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Abstract: A fundamental topic in computational fluid dynamics is the role of 

coordinate particularly for searching optimized coordinates. The objective of this 

study is the numerical modeling of supersonic flows using a new coordinate system 

i.e. Unified Coordinate System (UCS) uses moving mesh with motionless viewing 

window technique. UCS has an advantage over traditional coordinate systems 

(Eulerian and Lagrangian) in supersonic flows especially in discontinuous regions 

(shocks and expansions). Moreover most of the difficulties of the traditional 

coordinate system may be removed by using UCS. Unified coordinate system 

benefits from both the eulerian and lagrangian systems. This is why a unified 

coordinate system as an optimization system is introduced. The researchers briefly 

review how to apply boundary conditions, how to calculate fluxes and strang 

dimensional splitting. The researchers also explain the Riemann problem which is 

the basic step to solve the equations in this coordinate and integrated system forms. 

In this article the researchers use new numerical method that has more advantages 

than other numerical methods such as slip line and shock resolution and low 

numerical dissipation. The important fact is that in using the UCS, there is no need 

to generate a body-fitted mesh prior to computing flow past a body; the mesh is 

automatically generated by the flow. These can be seen in the numerical results and 

comparing with exact solutions and also in quick numerical computations. 

Keywords: Moving Mesh, Riemann Problem, Strang Method, Shock Wave, 

Unified Coordinate. 

1. Introduction 

In computational fluid dynamics lots of numeri-

cal methods are used for solving the fluid flow 

problems. It has been known since its onset that the 

numerical solution to a given flow depends on the 

relation between the flow and the coordinates 

(mesh) used to compute it. 

Lagrangian and eulerian coordinates are two 

traditional coordinate systems that are used in many 

numerical works, in this article the researchers used 

a new coordinate system to calculate supersonic 2-D 

flows and shock capturing. In this new numerical 

method for decreasing overall calculation time, 

increasing shock resolution and to prevent calcula-

tion break down the researchers use motionless 

viewing window technique and non-iterative 

methods of riemann problem solution. 

Each of the two known coordinate systems to 

analyze the fluid flow (eulerian and lagrangian 

coordinates) have their own benefits and drawbacks. 

Eulerian method is relatively simple but has some 

disadvantages as follows: 

a. It smears contact discontinuities badly. 

b. It needs generating a body-fitted mesh prior to 

computing flow past a body.  

Lagrangian method, by contrast, resolves contact 

discontinuities (including material interfaces and 

free surfaces) sharply, but it has drawbacks too: 

a. The gas dynamics equations could not be written 

in conservative partial differential equations 

(PDE) form, rendering numerical computation 

complicated. 

b. It breaks down due to the cell deformation. The 

objective of this article is to review and calculate 

the fluid flow in two-dimensional coordinate 

system by using moving mesh with motionless 

viewing window technique which was 

previously extended by W.H. Hui and his 
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colleagues [1, 2]. To put it in perspective the 

researchers shall first comment on the relative 

merits of the existing coordinate systems, 

mainly, eulerian, lagrangian, Arbitrary-Lagran-

gian- Eulerian (ALE), and the moving mesh 

(coordinate). 

1.1. Theoretical discussions 

For more than 200 years, two coordinates 

systems for describe the fluid flow were available: 

eulerian system is fixed in space, while the 

lagrangian system follows the fluid. One important 

point is the question of the equivalence of these two 

coordinate systems. The question has been asked by 

many researchers in the field of fluid mechanics and 

generally a positive answer has been considered. 

Surprisingly, the first mathematical proof of 

equivalency, meaning the existence of a one-to-one 

map between the two sets of weak solutions, 

obtained by using the two systems, was given as 

lately as 1987 by Wagner [3] and holds only for one 

dimensional flow. For two- and three-dimensional 

flows, W.H. Hui et al. [1, 4] showed that theoreti-

cally they are not equivalent to each other. There 

will be more explanations in the next sections [1]. 

1.2. Computational discussions 

In computation view eulerian and lagrangian 

systems are not equivalent even for the one-

dimensional flow. For one-dimensional flow, la-

grangian system along with a compatible way with 

godunov shock wave [5] is better than the eulerian 

system. The situation in 2-D and 3-D flows is more 

complicated: 

Each of the eulerian and lagrangian systems has 

advantages and drawbacks. Generally, the eulerian 

method is relatively simple because the gas 

dynamics equations can be written in conservation 

PDE form, which provides the theoretical foun-

dation for shock-capturing computation. 

