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Abstract: In this research, deflection of buckled an annular saturated porous plate under uniformly distributed 

radial pressure load for clamped-clamped boundary conditions has been studied. The pores are saturated by 

fluid and properties of the plate are variable continually in the thickness direction. Governing equations are 

obtained by classical plate theory and Sanders nonlinear strain-displacement relation. Shooting method is 

used for numerical solution of nonlinear ordinary differential equations. For verifying present solution, 

obtained results may be compared by solid circular plate.   
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1- Introduction  

porous materials are consisting of solid matrix and fluid inside the pores of matrix which can be liquid or gas. 

Porous materials Can be discovered in nature like wood, rock and soil. Artificial Porous materials are like 

metals, foams, ceramic and polymers, and they are used in several industrials such as aerospace and building 

[14]. The Porous plate was investigated and studied for many years by many researchers. The first author that 

studied porous plates was Biot[1]. Buckling of porous slab saturated with fluid studied by him. He showed 

that with change pore compressibility, critical buckling load also changes. A porous beam with simply 

supported boundary conditions was investigated by Magnucki and Stasiewicz [2]. They show porosity 

coefficient is proportional to buckling load. Magnucki et al. [3] studied bending and buckling rectangular 

porous plates with variable properties in the direction of thickness under in-plane compression and transverse 
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deformation theory. The Analytic solution in terms of Fourier series for the large deflection of the 

functionally graded plate and shallow shells under transversal mechanical load and temperature field was 

studied by Woo and Meguid [20]. Abrate[21] investigated that the natural frequencies of the functionally 

graded plates are proportionate to those of homogenous isotropic plates. They Also obtained similar results 

for buckling load and static deflection of the FG plate. Javaheri and Eslami [22,23] showed a closed-form 

solution for buckling temperature of rectangular FG plates. The Plate was under different types of thermal 

loads and based on classical plate theory and higher-order shear deformation. Also, they studied Buckling 

of FG plates under in-planecompression base on CPT [24]. Nonlinear bending and axisymmetric thermal 

buckling and post-buckling of functionally graded annular studied by Aghelinejad et al. [25]. They used 

the von-Karman plate theory and shooting method. They investigated bending and post-buckling behavior 

of FG annular plates. Sepahi et al. [26] obtained thermal buckling and post-buckling of the functionally 

graded annular plate which properties of plate graded in the radial direction. They used FSDT for gained 

the equations. Khorshidvand et al. [27] studied buckling analysis of a circular functionally graded plate 

with surface-bounded piezoelectric layers based on first order shear deformation theory. Thermal buckling 

analysis of annular/circular microplates made from functionally graded Graphene reinforced porous 

nanocomposite investigated by Arshid et al. [28] They located microstructure on Pasternak elastic 

foundation. Generalized differential quadrature method (GDQM) was used to solve the governing 

equations.E. Arshid et al. [29] studied Static and Dynamic analysis of FG-GNPs reinforced Porous 

Nanocomposite Annular Micro-Plates. They analyzed bending, buckling and free vibration of micro-scaled 

functionally graded graphene nanoplates reinforced porous nanocomposite annular plate located on the bi-

parameter elastic foundation exposed to hygo-thermo-mechanical loads. Porosity-dependent vibration 

analysis of FG microplates embedded by polymeric nanocomposite were studied by E. Arshid and et al. 

[30].  

