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Abstract 

 

In this paper, the equilibrium and stability equations of a cylindrical shell made of functionally graded material (FGM) under 

thermal loadings are derived based on the first order and third order shear deformation theories (FSDT and TSDT). 

Assuming that the material properties vary linearly through the thickness direction and using the variational method, the 

system of fundamental partial differential equations are established. Then buckling analysis of functionally graded ceramic-

metal cylindrical shells under two types of thermal loadings are carried out and the results are given in closed-form solutions. 

The study concludes that the third order shear deformation theory accurately predicts the behavior of functionally graded 

ceramic-metal cylindrical shells, whereas the first order shear deformation theory overestimates critical buckling 

temperatures. 
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1. Introduction 

 

In recent years studies on new performance materials have addressed new materials known as a functionally 

graded material (FGM). These are high performance, heat resistant materials able to withstand ultra high 

temperatures and extremely large thermal gradients used in aerospace industries. FGMs are microscopically 

inhomogeneous in which the mechanical properties vary smoothly and continuously from one surface to the 

other [1, 2].  

Typically, these materials are made from a mixture of ceramic and metal. It is apparent from the literature 

survey that most research on FGMs have been restricted to the thermal stress analysis, fracture mechanics, 

vibration, and optimization. Generally, there are two ways to model the material property gradation in solids: (1) 

assume a profile for volume fraction [3] and (2) use a micromechanics approach to study the nonhomogeneous 

media [4].  

For composition profile modeling, polynomial representations including quadratic [5] and cubic [6] 

variations are used. Other representations such as exponential functions [7, 8] and piecewise homogeneous layer  

representations [9, 10] have also been used. At the micro structural level, an FGM is characterized by transition 

from a dispersive phase to an alternative structure with a networking structure in between [11].  Specifically 

Nan et al. [12] used an analytical approach to describe the uncoupled thermomechanical properties of 

metal/ceramic FGMs. Pindera and Freed [13], Pindera et al. [14] and Aboudi et al. [15] used the unit-cell 

approach to analyze FGMs. Pindera et al. [16] focused primarily on micromechanics-based studies.  

Thermal buckling analysis of isotropic and homogeneous perfect cylindrical shells and composite cylindrical 

shells based on the Donnell and improved Donnell stability equations are studied by Eslami et al. [17, 18]. 

Eslami and Shariyat [19] considered the full Green nonlinear strain-displacement relations instead of the 

simplified Sander's assumption to formulate the dynamic and post buckling of imperfect cylindrical shells. The 

higher order shear deformation theory, including the normal stress, was used and the mixed formulation was 

established to simplify the approach of both kinematical and forced boundary conditions. The technique was 

then improved by the same authors to an exact three-dimensional analysis of circular cylindrical shells based on 

the equilibrium equations and the full Green nonlinear strain-displacement relations [20]. The Donnell and 

improved Donnell stability equations are employed to present a closed-form solution for the elastoplastic and 

creep buckling of cylindrical shells under mechanical loadings at an elevated temperature by Eslami and 

Shariyat [21]. Eslami and Shahsiah [22] determined the critical thermal buckling of imperfect cylindrical shells. 
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NOMENCLATURE 

 

R           radius of shell                                                                                   z           vertical coordinate          

h            thickness of shell                                                                              x           axial coordinate 

E           Young  ُ  s modulus                                                                                        circumferential coordinate 

iN          in-plane force                                                                                   L           lenght of shell  

iM          bending moment                                                                                        coefficient of thermal expansion 

wvu ,,    axial, circumferential, and transverse 

                displacements, respectively                       

 

 

They used Donnell and the improved Donnell stability equations and two models for imperfection, namely, the 

Wan-Donnell and Koiter models. Many post buckling studies based on the classical shell theory of composite 

laminated thin cylindrical shells subjected to mechanical or thermal loadings or their combinations are available 

in the literatures, such as Birman and Bert [23] and Shen [24, 25]. Relatively, few studies are available about the 

application of shear deformation shell theory to post buckling analysis in the literatures, such as those given by 

Iu and Chia [26] and Reddy and Savoia [27]. In these studies, the material properties are considered independent 

of temperature. However, studies of temperature and moisture effects on the buckling loads of laminated flat 

and cylindrical panels are limited in number [28-32], where all these studies assumed perfect initial 

configuration. 

