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Abstract

In this paper the free vibration of FGM rectangular plate analyzed by using the
Third-order shear deformation theory. By introducing the displacment field according to
the Third-order shear deformation plate theory (TSDT), the strain-displacement
equations are derived and then by using the Hamilton's principle, dynamic equation for
the mentioned plate are achieved and with Navier method whole dynamic equations are
converted to an eigen value problem which the natural frequencies of plate can be
calculated. Further more, the equations for First-order shear deformation plate theory

will be derived and then the results compared with above equation results.
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Nomenclature

a,b length and width of a rectangular plate h plate thickness

u,v,w displacement in x,y,z direction o, & Stress, strain

#,, 4, mid-plane rotation p density of plate material

E,G elasticity modulus v poison's ratio

N; total in-plane force M; total in-plane moment

A; extensional stiffeness D;; bending stiffeness

B; bending-extensional coupling stiffness E;i, F;j, Hy; high-order stiffeness
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o frequency @ natural frequency
q load R;. R high-order stress

p matreial variation profile through the thickness T temperature

a termal expansion coefficient

1. Introduction

In recent years functionally graded materials (FGMs) have gained considerable
importance as materials to be used in extremely high temperature environments such as
nuclear reactors and high-speed spacecraft industries (Yamanouchi et al., [1]). FGMs
were first introduced by a group of scientists in Sendai Japan in 1984 (Koizumi, [2]).
FGMs are new inhomogeneous materials, in which the mechanical properties vary
smoothly and continuously from one surface to the other. This is achieved by gradually
varying the volume fraction of the constituent materials. This continuous change in
composition results in the graded properties of FGMs (Reddy and Cheng, [3]). This
gradation in properties of the material reduces thermal stresses, residual stresses and
stress concentration factors (Reddy et al., [4]). Typically these materials are made from
a mixture of ceramic and metal or from a combination of different materials. The
ceramic constituent of the material provides the high-temperature resistance due to its
low thermal conductivity. The ductile metal constituent on the other hand, prevents
fracture caused by stresses due to the high temperature gradient in a very short period of
time. Furthermore a mixture of ceramic and metal with a continuously varying volume
fraction can be easily manufactured (Fukui, [5]).

Studies on vibration of rectangular plates are extensive. Many of these studies are
for isotropic and composite plates. In recent years many researchs about rectangular
plates such as stability and vibration plates according to a Higher-Order Shear

Deformation Theory [6,7], relationship between vibration frequencies of Reddy and
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Kirchhoff Plates With Simply Supported Edges [8], free vibrations of laminated
composite plates using second-order shear deformation theory and Layerwise theory
[9,10], Analysis of laminated composite plates using HSDT [11], theory of plates and
shells [12], buckling an vibration of laminated composite plate using various plate
theories [13] has been done.

The First-order Shear Deformation Theory (FSDT) is the simplest plate theory that
accounts for transverse shear strains which are represented as constant through the plate
thickness, and the theory requires shear correction factors to compute transverse shear
forces. In the Third-order Shear Deformation Theory (TSDT) of Reddy, the transverse
shear stresses are represented as cubic through the thickness and consequently it isn't
require to shear correction factors. The theory also contains the First-order Shear
Deformation Theory as a special case. Here we develop the equations of motion of
functionally graded plates using TSDT.

In the present work, vibration of functionally graded rectangular plate based on the
third order shear deformation theory is studied. The objective is to study the frequency
characteristics, the influence of the constituent volume fractions, and the affects of the

configurations of the constituent materials on the natural frequencies.

2. Third-order theory of shear deformation plate

Consider a plate of total thickness h and composed of functionally graded material through
the thickness. It is assumed that the material is isotropic and the grading is assumed to be only
through the thickness. The xy-plane is taken to be the undeformed midplane of the plate with
the z-axis positive upward from the midplane. Further, we restrict the formulation to linear
elastic material behavior, small strains and displacements, and to the case in which the

temperature field is known.