2.  Governing equations 

an annular plate like fig a with inner radius R1 and outer radius R2 and thickness h is supposed. The plate 

is created from porous materials. Its pores are saturated with fluid. Cylindrical coordination is set in the 

middle of the plane and z-axis is in the thickness directions and z is equal - 
ℎ

2
 𝑡𝑜 +

ℎ

2
  . There are three cases 

for pores distribution. Plate properties are variable continually in the thickness direction. Three cases of 

pore dispensation are considered along the thickness direction [2,9,10,14]. For the first case, nonlinear 

symmetric dispensation is considered. The middle plane of the plate is symmetry plane and moduli of 
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elasticity, which are related to pore distributions, is obtained as follow and relation between E, G and z are 

[14]: 

E(z)=E0[1-e1cos (
𝜋𝑧

ℎ
)]           (1)       

G(z)=G0[1-e1cos (
𝜋𝑧

ℎ
)]          (2) 

e1=1-(
𝐸1

𝐸0
)=1- (

𝐺1

𝐺0
)                  (3) 

e1 is known as the porosity coefficient of the plate(0<e1<1), E1 and E0 are young moduli at the middle of 

plane(z=0) and the upper and lower surfaces of the plate(z=±
ℎ

2
), respectively. G1 is shear moduli at (z=0) 

and G0 is shear moduli at (z=±
ℎ

2
). Ej=2Gj (1+ ν), j=0,1, is the relation between elastic and shear moduli and 

ν is Poisson’s ratio that invariant supposed in the thickness direction of the plate. In the case of 

nonsymmetric pore dispensation, moduli of elasticity are defined [14]: 

E(z)=E0{1-e1cos[(
𝜋

2ℎ
)(z+

ℎ

2
)]}           (4) 

G(z)=G0{1-e1cos [(
𝜋

2ℎ
)( z+

ℎ

2
)]}        (5) 

E1 and E0 are young moduli at lower (z=
−ℎ

2
) and the upper (z=

+ℎ

2
) surfaces of the plate, respectively. G1 

and G0 are shear moduli at the upper and lower surfaces of the plate, respectively. Fig.2 shows asymmetric 

pore distribution for variation shear modulus along thickness direction. 

In monotonous and moduli of elasticity are expressed [14]: 

E(z)=E0(1-e1)        (6) 

G(z)=G0(1-e1)        (7) 

2.2. stress-strain relationship 

Biot [1] linear poroelasticity theory has two specifications [14]: 

1.increasing the pore pressure leads to dilation of pore. 

2.compression of the pores makes increment the pressure of the pores. 
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Stress-strain relations for elastic porous material is expressed [14]: 

σij=2Gεii+ (
2Gνu

1−2νu
(εkkδij-αpδij              (8) 

 p=M(ξ-αεkk)                                      (9) 

M = 
2𝐺(νu−ν)

α2(1−2νu)(1−2ν)
                           (10) 

νu =
ν+

αB(1−2ν)

3

1−
αB(1−2ν)

3

                                      (11) 

p is called pore flowing pressure; M is biot’s moduli; νu is unemptied of Poisson’s ratio (0< νu<0.5); α is 

biot’s coefficient (0< α<1); B is Skempton pore pressure coefficient; ξ is variation of fluid volume; εkk is 

volumetric strain. By shortening Eq. (8) to plane stress in cylindrical coordinate and under undrained 

condition (ξ=0), it will be obtained [10,14]: 

σr=A1εr+B1 εθ                                                    (12) 

σθ= A1 εθ+ B1 εr                                                       (13) 

p=M(-αεkk)                                           (14) 

A1 and B1 are invariable amounts in terms of the constant 𝐶1̅̅̅̅  and 𝐶2 [14]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ :            

𝐶1̅̅̅̅ =2[1+
νu

1−2νu
 + 

νu−ν

(1−2νu)(1−2ν)
]G(z)                        (15)                     

𝐶2̅̅̅̅ =C1-2G(z)                                                         (16) 

A1= (
2

1−νu
2)[1+ νu + 

(νu−ν)(1+νu)

1−2ν
(1-

𝐶2̅̅̅̅

𝐶1̅̅̅̅
)]G(z)          (17)       

B1=(
2

1−νu
2)[(1+ νu) νu+

(νu−ν)(1+νu)

1−2ν
(1- 

𝐶2̅̅̅̅

𝐶1̅̅̅̅
)]G(z)      (18) 

2.3. relation between strain and displacement: 

according to classical plate theory and reference [32], Strain relations for distance the middle plane from z 

are explained [14]: 

εr= 𝜀 ̅𝑟 +zkr                               (19) 

εθ= 𝜀 ̅θ+zkθ                                            (20) 
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that 𝜀 ̅𝑟 and 𝜀 ̅θ called engineering strain in the middle plane and kr , kθ  are curvatures. 