Buckling analysis of FGM structures are rare in the literature. Birman [33] studied the buckling problem of a 

functionally graded composite rectangular plate subjected to uniaxial compression. The buckling analysis of 

circular FGM plate is given by Najafizadeh and Eslami [34, 35]. The thermal and mechanical buckling of FGM 

circular plate based on the first order shear deformation plate theory is studied by Najafizadeh and Hedayati 

[36]. Javaheri and Eslami [37, 38] presented the mechanical and thermal buckling of a rectangular FGM plates 

based on the classical and higher order plate theories. Recently, Woo and Meguid [39] gave an analytical 

solution for large deflection of thin FGM plates and shallow shells. The stabilization of a functionally graded 

cylindrical shell under axial periodic loading is investigated by Ng et al. [40]. Thermal buckling of functionally 

graded cylindrical shell based on classical shell theory is studied by Shahsiah and Eslami [41]. 

In this paper, the thermal buckling analysis of a functionally graded ceramic-metal cylindrical shell is 

considered. The Donnell nonlinear strain-displacement relations are used. The shell is under uniform 

temperature rise and radial temperature difference for thermal loading and simply supported boundary 

conditions are assumed. The expressions for thermal loads are obtained analytically. The results are compared 

for two shear theories. 

 

 

2. Derivations 

 
2.1 Material properties 

 

Consider a cylindrical shell made of functionally graded material. The properties of FGMs must be assumed 

to be graded through the thickness direction. The constituent materials are assumed to be ceramic and metal. 

The volume fractions of ceramic cV  and metal mV  corresponding to the power law are expressed as [42] 
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where z  is the thickness coordinate ( 2/2/ hzh − ), h  is the thickness of the shell , and k  is the power law 

index that takes values greater than or equal to zero [42]. In this paper, it is assumed that the properties of FGM 

shell vary linearly through the thickness direction )1( =k . The value of k  equal to zero represents a fully 

ceramic shell. The mechanical and thermal properties of FGMs are determined from the volume fraction of the 

material constituents. We assumed that the nonhomogeneous material properties such as the modulus of 

elasticity E  and the coefficient of thermal expansion   change in the thickness direction z  based on Voigt  ُ  s 

rule over the whole range of volume fraction [42]; while Poisson  ُ  s ratio  is assumed to be constant [33] as 
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where subscripts m  and c  refer to the metal and ceramic constituents, respectively. By substituting volume 

fraction ratio from Eqs. (1) into Eqs. (2), materials properties of the FGM shell is determined, which are the 

same as proposed by Praveen and Reddy [42] 
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where 

 

mccmmccm EEE  −=−= ,  (4) 

 
2.2 Basic equations 

 

Shear deformation theories are those in which the transverse shear stresses are accounted for. Such theories 

can be used to analyses the mechanical problems with more accuracy. The first order shear deformation theory 

(FSDT) is the simplest theory that accounts for nonzero transverse shear strains [43]. In the present work, the 

first order shear deformation theory (FSDT) and the third order shear deformation theory of Reddy (TSDT) are 

used to obtain the equilibrium and stability equations. The displacement fields based on FSDT and TSDT are 

[43] 

 

 

FSDT: 
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Here, the z  axis is assumed positive outward, u , v , and w  denote the displacement components, 0u , 0v , and 

0w  denote the displacement in the midsurface of shell ( z = 0) and ( 1u , 1v ) are the rotations of a transverse 

normal about    and x  axes, respectively, and defined as 
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Consider a thin cylindrical shell of mean radius R  and thickness h  with length L . The Donnell nonlinear 

strain-displacement relations are [44] 
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Hook’s law for a functionally graded cylindrical shell can be defined as 
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The stress resultants ii MN ,  and iQ  are expressed as 
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Substituting relations (7) into (8), and the results into Eqs. (9) give the constitutive relations as 

  

FSDT: 
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TSDT: 
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The total potential energy V  for the cylindrical shell under thermal loading may be written as 
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where Τ  is the temperature distribution load and function of z  . Upon substitution of relations (7) and (8) into 

Eq. (12), and integrating with respect to z  from ( 2/h−  to 2/h ), the total potential energy is obtained as 

 

= dxdθ FV  (13) 

 

Extremizing the functional of potential energy leads to the Euler equations [44] 
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Substitution of relations (7) and (8) into Eq. (13) and using Eqs. (14), the equilibrium equations for a 

cylindrical shell composed of functionally graded material are expressed as  

 