2.1. Displacement field
The Third-order shear deformation theory of Reddy used in the present study is

based on the following displacement field [14]:

U(X, Y, 2) =Ug (%, V) + 2+ (%, Y) + 27y (% ¥) + 2°U5(x, y)
V(X! Y, Z) = VO (X, y) +Z '¢2 (Xv y) +Z 2!//2 (X! y) + Z3V3 (X’ y) (1)
w(X, ¥, 2) = Wo (X, Y)

These equations can be reduced by satisfying the stress-free conditions on the top and

bottom faces of the plate, which are equivalent to:

ow,
u(x, ¥,2) =Ug (%, Y)+2-¢1(x, ¥) - C12° (4 +a_X°)

VX, ¥,2) =V (%, Y) + 2 (%, ¥) ~C12° (6, +%) )

W(X! Ys Z) = WO (X, y)

where(u,,v,, W, ) and(4,, ¢, ) are displacement and rotation of normal lines on the plane z=0,

respectively. Also, C, =4/(3h?).

2.2. Strain

The linear strain-displacement relations are given by:
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2.3. Functionally Graded Plates

We assume that the material property gradation is only through the thickness. FGM
properties such as density p, elasticity modulus E and G are functions of volumetric
ratio and the components. The poison’s coefficient is considered as constant. If we

consider the normal axis of midplane as z, we’ll have:

p(2)=(pc —pm)(%%jp + P ®)
6=6(2)= (6, -G 2+1) 6,

where E., p., G, denote the property of top face and E,,, p,,, G,, denote bottom face
property, h is the total thickness of the plate and p is a parameter that dictates the

material variation profile through the thickness.



2.4. Stress-Strain Relations
The stress-Strain relations are similar to isotropic plate’s relations, but with this

difference that modul E is not constant, but it is according to equation (8).

O11 _Q11 Qp, O 0 0 ikl 1

02 Qu Qp O 0 0 €2 1

o= 0 0 Qg 0 0 &y3 r—10pa-AT

O3 0 0 0 Qp O £13 0

op) | 0 0 0 Qes | | 612 0 |
where:

_Qu-—F - - E 10

Qu =Qp = o7 Qi =0-Qqy, Q44 =Qs5 = Qep = 20+0) (10)

2.5. Equations of motion

The equation of motion based on TSDT by using Hamilton’s principle are:

oN OoN " OW,
FnJrFlz:—%Jf'ouo +(1, -Gyl 3)¢1 Cils axo (11)
oN oN " OW,
FZZJFFlZ:—QZJf'oUz +(1; =Cyl3)d, ~Cyly ayo (12)
2 2 2
0P+ TP 0 o O g0 Ris O 50 R
ox? oy? Oxoy oX ox oy oy
. oMW, %W, d a¢ Ay oV,
=—0Oz+ loWy — Cl 6( O 8y 0) +C| (I, -Gl 6)( ¢1 2) (8)(0 EOJ:I
(13)
oMy, ok, oMy, Py, ..
-C + -C +3C,R;s = Q, =(1, -C,I
x 1 o Y oy 1Riz —Q = (1, = Cyl5 )iy
+(|2_201|4+C12|6)¢.1_C1( -Gyl )a(;’xa (14)
oM OP. oM OP, .
ayzz -C; 6}2/2 + axlz -C; 812 +3C1Ry3 - Q, =(|1_C1|3)V0
o i
+(|2—2C1|4+C1|6)¢2—C( -Gyl 6) oy (15)
where
N1 h/i2 |O11 My, h/2 | O11
Ny = J. oz, Mo = j O (202 (16)

Ny, 12| oy, My, -2\ oy
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o} {re @

-h/2

N; represent the total in-plane force resultant and M; the total moment resultants, and

P h/i2 | 011 R h/2 o
Py ¢ = I oy 2z, { l}: I { 13}zzdz (18)
R; 023
P -hi2 | oy, ~h/2
which p; and R; show the high-order sress resultants. Also,
h/2 )
I, = J.p(z)'dz (i=041-6) (19)

-h/2

Consider the following description:

h/2
(A, By Dy Eij. Fyj. Gy Hyp) = IQij(l,z,22,23,24,25,26)dz (20)
-h/2

where Q; comes from (10) and A; denote extensional stiffeness, D; the bending
stiffeness, B; the bending-extensional coupling stiffenesses, and E;, F; and H; are
high-order stiffeness.