According to sanders assumption and in terms of displacement component [14,33]: 

𝜀 ̅𝑟=
𝑑𝑈

𝑑𝑟
 + 

1

2
(

𝑑𝑊

𝑑𝑟
)2                               (21) 

𝜀 ̅θ=
U

r
                                               (22) 

kr=- 
𝑑2𝑊

 𝑑2𝑟
                                           (23) 

kθ=- 
1

𝑟
 
𝑑𝑊

𝑑𝑟
                                         (24) 

That W and U are transverse and radial displacement components of the middle of the plate in the z and r-

Axes orientations. 

2.4. obtain the governing equilibrium equation of plate 

Governing equilibrium equations of an annular plate under uniform compressive radial load with 

axisymmetric conditions and use principle of minimum total potential energy are shown [10,14]: 

dNr

𝑑𝑟
 + 

(Nr−Nθ)

𝑑𝑟
 = 0                                               (25) 

1

r
 

d

𝑑𝑟
 [r Nr

𝑑𝑊

𝑑𝑟
] - 

1

r
 
dMθ

𝑑𝑟
 + 

2

r
 
dMr

𝑑𝑟
 + 

𝑑2Mr

 𝑑2𝑟
 =0             (26) 

N defined force:                                                                                     

[
Nr
Nθ

] = ∫  [
σr
σθ

+ℎ/2

−ℎ/2
]dz                          (27) 

M defined moment:  

[
Mr
Mθ

] = ∫  [
σr
σθ

+ℎ/2

−ℎ/2
]zdz                          (28) 

By substitution of equations (12,13) and (19,20)   in equations (27, 28):    

{
N𝑟

Nθ
}=[

A2 B2

B2 A2
]{

ε𝑟

εθ
} + [

A3 B3

B3 A3
]{

K𝑟

Kθ
}        (29) 
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{
M𝑟

Mθ
}=[

A3 B3

B3 A3
]{

ε𝑟

εθ
} + [

A4 B4

B4 A4
]{

K𝑟

Kθ
}             (30) 

(A2, A3, A4) =∫  
+ℎ/2

−ℎ/2
 A1(1, z, z2)dz                         (31) 

(B2, B3, B4)= ∫  
+ℎ/2

−ℎ/2
 B1(1, z,z2)dz                               (32) 

By substituting equations Eq. (21,22,23,24) and Eq. (29,30) in equations (25,26)   the governing equilibrium 

equations are obtained:  

A2(
𝑑2𝑈

𝑑𝑟2 + 
1

r
 
𝑑𝑈

𝑑𝑟
 - 

𝑈

𝑟2+(
𝑑2𝑊

𝑑𝑟2 )( 
𝑑𝑊

𝑑𝑟
)+ 

1

2r
 (

𝑑𝑊

𝑑𝑟
)2+A3(-

𝑑3𝑊

𝑑𝑟3 - 
1

r
 
𝑑2𝑊

𝑑𝑟2 + 
1

𝑟2 
𝑑𝑊

𝑑𝑟
)+B2(-

1

2r
 (

𝑑𝑊

𝑑𝑟
)2)=0           (33) 

