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Abstract 
 

     In this paper the free vibration of FGM rectangular plate analyzed by using the 

Third-order shear deformation theory. By introducing the displacment field according to 

the Third-order shear deformation plate theory (TSDT), the strain-displacement 

equations are derived and then by using the Hamilton's principle, dynamic equation for 

the mentioned plate are achieved and with Navier method whole dynamic equations are 

converted to an eigen value problem which the natural frequencies of plate can be 

calculated. Further more, the equations for First-order shear deformation plate theory 

will be derived and then the results compared with above equation results. 
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Nomenclature 

ba,   length and width of a rectangular plate            h  plate thickness 

wvu ,,  displacement in zyx ,,  direction                      ,  stress, strain 

21 ,  mid-plane rotation                                             density of plate material 

GE,  elasticity modulus                                               poison's ratio 

ijN  total in-plane force                                              ijM  total in-plane moment 

ijA  extensional stiffeness                                           ijD  bending stiffeness 

ijB  bending-extensional coupling stiffness                ijijij HFE ,,  high-order stiffeness 
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  frequency                                                                 natural frequency 

q  load                                                                         iij RP ,  high-order stress 

p  matreial variation profile through the thickness     T  temperature 

  termal expansion coefficient 

 

1. Introduction  

 

     In recent years functionally graded materials (FGMs) have gained considerable 

importance as materials to be used in extremely high temperature environments such as 

nuclear reactors and high-speed spacecraft industries (Yamanouchi et al., [1]). FGMs 

were first introduced by a group of scientists in Sendai Japan in 1984 (Koizumi, [2]). 

FGMs are new inhomogeneous materials, in which the mechanical properties vary 

smoothly and continuously from one surface to the other. This is achieved by gradually 

varying the volume fraction of the constituent materials. This continuous change in 

composition results in the graded properties of FGMs (Reddy and Cheng, [3]). This 

gradation in properties of the material reduces thermal stresses, residual stresses and 

stress concentration factors (Reddy et al., [4]). Typically these materials are made from 

a mixture of ceramic and metal or from a combination of different materials. The 

ceramic constituent of the material provides the high-temperature resistance due to its 

low thermal conductivity. The ductile metal constituent on the other hand, prevents 

fracture caused by stresses due to the high temperature gradient in a very short period of 

time. Furthermore a mixture of ceramic and metal with a continuously varying volume 

fraction can be easily manufactured (Fukui, [5]). 

     Studies on vibration of rectangular plates are extensive.  Many of these studies are 

for isotropic and composite plates. In recent years many researchs about rectangular 

plates such as stability and vibration plates according to a Higher-Order Shear 

Deformation Theory [6,7], relationship between vibration frequencies of Reddy and 
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Kirchhoff Plates With Simply Supported Edges [8], free vibrations of laminated 

composite plates using second-order shear deformation theory and Layerwise theory 

[9,10], Analysis of laminated composite plates using HSDT [11], theory of  plates and 

shells [12], buckling  an vibration of laminated composite plate using various plate 

theories [13] has been done.  

     The First-order Shear Deformation Theory (FSDT) is the simplest plate theory that 

accounts for transverse shear strains which are represented as constant through the plate 

thickness, and the theory requires shear correction factors to compute transverse shear 

forces. In the Third-order Shear Deformation Theory (TSDT) of Reddy, the transverse 

shear stresses are represented as cubic through the thickness and consequently it isn't 

require to shear correction factors. The theory also contains the First-order Shear 

Deformation Theory as a special case. Here we develop the equations of motion of 

functionally graded plates using TSDT. 

     In the present work, vibration of functionally graded rectangular plate based on the 

third order shear deformation theory is studied. The objective is to study the frequency 

characteristics, the influence of the constituent volume fractions, and the affects of the 

configurations of the constituent materials on the natural frequencies.  