Parameters A;, D; are described for i,j=126, F; for i,j=45 and B;, E;, H; for
i, j=126. It is important to see that E;, F; and H; involve fourth or higher powers of
the thickness, so they are expected to affect little to thin and homogeneous plates,

Therefore the stress resultants are related to the strain by the relations as following:

N} [[A] [B] [E]][%®
M} {[B] [O] [F]}4Kk® (21)
) LE] [F] ] [k®

{%H[[S% {E] {722 ;} (22)




40

Journal of Mechanical Research and Application (JMRA),Vol. 13 No.2, 1402(2023),33-55

2.6. Solutions for a simply supported plate

2.6.1. Boundary conditions

The simply supported boundary conditions for the Third-order shear deformation

plate theory are:

u(x0t)=0 ,  #((x0t)=0,
uO,yt)=0 ,  ¢,0Vy1)=0,
Us(x,0,t)=0 Us(x,b,t)=0,
Ny (0,y,t)=0, Ny (a,y,t)=0,

My y,t)=0,  My(ayt)=0,
where

Maﬂ = Maﬁ _Clpaﬂ

2.6.2. The Navier Solutions

u;(x,b,t)y=0 , P (X0, 1) =0

u,(a,y,t)=0 , #y(a,yt)=0

uz(0,y,t)=0 , us(a,y,t)=0 (23)
N,,(x,0,t)=0, Ny, (x,b,t)=0

My, (x,0,t)=0, My, (x,b,t) =0

(24)

The five equations of motion (11)-(15), Solved by Navier solutions for simply

supported plates. The boundary conditions in equation (23) are satisfied by the

following expansions:

U (X, y,1) = iiu m (t) cosax.sin Ay,

n=1 m=1

Vo (X, y,t) = iivm (t) sin ex.cos py

n=1 m=1

Wy (X, y,t) = iiwm (t) sin ex.sin gy,

n=1l m=1

A0 YD=3TS A (t) cosaxsin fy

m=1 n=1

501D =3 S B () sin axcos y,

m=1 n=1

U, (t) =Ue (25a)
V. (t) =Ve ' (25b)
Wi (£) =We ™'t (25¢)
A () = it (25d)
Bpun () = Be™* (25€)

where a=mz/a, g=nz/b and o is natural frequency. Assume g, =g, =0, the normal

load g; can be expanded in double Fourier sin series:




a(x, y,t) = iiqm (t) cosax.sin gy (26)
Y
qmn(z,t):glj‘;q(x, y,t)sin ax.sin gy dx dy (27)

2.7. Natural frequency equation of simply supported FGM rectangular plate
(TSDT)

Substitution of equations (25a)-(25e) into equations (11)-(15) and simplifying the

resultants relations,then we obtain the following equation:

Umn U 0
an an 0
[C]< Wmn + [M Wmn q mn (28)
Amn Amn 0
an an 0
or
U U 0
vV V 0
2
A A 0
B B 0
where:
C1 Co Gz G4 Cp My My Mg My Mg
€ Cp Cp3 Cy Cyp My My Myz Myy  Myg
C=|Cy Czp Cy Cy Cg| ,M=|mgy myp My mg Mg (30)
Ca1 Cgp Cyz Cyy Cys Mgy My Myz My Mys
1Cs1 Csz Cs3 Csy  Csg | Mgy M5 Mgz Mgy Mgg

The components of the matrix C are defined by:

Cyy = Ayar’ + Agg B2
Cio = (A + Agg)ap
C3 =—C; lEnaz +(Eyp +2Egg )ﬂZJa

iy =(Byy _ClEn)a2 +(Bgg —C1E66)ﬁ2

G5 = [(Blz —C1Eg) + (Bgs — ClE65)]aﬂ
Cxp = Aesaz + A22,82
Co3 = _CllEzzﬂz +(Epp + 2E66)a213

Co4 =Cy5




Cos5 = (Bgs _ClEse)az +(By _ClEzz)ﬂz (31)
Ca3 = (Ass —2C;Dss +C12 ':55)052 +(Ay —2C,Dyy +C12F44)ﬂ2 +C12 |_H11a4 +2(Hy, +2H66)a2ﬂ2 + H2254J

C34 = (Ags —2C; Dg5 + Cl2 Fes)or — Cl[(Fll _ClHn)Ol3 +((Fp —CiHypp) +2(Fgg _ClHae))aﬁz]
Ca5 = (Ayy —2C,Dyy +C12 F44)/’7—C11(F22 —C1H22),53 +((Fz —CiHyp) + 2(Fee —C1H66))a2/)’J
Cas = (Ass —2C, D5 + C{ Fg) + (Dyy — 2CiFyy + Cf Hyy)a® + (Dgg — 2C1Fgs + CHgg) B

