitrary number of all-

over part-through cracks with continuously 

distributed line-spring model. Shahban and Alipour 

[10] analyzed the free vibration of functionally 

graded thick circular plates resting on elastic 

foundation with elasticity restrained edges using the 

differential transformation method. Huang et al. [11, 

12] solved the problem of free vibration of side-

cracked rectangular thick plates made of isotropic 

and functionally graded materials using Ritz 

Method. They used special admissible functions to 

account for the stress singularity behavior around the 

crack.  

In this study, the vibration analysis of plate 

structures having a finite length open crack is 

investigated utilizing the differential quadrature 

(DQ) method and experi-mental modal analysis. The 

results are compared with those of finite element 

analysis. Furthermore, several experimental case 

studies on cantilever plates having finite cracks are 

performed to demonstrate the accuracy of the 

proposed method. 

2. Modeling of damaged plate 

Fig. 1 shows a thin rectangular elastic cantilever 

plate of dimensions a and b, and thickness H, 

having a finite- length surface crack.  

The crack position from the clamped side is lc,�

and its length and depth are b2 and h, respectively. 

The presence of the crack, which results in 

reduction in plate stiffness at its position, can be 

modeled by rotational spring. Therefore, the crack 

with finite length divides the plate into six 

segments as shown in Fig. 2. 

 
Fig. 1. Geometry of cracked cantilever plate. 

The differential equation of motion for the 

bending vibration of the segments can be described 

by the following Eq.(1) [13]: 

6212 2

4

4

22

4

4

4

,...,,q;w
y

w

yx

w

x

w
q

qqq
=Ω=

∂

∂
+

∂∂

∂
+

∂

∂
              (1) 

Where wq is the deflection of the segment q, and 

Ω is the dimensionless natural frequency of the 

plate which can be expressed by Eq. (2):  

D

H
a

ρ
ω 2=Ω                                                          (2) 

� is the natural frequency of the plate, � is the 

density and D is the flexural rigidity of the plate 

defined by Eq. (3): 
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where E and � being Young’s modulus and 

Poisson’s ratio of the plate material, respectively. 

The boundary conditions considered here are those 

of clamped and free edges, continuity conditions at 

the interfaces of segments, and discontinuity 

conditions due to the presence of the crack between 

regions 3 and 4. The deflection and rotation at 

clamped supports are set to be zero: 
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�

Fig. 2. Sub sectioning of plate domain. 

The plate experiences neither bending moments 

nor shear forces at the free edges in x direction: 
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and in y direction: 
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Besides, the boundary conditions at the free 

corners are: 

620

2

,q
xx

Wq
==

∂∂

∂

                             

(4-d)

 

At the interfaces of regions 1 and 2, and 5 and 6, 

the deflections, rotations, bending moments and 

shear forces must be continuous in x direction: 
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At the interfaces of regions 1 and 3, 2 and 4, 3 and 

5, and 4 and 6, the deflections, rotations, bending 

moments and shear forces must be continuous in y 

direction: 
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On the cracked sides, the boundary conditions 

consist of continuity of deflection, bending moment 

and shear force, and the discontinuity of slope due 

to the bending. The slope difference between the 

two sides of the plate at the crack front has been 

defined by Khadem and Rezaee [2] by Eq. (5): 
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where �bb is the non-dimensional bending 

compliance defined by the following relation for 

any crack depth Eq. (6): 
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gb is a dimensionless function of the crack depth 

to plate thickness ratio (�=h/H) defined by Gross 

[14] as Eq. (7): 
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Therefore, the boundary condition over the 

cracked edge can be expressed by the following 

expressions: 
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Applying the DQ to Eq. (1) results in the following 

equation: 
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where and  are the weighting coefficients of 

the kth-order partial derivative of the qth region 

with respect to x and y, respectively. Here the 

domain is divided into Nx discrete points in the x-

direction and Ny in y-direction. Wij is the deflection 

of the grid point laying on the intersection of the ith 

point in x-direction and jth point in y-direction. φ is 

the plate aspect ratio (i.e. φ = a/b). 

The clamped boundary conditions in Eq. (4a) are 

transformed into the following format (Eq. 10-a): 
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The boundary conditions correspond to the free 

edges in x direction can be expressed in differential 

quadrature form by: 
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and in y directions are Eqs. (10-a) and (10-d): 
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where φq is the aspect ratio of the qth region. The 

differential quadrature representation of the free 

corners can be expressed as Eq. (10-e): 
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The continuity conditions of Eqs. (4-e) and (4-f) 

at the interfaces of the regions can be written as: 
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where β =l1/l2. At the cracked sides, the boundary con-

ditions transform into the following equations: 
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The combination of Eq. (9) and these boundary 

conditions can be represented by a system of linear 

equations, as Eq. (11): 
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where the subscripts b and i denotes for the 

boundary and interior points used for writing the 

differential quadrature, respectively. The vector 

{W} contains the deflections corresponding to the 

boundary and interior points. Transforming (11) 

into a general eigenvalue form in terms of {Wi} 

results in Eq. (12). 
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Solution of the above eigenvalue problem by a 

standard eigen solver, provides the natural 

frequencies of the cracked plate. 

