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Abstract 

The buckling analysis of a nonhomogeneous 

cylindrical shell under torsion is studied in the 

present paper. The shell has nonhomogeneity 

properties which are assumed as a suitable 

function through the thickness direction. The 

stability equations are derived by the adjacent 

equilibrium criterion method based on the 

first order shear deformation theory. These 

equations are employed to analyze the 

buckling behavior and obtaining the critical 

torsional loads. A detailed numerical study is 

carried out to bring out the effects of 

nonhomogeneity parameter, transverse shear, 

and aspect ratio on the critical torsional loads. 

Validity of the present analysis was checked 

by comparing the results with those are 

available in the literature. 
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Introduction 

Cylindrical shells with various material 

properties are frequently analyzed in order to 

economize on the amount of material used, to 

lighten of the shells, and to increase the 

strength of shells. It is known that by 

carefully choosing this parameter, a 

significant increase in stiffness, buckling and 

vibration capacities of the shell may be 

obtained. Many investigations have been 

reported for buckling problem of cylindrical 

shells (e.g. references [1-5]). Another case of 

buckling problem is those written for 

buckling behavior of orthotropic, composite 

and nonhomogeneous shells under various 

mechanical and thermal loads (e.g. references 

[6-10]). There are also many papers dealing 

with the buckling of functionally graded 

cylindrical shells which their material 

properties vary in the thickness direction (e.g. 

references [11-22]). From the above-

mentioned references, it is evident that a few 

studies have focused on the buckling behavior 

of nonhomogeneous cylindrical shells. 

Recently, nonhomogeneous shell structures 

have found wide applications in aerospace, 

automotive and marine industrials. The 

nonhomogeneity of materials can be created 

due to various problems such as production 

techniques, radiation effect, and thermal 

polishing processes. The properties of these 

materials vary as a piecewise continuous or 

continuous functions of position in the body. 

By carefully choosing the nonhomogeneous 

properties, we can decrease the geometry 

dimensions and weights of the shell 

structures.  

This work presents the torsional buckling 

analysis of nonhomogeneous circular long 

cylindrical shells based on the first order 

shear deformation theory. Using the adjacent 

equilibrium criterion method, the governing 

stability equations in terms of force and 

moment resultants are derived. The closed-

form solution is applied to help understand 

the buckling behavior of nonhomogeneous 

shell. The shell is assumed to be long enough 

and the influence of boundary conditions on 
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the critical loads is little. The effects of the 

shell characteristics variations and 

nonhomogeneity parameter on the smallest 

torsional buckling loads are discussed in 

detail. 

 

Shell Stability Equations 

A cylindrical shell of mean radius R, 

thickness h, and length L, is considered with 

the cylindrical coordinates (x, θ, z) as shown 

in Figure 1. The material constitution is 

varied gradually by the following function 

[10] 

 

0( ) (1 ( ))P z P k z  (1) 

 

 
Figure 1. Schematic view of the problem 

studied 
 

where P is the corresponding properties of 

nonhomogeneous cylindrical shell which can 

be substituted by modulus of elasticity E and 

the Poisson’s ratio ν, P0 denotes a material 

property of homogeneous shell, k is the 

nonhomogeneity parameter satisfying 0≤k<1, 

and ϕ(z) is continuous function of the 

variation of material property. For simplicity, 

the Poisson’s ratio is held to be constant. The 

following expressions including the non-

linear terms are considered for kinematic 

relations 
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where u0 (x,θ), v0 (x,θ) and w0 (x,θ) are the 

middle surface displacements, u1 (x,θ) and v1 

(x,θ) describe the rotations about θ- and x-

axes, respectively, and “,x” and “,θ” denote 

partial derivatives respect to x and θ, 

respectively. By substituting the stress-strain 

relations into the definitions of force and 

moment resultants, the following constitutive 

equations are obtained 
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By employing the variational approach, the 

three nonlinear equations of equilibrium can 

be derived. The adjacent equilibrium criterion 

method [2] is used to establish the stability 

equations. If we assume that the equilibrium 

state of an FG cylindrical shell under 

mechanical load is defined in terms of 

displacement components u0, v0, and w0, the 

displacement components of a neighboring 

stable state differ by u1, v1, and w1, with 

respect to the equilibrium position. Thus, the 

Donnell stability equations for FG cylindrical 
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shells under torsion can be obtained as 

follows: 
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Here, Nxθ=τ/h, where τ is the torsional loads. 

For torsional loading the displacement 

function can be expressed as 

 

1 sin ( )= −w A m x n  (6) 

 

where m1=mπR/L, m is the half-wave number 

in the direction of the x-axis and n is the wave 

number in the direction of the θ-axis. 

However, the assumed displacement function 

satisfies the resulting equations, but does not 

satisfy any of the commonly used boundary 

conditions at the cylinder ends. This 

expression may be used to study the buckling 

behavior of nonhomogeneous long cylindrical 

shells that the influence of boundary 

conditions on the critical loads is little [2]. By 

substituting expression (6) in the governing 

equations (5), a function is obtained for 

buckling loads of nonhomogeneous 

cylindrical shells and any values of wave 

numbers.  

For the given values of shell parameters, the 

values of the longitudinal and circumferential 

wave numbers are chosen by an optimization 

program to give the smallest value of 

buckling load. 