Css = l(D12 —-2C R, +C12H12) + (Dgg — 2C,Fgs +C12H66)Ja,3

Css = (Aug —6C1Dyy +9C7Fyy) +(Dgg — 2C1Fg + CPHgg)r” + (D, — 2C,Fyp + CYHo,) 52

And the components of the matrix M are defined by:

my = o

My, =g

Mg =l +C{lg(a® + 8%)

Mgy =—Cy (14 —Cylg)a (32)

Mgs =—Cy (14 —Cylg)B

The equations (28) can be specialized to static response, buckling, and vibrations. To

achieve the natural frequency, we set q,,, =0, therefore equations (29) become as

following:
U, U] (o
u, U, 10
[ChUs -@*[MEus, =10
) | |0
Z #] (0
or
U
UZ
[Cij—muaz] Us =0 (33)
4
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Setting the determinant of matrix [cij —mij52J equal to zero and solving the achieved

eqation for @ (frequency), values of natural frequency for simply supported rectangular

FGM plate will be derived.

3. First-order theory of shear deformation FSDT
Using the achieved equations for FGM rectangular plate in TSDT , we will drive the

above equations for a rectangular plate in FSDT. To do this, by setting C, =0 in any

equation of the last chapter, new equations will be drived with FSDT. It is important to

know by setting C, =0, the value of shear strain become independent of thickness.

3.1. Displacement field

Setting C, =0 in equation (2), we obtain displacement field for FSDT as following:

U(X1 Y, Z) = UO(XI y) +1z '¢1(Xv y)
V(X1 Y, Z) = VZ(X! y) +Z '¢2 (X, y) (34)
W(X1 Y, Z) = WO (X, y)

3.2. Strain

In the same way, by setting C, =0 in equation (3)-(6), The linear strain relations are

obtained:
e kl( ) k@
£ap = 1kS) b+ 20k Wz (35)
€12 kl(z) kO,
(°)
{‘913 } _ 713 (36)
es)  |75)




0
au A
K ox K o
o
ov )l _ i’
kO b= EO : kb= Y (37)
k@] | au , v k2] |0, 00
& ox oy o

amh
ne| |7

= " (38)
()
V23 (¢2 +WO
3.3. Equations of motion
The equation of motion of FSDT by using hamilton’s principle are:
%+%=—ql+loul+lléﬁ'l (39)
oN oN . "
WZZ+FH=—Q2+|0U2+|1¢2 (40)
0 0 .
%4'%:—(13“0”3 (41)
%‘F%—le:'luﬁ"zé (42)
M M .. “
%+66—XR—Q23=|1U2+|2¢2 (43)
where:
N} _[TA] [B]][&® o
{11 ol o hi=128 (44
Qi=[Aly] =45 (45)
and
h/2
(Ay.B5.Dy) = [Qyz.2%)dz (46)
“hi2
h/2 )
I, = I p(2) dz (47)

-h/2

3.4. Natural frequency equation of simply supported FGM rectangular plate
(FSDT)

Substitution of equations (25a)-(25e) into equations (39)-(43) and simplifying the resultants

relations,then we obtain the following equation:



U, U, 0
u, u, 0
[Chu,t-w?[MRU,;i=1q (48)
h h 0
¢z #2 0
where
Ci C2 G Gy Cgs My My Mg My Myg
€ Cpp Cp3 Cy Cyxp My My Myz My Myg
C=|Cy Cyp Cz3 Cy C5|,M={my mzp Mg My My (49)
Ca1 Cap Cyz Cyy Cys My My My My, My
1Cs1 Csp Cs3 Cog  Cop | | Mgy Mgy Mgz Mgy Mg |

The components of the matrix C are defined by:

Ciy = Ana’ + Ags i

C1p = (A + Agg)aff

Ci3=0

Ciq = Byyar® +Bgg B

G5 = [B12 + Bygg ]aﬂ

Cop = Aset” + A B

Cyy =0

Coq =Cy5 (50)
Cos = Bggar” + By, 57

Caz = Asst” + Ay B’

C3y = Ass

Cas = Ayf

Cas = Ass + Djya® + Dgg 87
Cs5 = [D12 + Dgg ]aﬂ

Css = Ay + Dggax® + Dy B

And the components of the matrix M are defined by:

my = lo

My, = lg

M3z =g (51)
ms, =0

My =0

My, =1,

Mss =1,
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The other components zero. To derive the natural frequency we set q=0, so (38)

becomes as following:

u, U] (o
u, U,| |0
[ChUs -@*MRU, =10
) #| |0
¢ [ 0
or
Ul
UZ
[cij—mi@Z] Uy =0 (52)
h
2

Similar to TSDT, setting the determinant of matrix [c —mijazj equal to zero and

ij

solving the achieved eqation for @ ( frequency), values of natural frequency for simply

supported rectangular FGM plate will be derived.