3. Experimental verification 

In order to verify the integrity of differential 

quadrature method in real situations, an extensive 

experiment on cracked aluminum cantilever plates, 

was designed. The main purpose of the experiment 

is to comprehend the unavoidable measuring or 

modeling error which may contribute to the 

inaccuracy of natural frequencies obtaining with 

differential quadrature method. Mechanical 

properties of the test specimens such as density, 

Young’s modulus and Poisson’s ratio were 

measured experimentally, and are tabulated in 

Table 1 along with the plate dimensions.  

First, the intact plates were tested. The 

excitation was carried out by a hammer (Global 

Test type AU02). A 1.5 gr. miniature accelerometer 

(B&K Type 4516) and a signal analyzer (B&K type 

3032A) were utilized to measure the first three 

bending natural frequencies of the plate (see Fig. 

3). In order to produce the clamped boundary 

condition, one should isolate the plate edge. In 

practice providing this condition needs a heavy 

fixture. Instead, to model clamped edge, one can 

use a distributed rotational spring at the plate edge. 

The rotational spring stiffness varies with the 

torque exerted on the fixture’s bolts. 

Table 1. Dimensions and mechanical properties of plate 

� E (Gpa) � (kg/m3) b (mm) a  (mm) H (mm) 

0.33 65.2 2652 100 200 2.85 

Therefore, the stiffness should be evaluated for 

each plate separately, and no additional torque must 

be applied to the fixture throughout the tests. The first 

natural bending frequency of every intact plate was 

used to calculate the rotational spring stiffness. Then, 

the cracks with different depth and size were 

introduced in each plate at specified locations by 

using a special cutting tool. This ensures that the 

cracks remain open during the vibration. The gene-

rated cracks were in three relative locations (i.e. 

lc/a=0.25, 0.5, 0.75), with three relative lengths (i.e. 

b2/b=0.2, 0.5, 0.7) and three relative depths (i.e. 

�=0.2, 0.4, 0.6) of the plates. A total of 27 

experiments were performed. At each step, the first 

three bending natural frequencies of the cracked 

plates were measured. The corresponding bending 

natural frequencies of the intact and cracked plates 

are presented in Table 2. 

4. Results and Discussions 

Several case studies were investigated to ensure 

the integrity and applicability of the proposed 

method. The effects of the relative crack depth, 

position and length on the natural frequencies of 

the plate represented by Fig. 3 were examined. 
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Table 2. Natural frequencies of cracked plate clamp edge 

Case 

No. lc/a b2/b

 

h/H 

Natural frequencies (Hz) 

�
*
1

�

�
*
2

�
�

*
3

�

1 

0.25 

0.2 

0.2 53.86 336.30 942.21 
2 0.4 53.51 336.20 941.28 

3 0.6 53.18 336.13 938.17 

4 

0.5 

0.2 53.58 336.88 942.13 

5 0.4 53.35 336.47 939.04 

6 0.6 52.45 336.04 930.13 

7 

0.7 

0.2 53.18 335.33 940.58 

8 0.4 52.64 334.87 934.56 

9 0.6 51.63 333.65 919.24 

10 

1 

0.2 53.22 336.33 940.21 

11 0.4 52.65 335.45 924.78 

12 0.6 51.45 334.12 910.56 

13 

0.5 

0.2 

0.2 53.58 336.51 943.91 

14 0.4 53.48 336.07 943.47 

15 0.6 53.34 334.34 942.28 

16 

0.5 

0.2 53.31 335.06 939.93 

17 0.4 53.24 331.79 938.21 

18 0.6 53.06 327.56 937.29 

19 

0.7 

0.2 53.58 336.60 943.12 

20 0.4 53.46 332.12 942.11 

21 0.6 53.23 321.09 940.32 

22 

1 

0.2 52.77 331.20 939.01 

23 0.4 52.23 328.87 938.86 

24 0.6 52.04 312.76 935.24 

25 

0.75 

0.2 

0.2 53.72 336.16 941.31 

26 0.4 53.68 335.82 937.24 

27 0.6 53.59 335.08 933.12 

28 

0.5 

0.2 53.70 336.51 939.28 

29 0.4 53.62 335.71 932.11 

30 0.6 53.54 334.56 917.13 

31 

0.7 

0.2 53.41 335.23 938.31 

32 0.4 53.29 334.18 925.48 

33 0.6 53.22 332.18 901.02 

34 

1 

0.2 53.45 334.02 936.31 

35 0.4 53.38 333.49 915.28 

36 0.6 53.32 330.17 884.70 

To assess the overall convergence efficiency of 

the DQ method, the first three experimental natural 

frequencies of the intact clamped plate (with the 

geometric and material properties of Table 1) are 

compared of the DQ and finite element methods. 