 

2. Third-order theory of shear deformation plate 

 
     Consider a plate of total thickness h and composed of functionally graded material through 

the thickness. It is assumed that the material is isotropic and the grading is assumed to be only 

through the thickness. The xy-plane is taken to be the undeformed midplane of the plate with 

the z-axis positive upward from the midplane. Further, we restrict the formulation to linear 

elastic material behavior, small strains and displacements, and to the case in which the 

temperature field is known. 
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2.1. Displacement field 

 

     The Third-order shear deformation theory of Reddy used in the present study is 

based on the following displacement field [14]: 
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These equations can be reduced by satisfying the stress-free conditions on the top and 

bottom faces of the plate, which are equivalent to: 
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where( 000 ,, wvu ) and( 21 , ) are displacement and rotation of normal lines on the plane 0=z , 

respectively. Also, )3/(4 2
1 hC = . 

 

2.2. Strain 

 

     The linear strain-displacement relations are given by: 
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2.3. Functionally Graded Plates 

 

     We assume that the material property gradation is only through the thickness. FGM 

properties such as density  , elasticity modulus E  and G  are functions of volumetric 

ratio and the components. The poison’s coefficient  is considered as constant. If we 

consider the normal axis of midplane as z , we’ll have: 
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where cE , c , cG  denote  the property of top face and mE , m , mG  denote bottom face 

property, h  is the total thickness of the plate and p  is a parameter that dictates the 

material variation profile through the thickness. 
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2.4. Stress-Strain Relations 

 

     The stress-Strain relations are similar to isotropic plate’s relations, but with this 

difference that modul E  is not constant, but it is according to equation (8). 
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2.5. Equations of motion 

 

     The equation of motion based on TSDT by using Hamilton’s principle are: 
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ijN  represent the total in-plane force resultant and ijM  the total moment resultants, and 
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which ijP  and iR  show the high-order sress resultants. Also, 
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Consider the following description: 
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where ijQ  comes from (10) and ijA  denote extensional stiffeness, ijD  the bending 

stiffeness, ijB  the bending-extensional coupling stiffenesses, and ijE , ijF  and ijH  are 

high-order stiffeness. 

     Parameters ijA , ijD  are described for 6,2,1, =ji , ijF  for 5,4, =ji  and ijB , ijE , ijH  for 

6,2,1, =ji . It is important to see that ijE , ijF  and ijH  involve fourth or higher powers of 

the thickness, so they are expected to affect little to thin and homogeneous plates, 

Therefore the stress resultants are related to the strain by the relations as following: 
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2.6. Solutions for a simply supported plate 

 

2.6.1. Boundary conditions 

 

     The simply supported boundary conditions for the Third-order shear deformation 

plate theory are: 
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where 
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2.6.2. The Navier Solutions 

 

     The five equations of motion (11)-(15), Solved by Navier solutions for simply 

supported plates. The boundary conditions in equation (23) are satisfied by the 

following expansions: 
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where am / = , bn / =  and   is natural frequency. Assume 021 == qq , the normal 

load 3q  can be expanded in double Fourier sin series: 
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2.7. Natural frequency equation of simply supported FGM rectangular plate 

(TSDT) 

 

     Substitution of equations (25a)-(25e) into equations (11)-(15) and simplifying the 

resultants relations,then we obtain the following equation: 
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or 
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where: 























=

5554535251

4544434241

3534333231

2524232221

1514131211

ccccc

ccccc

ccccc

ccccc

ccccc

C    ,























=

5554535251

4544434241

3534333231

2524232221

1514131211

mmmmm

mmmmm

mmmmm

mmmmm

mmmmm

M     (30) 

 

The components of the matrix C are defined by: 
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And the components of the matrix M are defined by: 
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)( 22
6

2
1033  ++= ICIm  

)( 614134 ICICm −−=  (32) 
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     The equations (28) can be specialized to static response, buckling, and vibrations. To 

achieve the natural frequency, we set 0=mnq , therefore equations (29) become as 

following: 
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Setting the determinant of matrix   2ijij mc − equal to zero and solving the achieved 

eqation for   (frequency), values of natural frequency for simply supported rectangular 

FGM plate will be derived. 

 

3. First-order theory of shear deformation FSDT 

 

     Using the achieved equations for FGM rectangular plate in TSDT , we will drive the 

above equations for a rectangular plate in FSDT. To do this, by setting 01 =C  in any 

equation of the last chapter, new equations will be drived with FSDT. It is important to 

know by setting 01 =C , the value of shear strain become independent of thickness. 