FSDT: 
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TSDT: 
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The stability equations of cylindrical shell may be derived by the variational approach. If V  is the total 

potential energy of the shell, the first variation V  is associated with the state of equilibrium. The stability of 

the original configuration of the shell in the neighborhood of the equilibrium state can be determined by the sign  

of second variation V2 . However, the condition of 02 =V  is used to derive the stability equations of many 

practical problems on the buckling of shell. Thus, the stability equations are represented by the Euler equations 

for the integrand in the second variation expression  
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TSDT: 
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In Eqs. (16), terms with the subscript 0 are related to the state of equilibrium and terms with the subscript 1 

are those characterizing the state of stability. Also, the superscript 1 in the displacement component 1
0w  refers to 

the state of stability. It is further noticed that while the equilibrium equations are nonlinear, the stability 

equations are linear. The terms with the subscript 0 are the solution of the equilibrium equation for the given 

load. The strains and curvatures in terms of displacement components are 
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Substituting relations (17) into Eqs. (10) and using Eqs. (16), we get the stability equations in terms of the 

displacement components. These equations are a coupled set of five partial differential equation for the 

dependent functions 0u , 0v , 1u , 1v  and 1w . They are the Donnell stability equations in coupled form.  

 

 

3. Buckling analysis 

 

For uniform temperature rise, the initial uniform temperature of the shell is assumed to be iT . Under simply 

supported boundary conditions, temperature can be uniformly raised to a final value fT such that the shell 

buckles. To find the critical if TTT −= , the prebuckling forces should be found. Solving the membrance from 

of the equilibrium equations, and using the method developed by Meyers [45] in conjunction with Galerkin  ُ  s 

formulation, give the prebuckling force resultants  
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For linear temperature variation through the thickness, we approximate a linear temperature variation along 

the radial direction as  
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where ba TTT −=  , aT  is temperature of the inner surface and bT is temperature of the outer surface of a 

functionally graded shell. Using the same approach as described for uniform temperature rise, the prebuckling 

force resultants are  
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The simply supported boundary conditions are defined as [44] 
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1
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To solve the system of stability equations, with the consideration of the simply supported boundary 

conditions (21), the approximate solutions are assumed as  
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where ( 0u  , 0v , 0w , 1u , 1v ) are constant coefficients and lm / = , where ,...3,2,1, =nm . Substituting 

relations (22) into the stability equations (16), yield a system of five homogeneous equations for 

( 0u  , 0v , 0w , 1u , 1v ) that is, 
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In which ijK  is a symmetric matrix with the components (The values of ijK  for the case of FSDT and 

TSDT are listed in Appendix). Substituting prebuckling forces from Eqs. (18) and (20) into the relations of ijK  

and setting | ijK |=0 to obtain the nonzero solution, the value of T  are found for uniform and linear radial 

temperature rises. The critical buckling temperature is obtained by minimizing T  with respect to m  and n , 

the number of longitudinal and circumferential buckling waves.  

 

4. Results and discussion 

 
A functionally graded ceramic-metal cylindrical shell is considered. The combination of materials consists 

of steel and alumina. The Young  ُ  s modulus for steel and alumina are:  

CGPaE mm
06 /107.11,200 −==  and CGPaE Cc

06 /104.7,380 −==  , respectively. The Poisson’s 

ratio is chosen to be 0.3 for steel and alumina. The boundary conditions are assumed to be simply supported.  

Comparisons of the critical buckling temperatures based on the first order and third order shear deformation 

theories (FSDT and TSDT) for the two types of thermal loadings with respect to radius of shell R  are presented 

in Tables 1 and 2. These Tables show that the critical buckling temperature decreases by the increasing of the 

radius R  (for 5.0/ =RL ) and by decreasing the shell thickness.  

Tables 3 and 4 show the results of the critical buckling temperature for the critical uniform and linear radial 

temperature rise relative to RL / and Rh /  for a constant value of radius. Also, these Tables show that the 
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critical buckling temperature increases by the increasing of the thickness-to-radius ratio Rh /  and  by the 

decreasing of the RL / .   

To illustrate the effects of radius, the ratios Rh / , and and RL / , the variation of the critical temperature 

difference crT versus variation of the dimensionless geometrical parameter Rh /  and R  are plotted for two 

loading cases based on first and third order shear deformation plate theories in Figs. 1-4. 

 

 
Table 1.  

Variation of the critical uniform temperature rise due to FSDT and TSDT with respect to R  ( 5.0/ =RL ) 

 )(mh   mR 625.0=  mR 875.0=  mR 25.1=  mR 75.1=  mR 2=  

0.007 
FSDT 504.666 361.685 249.972 180.697 156.235 

TSDT 498.967 356.487 245.334 177.409 156.200 

0.005 
FSDT 361.685 255.355 180.697 129.770 111.768 

TSDT 356.487 251.669 177.545 127.586 110.865 

0.003 
FSDT 215.290 153.004 107.154   76.559   67.467 

TSDT 213.836 152.966 107.136   76.549   67.464 

 

 
Table 2. 