However, this method has two drawbacks: 

a. It smears contact discontinuities badly 

b. It needs the mesh generation a body-fitted mesh 

prior to computing flow past a body, but mesh 

generation is tedious, time-consuming and 

requires specialized training. 

In contrast, a lagrangian method carefully re-

solves discontinuity of the contact discontinuities 

(including material interfaces and free surfaces) 

sharply, because they are adopted on to the lagran-

gian coordinates. This method has the disadvantages 

as follows: 

a. It may break down due to cell deformation, 

because a lagrangian computational cell is 

literally a fluid particle with finite – though 

small – size and hence deforms with the fluid 

and, 

b. The gas dynamics equations could not be written 

in the conservation form of the partial 

differential equations (PDE) form, rendering 

complicated numerical computation [1, 6]. 

2. The optimal coordinate system 

Is it possible to provide coordinate systems that 

benefits eulerian and lagrangian systems without 

having their disadvantages ? Such a system in some 

ways has advantages (being or not being optimized 

system depends on the rules that are quite logical). 

In special cases, we require a system that has the 

following properties to calculate compressible flow:  

• Conservation PDE form exists, as in eulerian; 

• Contact discontinuities are sharply resolved, as in 

lagrangian; 

• Mesh can be automatically generated to fit the 

given body shapes; 

• Mesh is orthogonal; 

• Mesh is uniform. 

It can be seen in the next sections that the unified 

coordinate system has these characteristics. So we 

can say that unified coordinates system can be the 

optimized coordinates. 

3. Gas dynamics equations in the unified 

coordinates 

Euler equations for unsteady two-dimensional 

flows are: 
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Here, the unified coordinates ),,,( ςηξλ  that is 

obtained from a transformation from the cartesian 

coordinates is introduced [1,7]: 

ηξλ

ηξλ

λ

MdBdhvddy

LdAdhuddx

ddt
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The equations governing the unified coordinates 

are introduced as: 
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Unified coordinates equations E, F and G are 

written this way: 
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So In this section we got familiar with the 

governing equations in a unified coordinates 

system. In the next parts of the article we will check 

how to solve this equation for supersonic flows. 

4. Boundary conditions, slip line and shock 

resolution 

In this section we will refer to some of the 

advantages in the field of unified coordinates 

system as following and each of them is briefly 

explained: 

4.1. Boundary conditions and solid boundaries 

Consider a time-independent solid boundary (this 

includes steady flow as a special case): 

S:  B (x, y, z) = 0                                                   (4) 

Boundary conditions on S are: 

0. =∇Bq                                                                   (5) 

Then on S can be written: 

0. =∇Bhq                                                                 (6) 

Eq. (5) implies that fluid particles move on S, 

whereas Eq. (6) implies that pseudo-particles also 

move on S. Therefore, S is a material function of the 

pseudo-particles. Consequently, B(x,y,z) can be 

taken to correspond to one of the coordinates, 0ξ  

say. In other words, a coordinate surface in the 

unified coordinate system can be taken to represent 

a time-independent solid surface and there is no 

need for a grid generation prior to flow 

computation, as is needed if eulerian coordinates are 

used [1,7]. 

4.2. Slip line resolution 

In steady flow, path lines are identical with 

streamlines. Hence a slip line coincides with the 

streamline of a fluid particle and, therefore, also 

with the streamline of a pseudo-particle. Conse-

quently, it can be taken to correspond to one of the 

coordinates, *ξ  say, thus avoiding the godunov 

averaging across it. Hence, in the unified coordinate 

system a slip line can be sharply resolved. This is in 

direct contrast to the eulerian coordinates where a 

slip line does not coincide with a coordinate line 

and, as a result, the godunov averaging across a slip 

line in a computational cell will forever smear it. 