 

3.1. Displacement field 

 

     Setting 01 =C  in equation (2), we obtain displacement field for FSDT as following: 
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3.2. Strain 

 

     In the same way, by setting 01 =C  in equation (3)-(6), The linear strain relations are 

obtained: 
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where: 
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3.3. Equations of motion 

 

     The equation of motion of FSDT by using hamilton’s principle are: 
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where: 
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3.4. Natural frequency equation of simply supported FGM rectangular plate 

(FSDT) 

 
     Substitution of equations (25a)-(25e) into equations (39)-(43) and simplifying the resultants 

relations,then we obtain the following equation: 
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The components of the matrix C  are defined by: 
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And the components of the matrix M are defined by: 
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The other components zero. To derive the natural frequency we set 0=q , so (38) 

becomes as following: 
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Similar to TSDT, setting the determinant of matrix  2ijij mc −  equal to zero and 

solving the achieved eqation for  ( frequency), values of natural frequency for simply 

supported rectangular FGM plate will be derived. 

 

4. Result and discussion 

 
The numerical results for an isotropic plate with 3.0=  and FGM plate with 3.0= , 

2707/300/ 21 =  and 70/151/ 21 =GG  are given which 1  and 2  are ceramic and metal 

density. Also 1G  and 2G  are shear modulus of ceramic and metal, respectively. Also nm,  are 

parameters mentioned in relations (25a)-(25e) and p  relates to (8). The above results are the 

same for any FGMs according to (8). 

     From figures 1 to 10, we understand : 

1. The nondimansionalized values of natural frequencies of both first and third theory decrease 

by increase of ha / , so that the diference between the nondimansionalized frequency in 

10/ =ha  and 20/ =ha  is almost 80%  but this decreasement get shower and the figure becomes 

horizontal and the nondimansionalized natural frequencies with increase of ha / , leave constant. 
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2. By increasement of ha /  the results of FSDT and HSDT are completely synchronize, 

in other words, by decrease of h (thickness), the results of FSDT and HSDT are 

completely synchronize. This matter is in derived relations, because h  in HSDT effects 

on transvers shear stresses as a coefficient, but in FSDT the transverse shear stresses are 

constant along thickness and are independent of h . In other word with increase of h  the 

difference between FSDT and HSDT increases, also the figures show that FSDT 

represent higher values. 

3. figure 11 shows that, with increase of p , the amount of natural frequency decrease, 

but at first the range of decrease is high and then get gradually and smoothly after. 

While 0=p  shows pure ceramic, so by increase of metal percentage the natural 

frequency decreases. As the elastisity modulus of ceramic is higher than elastisity 

modulus of metal, this fact is correct. 

 

5. Conclusion 

 

     FSDT and HSDT theories can be used replace by another one for thin plates with 

high accuracy, but HSDT has higher accuracy for thick plates , so is better to use this 

theory for thick plates. 
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Figure 1-Values of nondimansionalized natural frequency 
1

1

G
h


   for rectangular 

FGM plate in case 2== nm , 3.0= , 2707/300/ 21 = , 70/151/ 21 =GG  and 

0=p (Isotropic-Material) 

 

 

Figure 2-Values of nondimansionalized natural frequency 
1

1

G
h


   for rectangular 

FGM plate in case 2== nm , 3.0= , 2707/300/ 21 = , 70/151/ 21 =GG  and 1.0=p . 
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Figure 3-Values of nondimansionalized natural frequency 
1

1
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Figure 4-Values of nondimansionalized natural frequency 
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Figure 5-Values of nondimansionalized natural frequency 
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Figure 6-Values of nondimansionalized natural frequency 
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Figure 7-Values of nondimansionalized natural frequency 
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Figure 8-Values of nondimansionalized natural frequency 
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Figure 9- Values of nondimansionalized natural frequency 
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Figure 10- Values of nondimansionalized natural frequency 
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Figure 11- Values of nondimansionalized natural frequency 
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