The finite element results are obtained using the 

ANSYS commercial software. The results are 

tabulated in Table 3. As can be seen from the table, 

the DQ results agree well with the experimental 

ones, and the errors are less than 0.4%. Moreover, 

the DQ results are in better agreement with the 

experiment compared with the result obtained from 

the finite element method. 

The same comparison for the cracked plate is 

presented in Table 4. The plate used here has a 

crack with the relative length of 0.7 and relative 

depth of 0.6, located at the center of the plate. The 

Table 3. Comparison between experimental and numerical frequencies 

of intact plate intact plate 

 �1 (Hz)
 

Er (%) �2 (Hz)
 

Er (%) �3 (Hz)
 

Er (%) 

Exper. 53.36 --- 335.17 --- 940.46 --- 

ANSYS 53.11 .84 337.30 .47 946.46 .64 

DQ 53.76 .37 336.18 .14 942.38 .20 

 

 

Fig. 3. General view of test equipment. 

table shows that the DQ results agree well with 

those of experimental ones, and the maximum error 

is less than 0.6%. 

Next, the effect of the crack depth on natural 

frequencies of clamped plate is investigated for 

different crack locations. The results are shown in 

Figs. 4-6. 

It can be seen from the figures that increasing crack 

depth would result in a decrease in the natural 

frequencies of the plate. This is due to the fact that as 

the crack propagate through the depth of the plate, the 

bending compliance increases, resulting in the reduc-

tion of the plate stiffness and natural frequencies. 

Further-more, Fig. 5 shows that as the crack position 

reaches the free end, the change in natural frequency 

decreases and the crack loses its influence on the 

amount of dynamic parameters of the plate.   

Table 4. Comparison between experimental and numerical frequencies 

of cracked plate 

 �1 (Hz)
 

Er (%) �2 (Hz)
 

Er (%) �3 (Hz)
 

Er (%) 

Exper. 53.23 --- 321.09 --- 940.32 --- 

ANSYS 52.68 1.33 322.79 0.53 945.86 0.59 

DQ 53.51 0.53 322.18 0.34 942.21 0.19 
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Fig. 4. Effect of relative crack depth on the 1st frequency. 

 
Fig .5. Effect of relative crack depth on the 2nd frequency.�

 
Fig. 6. Effect of relative crack depth on the 3rd frequency. 
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In Figs. 7-9 the influence of relative location of 

the crack on natural frequencies for different crack 

depths are investigated. Here, the relative crack 

length is fixed at 0.2. As shown in the figures, 

when the crack is placed at the plate modal nodes 

there is no change in natural frequencies of the 

plate. Moreover, the change in natural frequencies 

is in direct relation with the plate modal curvature. 

The maximum changes in natural frequencies take 

place when the cracks are located in the places with 

highest modal curvature.  

Figs. 10-12 show the effect of crack length on 

the first three natural frequencies of the plate for a 

fixed crack depth. In these figures, the crack depth 

is fixed at 0.2. 

The figures show that the crack length increase 

results in reduction in plate stiffness, and therefore 

a decrease in natural frequencies.  

 

 

Fig. 7. Effect of relative crack location on the 1st frequency. 

 

Fig. 8. Effect of relative crack location on the 2nd frequency��
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�

Fig. 9. Effect of relative crack location on the 3rd frequency. 

 

Fig. 10. Variation of 1st frequency due to increasing relative length of crack. 

 

Fig. 11. Variation of 2nd frequency due to increasing relative  

length of crack. 
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Fig. 12. Variation of 3rd frequency due to increasing relative length of crack. 

4. Conclusions 

The vibration behavior of cracked plates was 

investigated using differential quadrature method 

and experimental modal analysis. The crack was 

modeled using the well-known extended rotational 

spring model. The crack divided the plate into six 

segments. Then, the differential quadrature repre-

senttation of governing differential equations of 

motion for each region along with the corres-

ponding boundary and continuity conditions were 

formulated to obtain the natural frequencies of the 

cracked plate. Several experimental case studies on 

the cracked cantilever plates were conducted to 

ensure the integrity of the DQ method. Moreover, 

the influences of depth, location and length of 

crack on natural frequencies of the plate were 

studied. The results validate the applicability of the 

method for solving such an engineering problem. 

The method provides accurate results with rela-

tively minimal computational and modeling efforts. 

It is concluded that the demon-strated accuracy and 

simplicity of the proposed method makes it a good 

candidate for modeling more complicated cases of 

cracked structures. 
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