For unsteady flow, pathlines are in general 

distinct from the streamlines. While a slip line still 

coincides with the pathline of a fluid particle, it 

does not always coincide with a streamline. Hence, 

a slip line does not always coincide with a coordi-

nate line in the unified coordinate system. In this 

regard, numerical experiments clearly indicate the 

trend that slip line resolution increases with 

increasing h from h=0 (eulerian) to h=1 (lagran-

gian) and the unified coordinates using grid-angle 

preserving h, yield better slip line resolution than 

the eulerian coordinates. Furthermore, if a steady 

flow is computed as an asymptotic state of unsteady 

flow for large time, sharp resolution of slip lines is 

achieved when h is determined by, which at the 

same time avoids severe grid deformation. 
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4.3. Shock Resolution 

In using the unified coordinate system for flow 

computation, once the grid is set initially� it is 

subsequently generated by the pseudo-particles 

motion� In this regard, it is� interesting to note that 

pseudo-particles, which move parallel to the fluid 

particles, tend�to crowd together when compressed, 

resulting in automatic refinement of the grid in the�

compression region. Consequently, shock resolution 

is improved in the unified coordinates� over the 

eulerian. Moreover, the improvements increase with 

increasing shock strength. 

5. Strang dimensional splitting method and 

solution of the governing equations in unified 

coordinates 

5.1. The time step-wise eulerian approximation 

The essence of Time Step- Wise Eulerian (TSE) 

is that while solving the physical conservation laws 

(the first four equations) for the flow variables 
T

vupQ ),,,(ρ=  in time step are, λ  from 
kλ  to

1+kλ . 

The geometric variables T
MLBAK ),,,(=  

and h  

in the ratio of λ  are assumed to be fixed but are the 

function of ξ and η  
also to solve the stable physical 

four equations we use )(λkΩ �
1+<< kk λλλ  from 

),,( ηξλk
KK =  and ).,,( ηξλ= k

hh  

After determining Q we update to a new time 

step the geometric conservation laws (the last four 

equations of) to get ),,( 1 ηξλ +kK and after solving the 

equation of preserving mesh angle, we calculate the 

value of ),,( 1 ηξλ +k
h . In this way the effects of the 

flow on the cell shapes are taken into account. This 

completes the advancing of solution for one time 

step from kλλ =    to  1+= kλλ  and the process can be 

repeated to advance the solution for the next time 

step. 

5.2. Strang dimensional splitting method 

Presently the dimensional splitting technique to 

find an approximate solution to the Riemann 

problem in multi-dimensional flows widely has 

been studied and enjoys broad applications. This 

technique converts a multi-dimensional problem 

into several one-dimensional problems. Godunov 

and strang dimensional splitting [5] repeatedly have 

been used in solving various problems. In theory, if 

the time accuracy of a solution for one-dimensional 

problem is the first grade, these two techniques both 

will be the first grade in time accuracy. But two-

dimensional numerical problem (two-dimensional 

riemann problem) that we have solved in this article 

and also in "W.H. Hui" works was specified that by 

using the dimensional splitting strang method the 

results are obtained more accurately. Therefore, in 

this article we have applied the strang method. 

If ξ
λ∆L is the exact solution operator of 1-D euler 

equation of the ξλ −  plane, we have: 

kk
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To continue we will briefly explain about 

problem solving 
ξ

λ∆L and Riemann problem with 

variable coefficients in governing equations on the 

ξλ −  plane. 

5.3. Drive of the final equations using strang dimen-

sional splitting method 

The key step in solving the one dimensional 

Riemann problem in the time step )(k λΩ ; 
1kk +λ<λ<λ ; obtained from strang dimensional 

splitting and the TSE. Here riemann solution for the 

coordinate of ξ−λ  and the solution of Q  in 0=ξ  

for )(λλ kΩ∈ will be stated. In Eq. (3) the time step 

(to make it simple we put it at zero) the next 

equation from a one-dimensional physical cons-

ervation equation obtained from the strang 

dimensional splitting that can be: 
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In Eq. (8) physical variables T
vupQ ),,,(ρ=  are 

related to unknown functions of λ and ξ  while the 

geometric variables are T
MLBAK ),,,(=  and h  that 

appear in equations coefficients and are independent 

from λ : 

),0( ξ= KK ������ ),0( ξ= hh                                      (9) 

η  in Eq. (8) acts as a parameter. In order to use 

Godunov method for advancing the solution from 
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0=λ  to λλ ∆= , we consider the initial conditions 

for the neighboring cells ),( ji  and ),1( ji +  to 

Riemann data that are fixed which lies: 
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(for simplicity we take the cell interface between 

these two cells to be located at 0=ξ ). 

At the same time, based on the TSE approxima-

tion, the coefficients in Eq. (8) are: 
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We note that these coefficients are constants 

separately for 0>ξ  and 0<ξ , but in general are not 

equal to each other [6]. 