 

Results and Discussion 
In this section, numerical results are given for 
critical torsional loads of nonhomogeneous 
thin cylindrical shells which are long enough. 
The stainless steel is used as homogeneous 
material with E0=200 GPa and ν0=0.3. 
Nonhomogeneous function for variations of 
cylindrical shell is considered as a quadratic 

function with (z)=(z/h)2. Figure 2 illustrates 
the through-the-thickness distribution of the 

Young’s modulus for different values of k. 
Since the assumed displacement function only 
satisfies the stability equations and does not 
satisfy any of the commonly used boundary 
conditions at the cylinder ends, the presented 
results can be applicable when the cylindrical 
shell is long enough and the influence of 
boundary conditions on the critical loads is 
less. First, the results for a homogeneous 
cylindrical shell comprised of alumina 
(E=380 GPa, ν=0.3) are validated and then 
the results are given for nonhomogeneous 
cylindrical shells. The comparison study with 
the results of Ref. [22] which is based on the 
classical shell theory is given in Table 1.  
Table 2 gives the critical torsional loads for 
nonhomogeneous cylindrical shells. The 
numbers in the bracket are the longitudinal 
and circumferential wave numbers, 
respectively. A good agreement can be seen 
between the results.  
 
 

 
Figure 2. Through-the-thickness distribution 

of nonhomogeneity property for Young’s 

modulus 
 

 

L/R R/h m n Ref. [22] Present 

10 10 1 2 4811.700 4773.523 

 50 1 2   345.632 361.334 

 100 1 3   174.421 176.514 

 500 1 4     19.525 20.036 

      

40 10 2 1 1801.223 1860.974 

 50 1 1   172.447 180.624 

 100 1 1   105.162 113.352 

 500 1 2       9.721 9.978 

      

100 10 4 1 1761.193 1789.934 
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 50 2 1   154.194 158.390 

 100 1 1     60.845 61.372 

 500 1 1       7.570 8.097 

Table1- Validation of critical torsional loads 
(MPa) for homogeneous cylindrical shell with 

E=380 GPa 
When the nonhomogeneity parameter k is 
increased, values of the critical torsional loads 
are also increased, but the wavenumbers have 
not changed. Results show that the values of 
the critical loads are very sensitive according 
to the wavenumbers. When the thickness ratio 
R/h is increased, the value of the critical loads 
is decreased, but it seems that the variations 
of the circumferential wavenumbers are 
dependent on various parameters.  
 
 

k R/h  

10 50 100 500 

 (2,1) (1,1) (1,1) (1,2) 

0.0   948.025a   90.764a 55.352a 5.116a 

   979.460b   95.065b 59.658b 5.252b 

0.1   960.006a   91.835a 55.892a 5.184a 

   991.678b   96.172b 60.234b 5.321b 

0.3   983.968a   93.978a 56.972a 5.319a 

 1016.116b   98.387b 61.386b 5.458b 

0.5 1007.930a   96.120a 58.052a 5.454a 

 1064.990b 100.599b 62.538b 5.594b 

0.7 1031.892a   98.262a 59.132a 5.589a 

 1064.990b 102.814b 63.688b 5.732b 

0.9 1055.854a 100.405a 60.212a 5.724a 

 1089.426b 105.028b 64.840b 5.871b 
aRef. [23]; bPresent 

Table 2- The critical torsional loads (MPa) for 

nonhomogeneous cylindrical shell with 

L/R=40 

 

 

 
Figure 3. Effect of the nonhomogeneity 

parameter and thickness ratio on the critical 

torsional load of shell 

 
Figure 4. Effect of the axial wave number and 

aspect ratio on the critical torsional load of 

shell 
 
It is found that for k=0.1, the critical torsional 
load computed with R/h=10 differs from that 
computed with k=0.9 by more than 13%. The 
difference is smaller for higher values of L/R 
and R/h ratios. It is evident that results are 
close to each other for thin and long shells, 
but are quite different for thick shells. As the 
aspect ratio L/R is increased, the longitudinal 
wavenumber is increased in some cases. 
Figure 3 shows the variations of 
nonhomogeneity parameter on critical 
torsional loads for various values of thickness 
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ratio R/h. The variations of the critical 
torsional load of nonhomogeneous cylindrical 
shells versus the axial wave number, and 
aspect ratio L/R under torsional loading are 
illustrated in Figure 4. 

It is observed that the torsional load is 

decreased by the increase of the thickness 

ratio R/h as same as for the increase of the 

aspect ratio L/R. The critical torsional loads 

attain minimum values for lower values of 

axial wave number. 

 

Conclusions 

The buckling of nonhomogeneous cylindrical 

shells subjected to torsional load is studied in 

this paper. The material properties of 

nonhomogeneous shell are varied along the 

thickness coordinate. Adjacent equilibrium 

criterion method is employed to determine the 

critical torsional loads. The results show that 

the values of the critical torsional loads are 

affected by the compositional profile 

variations, nonhomogeneity parameter and the 

variations of the shell geometry. 

The following is concluded: 

i. For all cases, when the nonhomogeneous 

profile changes as a quadratic function, 

the critical torsional loads changes 

linearly with respect to nonhomogeneity 

parameter. 

ii. When the thickness and aspect ratios are 

increased, the values of the critical 

torsional loads are decreased, but the 

wavenumbers have an irregular increase. 

iii. Depending on the shell geometry, the 

longitudinal wavenumbers corresponding 

to lowest values of the critical torsional 

load can be greater than one. 
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