4. Result and discussion

The numerical results for an isotropic plate with v=0.3 and FGM plate with v=0.3,
o1l p, =300/2707 and G,/G, =151/70 are given which p, and p, are ceramic and metal
density. Also G, and G, are shear modulus of ceramic and metal, respectively. Also m,n are
parameters mentioned in relations (25a)-(25e) and p relates to (8). The above results are the
same for any FGMs according to (8).

From figures 1 to 10, we understand :

1. The nondimansionalized values of natural frequencies of both first and third theory decrease
by increase of a/h, so that the diference between the nondimansionalized frequency in
a/h=10 and a/h=20 is almost %80 but this decreasement get shower and the figure becomes

horizontal and the nondimansionalized natural frequencies with increase of a/h, leave constant.
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2. By increasement of a/h the results of FSDT and HSDT are completely synchronize,
in other words, by decrease of h(thickness), the results of FSDT and HSDT are
completely synchronize. This matter is in derived relations, because h in HSDT effects
on transvers shear stresses as a coefficient, but in FSDT the transverse shear stresses are
constant along thickness and are independent of h. In other word with increase of h the
difference between FSDT and HSDT increases, also the figures show that FSDT
represent higher values.

3. figure 11 shows that, with increase of p, the amount of natural frequency decrease,

but at first the range of decrease is high and then get gradually and smoothly after.

While p=0 shows pure ceramic, so by increase of metal percentage the natural

frequency decreases. As the elastisity modulus of ceramic is higher than elastisity

modulus of metal, this fact is correct.

5. Conclusion
FSDT and HSDT theories can be used replace by another one for thin plates with
high accuracy, but HSDT has higher accuracy for thick plates , so is better to use this

theory for thick plates.
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Figure 1-Values of nondimansionalized natural frequency @ -h /% for rectangular
1

FGM plate incase m=n=2,v=0.3, p,/ p, =300/2707, G, /G, =151/70 and
p = 0 (Isotropic-Material)
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Figure 2-Values of nondimansionalized natural frequency @ -h /% for rectangular
1

FGM plate incase m=n=2, v=0.3, p,/p, =300/2707, G,/G, =151/70 and p=0.1.
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Figure 3-Values of nondimansionalized natural frequency @ -h /% for rectangular
1

FGM plate incase m=n=2, v=03, p,/p, =300/2707, G,/G, =151/70 and p=05.
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Figure 4-Values of nondimansionalized natural frequency @ -h /% for rectangular
1

FGM plate incase m=n=2, v=0.3, p,/p, =300/2707, G,/G, =151/70 and p=1.
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Figure 5-Values of nondimansionalized natural frequency @ -h /% for rectangular
1

FGM plate incase m=n=2, v=0.3, p,/p, =300/2707, G,/G, =151/70 and p=3.
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Figure 6-Values of nondimansionalized natural frequency @ -h /% for rectangular
1

FGM plate incase m=n=2, v=0.3, p,/p, =300/2707, G,/G, =151/70 and p=5.
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Figure 7-Values of nondimansionalized natural frequency @ -h /% for rectangular
1

FGM plate in case m=n=2, v=03, p,/p, =300/2707, G,/G, =151/70 and p=10.
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Figure 8-Values of nondimansionalized natural frequency @-h /% for rectangular
1

FGM plate incase m=n=2, v=0.3, p,/p, =300/2707, G,/G, =151/70 and p=30.
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Figure 9- Values of nondimansionalized natural frequency @ -h f% for rectangular
1

FGM plate incase m=n=2, v=0.3, p,/p, =300/2707, G,/G, =151/70 and p=50.
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Figure 10- Values of nondimansionalized natural frequency @ -h \/gzl for rectangular
1

FGM plate incase m=n=2, v=0.3, p,/p, =300/2707, G,/G, =151/70 and p=100.
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Figure 11- Values of nondimansionalized natural frequency @ -h ‘/g:l for rectangular
1

FGM plate incase m=n=2, v=0.3, p,/p, =300/2707, G,/G, =151/70.
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