To put the Riemann problem in the ξλ −  plane 

more explicitly in one-dimensional form, we note 

that the normal direction of the plane =ξ constant is: 
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And project the flow velocity q into the normal 

direction n and the tangential direction t to get 
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We also make the following replacement: 
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Now, we should convert equations (8) for 0<ξ  

and 0>ξ  separately. For 0<ξ , lhKhK ),(),( =  are 

constant values and lll SS ψψ ==∆=∆ ,,  has con-

stant variables thus Eq. (8) can be written as: 
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and for 0>ξ  the Eq. (8) can be written as: 
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Here we see that Eqs. (15) and (16) are similar to 

the following equation: 
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In Eqs. (15) and (16) if we replaceω with u andτ �
with v we will get to Euler equations in the 

cartesian coordinate that can be solved in the same 

way as the method the Euler Eqs.(1)-(3). 

Regarding Eqs. (15), (16) and (17) it can be said 

that all coefficients are fixed and the variable v( τ ) 

can be separated. Also, we should remind that the 

riemann problem including Eqs. (15) and (16) we 

have a series of new problems. However, the 

coefficients are constant, but are generally different 

for 0<ξ  and 0>ξ [7]. 

6. Numerical results 

In this section, we consider an example of a 

steady two-dimensional flow riemann problem 

generated by two uniform parallel flows as: 

�
	



=
)0,4.2,0.1,0.1(

)0,0.7,5.0,25.0(
),,,( θρ Mp                                    (18) 

Here M represents the Mach number and θ  

indicates the flow angle which is equal to )(tan 1

u
v− . 

It includes a shock wave, a slip line and an 

expansion wave as can be seen in Fig. 1. 

Pressure and density distribution are shown in 

Figs. 2 and 3. The resolution of shock, expansion 

fan and slip line can be seen in these figures. 

Comparisons of 2-D riemann problem calculation 
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results in UCS with the exact solution are shown in 

Fig. 4 and those in the eulerian system are shown in 

Fig. 5. There are low shock resolution and high 

numerical dissipation in eulerian method but, these 

drawbacks do not exist in my numerical method. In 

Fig. 6 (density contour) a shock, a slip line and an 

expansion fan can be seen obviously. This contour 

is results of density calculation use UCS and 

motionless viewing window technique.  

 
 

Fig. 1. View of a steady two-dimensional riemann problem [5] 
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Fig. 2. Pressure distribution [7] 
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Fig. 3. Density distribution [7]��

Solving this problem by the stationary slip line 

method which is sensitive to the dissipative property 

of the numerical methods and grading position is 

difficult. This issue is mentioned in [2, 5]. The 

density variations around the slip line, which 

dissipation and low resolution of the results it could 

be the reason of kinetic energy loss in the average 

stage of the computing cells. 

 
   

Fig. 4. Comparison of calculation results with the exact solution 

(continuous line: exact solution, dash lines:  

Unified coordinates calculation) [7] 

   
Fig. 5. Density distribution (points: Eulerian system,  

continuous line: exact solution) 
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Fig. 6. Density contour 
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In calculations of 2-D riemann problem, the 

physical domain follow the pseudo-particles 

(velocity of particles= qh. ). If we follow the 

computational cells (pseudo-particles), they will 

move out of the initial physical domain, and it 

would be difficult to have a steady state flow in the 

original physical domain. To avoid this, a special  

technique called the “motionless viewing window” 

is applied as in the classical lagrangian method. 

Accordingly, the column of cells which have moved 

out of the original physical domain to the right is 

deleted, while a new column of cells is added at the 

input flow boundary on the left. In this example we 

have considered 4/1=γ . 

7. Conclusions 

In this article non-iterative solution of the rie-

mann problem has been used instead of other 

iterative solution of riemann problem and achieved 

the conclusion that although non-iterative methods 

of solving riemann problem requires more time than 

iterative methods, the solution time of overall 

solution using the unified coordinates system will 

be less. Also, using the iterative methods to solve 

riemann problem the answers are more accurate and 

with less error. 

And finally we can refer to the superiority of 

unified coordinate system  in comparison with the 

eulerian and lagrangian coordinate systems that can 

be seen in the results of calculations absolutely. In 

the future works unified coordinate system can be 

used to solve two phase flows, two-dimensional 

viscid flows, the supersonic aerodynamics flows 

and fluid mechanics problems. In such problems the 

advantage of this coordinates system has been 

proved by W. H. Hui [8] also more complex 

problems as well as the three-dimensional flows 

presented by W. H. Hui [9]. 
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