Variation of the critical linear radial temperature rise due to FSDT and TSDT with respect to R  ( 5.0/ =RL ) 

  )(mh  mR 625.0=  mR 875.0=  mR 25.1=  mR 75.1=  mR 2=  

0.007 
FSDT 1039.565 745.037 514.919 372.218 321.830 

TSDT 1030.697 738.726 513.605 365.447 321.758 

0.005 
FSDT   745.037 526.007 372.218 266.819 230.132 

TSDT   734.329 524.594 365.447 261.441 229.983 

0.003 
FSDT   443.478 315.174 220.727 157.706 138.976 

TSDT   439.856 315.096 220.691 157.685 138.971 

 

 
Table 3.  

Variation of the critical uniform temperature rise due FSDT and TSDT with respect to Rh /  ( mR 5.0= ) 

RL /  001.0/ =Rh  003.0/ =Rh  005.0/ =Rh  008.0/ =Rh  01.0/ =Rh  

1.9 
FSDT 44.668   99.437 180.636 334.145 448.056 

TSDT 44.664   98.174 177.090 327.677 437.891 

0.8 
FSDT 44.690 104.673 191.158 352.520 480.839 

TSDT 44.980 103.055 186.176 345.397 469.414 

0.3 
FSDT 45.598 110.906 200.798 376.213 516.580 

TSDT 45.435 108.753 195.674 368.344 504.386 

 

 

 

 

 

Table 4.  

Variation of the critical linear radial temperature rise due to FSDT and TSDT with respect to Rh /  ( mR 5.0= ) 

RL /  001.0/ =Rh  003.0/ =Rh  005.0/ =Rh  008.0/ =Rh  01.0/ =Rh  

1.9 
FSDT 92.011 200.186 359.406 663.342 885.297 

TSDT 92.007 198.598 355.901 657.627 877.348 

0.8 
FSDT 92.057 211.583 372.174 680.718 910.768 

TSDT 92.032 208.610 368.253 674.253 901.753 

0.3 
FSDT 92.201 223.368 388.225 704.358 939.673 

TSDT 93.105 219.647 383.735 696.762 930.142 



45 Journal of Mechanical Research and Application (JMRA),Vol.12 No.1,1401(2022),36-49 

 

0

50

100

150

200

250

300

350

400

450

500

550

0.625 0.75 0.875 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2

R(m)

h=0.007

h=0.005

h=0.003

 
(a)  

 

0

50

100

150

200

250

300

350

400

450

500

0.625 0.75 0.875 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2

R(m)

h=0.007

h=0.005

h=0.003

 
(b) 

Fig. 1. Critical uniform temperature rise versus the radius R  ( 5.0/ =RL ); (a): FSDT, (b): TSDT. 
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(b)

Fig. 2.  Critical linear radial temperature rise versus the radius R  ( 5.0/ =RL ); (a): FSDT, (b): TSDT. 
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(b) 

Fig. 3. Critical uniform temperature rise versus the ratio Rh /  ( mR 5.0= ); (a): FSDT, (b): TSDT. 
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Fig. 4. Critical linear radial temperature rise versus the ratio Rh /  ( mR 5.0= ); (a): FSDT, (b): TSDT. 

 

 

 
5. Conclusions 

 
In the present paper, equilibrium and stability equations for simply supported functionally graded 

cylindrical shells are obtained. Derivations are based on the first order and third order shear deformation 

theories (FSDT and TSDT) with the assumption of linear composition for the material. Then, the buckling 

analysis of functionally graded ceramic-metal cylindrical shells under two different thermal loading cases 

is investigated. It is concluded that: 

1. The third order shear deformation theory (TSDT) underestimates the buckling loads compared with 

the first order shear deformation theory (FSDT). Critical buckling loads predicted by the two theories are 

very close to each other.  

2. The critical temperature difference crT  is increased with an increase of the ratio Rh / . 

3. The critical temperature difference crT for the functionally graded cylindrical shell under linear 

temperature difference through the thickness is twice that of the functionally graded cylindrical shell 

under initial-final temperature difference.  

4. The critical temperature difference crT  is decreased with an increase of  the radius R . 

5. The critical temperature difference crT  is increased with an decrease of  the ratio RL / . 

 

Appendix :  

The values of 
ijK  for the case of FSDT and TSDT 

The values of ijK  for the case of FSDT: 
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The values of ijK  for the case of TSDT: 
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