(
𝐴2

𝐴4
)[ 

𝑑𝑈

𝑑𝑟
+ 

1

2
 (

𝑑𝑊

𝑑𝑟
)2]( 

𝑑2𝑊

𝑑𝑟2 ) + (
𝐵2

𝐴4
)[ (

𝑈

𝑟
)( 

𝑑2𝑊

𝑑𝑟2 )+ (
𝐴2

𝐴4
) (

𝑈

𝑟
)( 

1

r
 

𝑑𝑊

𝑑𝑟
)+ (

𝐵2

𝐴4
) [

𝑑𝑈

𝑑𝑟
+ 

1

2
(

𝑑𝑊

𝑑𝑟
)2]( 

1

r

𝑑𝑊

𝑑𝑟
) + (

𝐵3

𝐴4
)(-

 
3

r

𝑑2𝑊

𝑑𝑟2

𝑑𝑊

𝑑𝑟
)+( 

𝐴3

𝐴4
) [- 

1

𝑟2(
𝑑𝑊

𝑑𝑟
)2- ( 

𝑑2𝑊

𝑑𝑟2 )2]+( 
𝐵2𝐴3

𝐴4𝐴2
)( 

1

r
 
𝑑2𝑊

𝑑𝑟2  
𝑑𝑊

𝑑𝑟
)= 

(1-
𝐴3𝐴3

𝐴4𝐴2
)( 

𝑑4𝑊

𝑑𝑟4 + 
2

r
 
𝑑3𝑊

𝑑𝑟3 - 
1

𝑟2

𝑑2𝑊

𝑑𝑟2 + 
1

𝑟3

𝑑𝑊

𝑑𝑟
)     (34) 

Boundary conditions: 

Clamped-clamped: 

r =R1 clamped 

w=0, 
𝑑𝑊

𝑑𝑟
 =0, u=0                              (35) 

r=R2 clamped 

w=0, 
𝑑𝑊

𝑑𝑟
=0, Nr = - P 

3.Numerical method  

In this article, governing differential equations is a boundary value problem (BVP) and to solve it, the 

shooting method is used. The governing differential equations of the problem is two coupled differential 

equations that are written instead of 

Six first-order differential equations. For easement Eq. (42) are written like as follow: [14,17,18,25,33,34] 

(
𝑑𝑌

𝑑𝑋
)=H (x, Y)                               (36) 
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B0Y(c)=b0                                                       (37) 

B1Y (1) =b1                                                     (38) 

That: 

Y= (y1, y2, y3, y4, y5, y6) =(w, 
𝑑𝑊

𝑑𝑋
, 

𝑑2𝑊

𝑑𝑋2 , 
𝑑3𝑊

𝑑𝑥3 ,u, 
𝑑𝑢

𝑑𝑋
)        (39) 

H (x, Y)=(y2,y3,y4,ω,y6,μ)=( 
dW

dX
,

d2W

dX2  ,
d3W

dx3  ,
d4W

dx4 ,
du

dX
 ,

d2u

dX2)       (40) 

 

ω = -
2

𝑥
 y4 + 

1

x2 y3 - 
1

x3 y2+ {f4(y6+
1

2
 y22) y3+f2(

1

x  y5 y3) + f4 (
1

x  y5 y2) + f2(y6 + 
1

2  y22) ( 
1

x  y2) + (f2f3 – 

3f5) ( 
1

x  y3 y2) – f1(
1

x2 y22 + y32)}/(1-f1f3)         

μ = - 
1

𝑥
 y6 + 

1

x2 y5 – y3y2 - 
1

2x  y22 + f3(y4 + 
1

𝑥
 𝑦3 - 

1

x2 y2) + f6 (
1

2x y22)                                         (41) 

 

clamped-clamped: 

B0=[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

]                                 b0=[
0 
0 
0 

]       (42) 

B1= [
1
0
0

|

0
1

(
𝑦2

2
) − (

𝑓8

x
)

|
0
0

−𝑓3

|
0
0
0

|

0
0
𝑓6

𝑥

|
0
0
1

]               b1=[

0 
0

−λ 
 

]   (43) 

Initial value problem is expressed: 

(
𝑑𝑍

𝑑𝑋
)=H (x, Z)                                           (44) 

Z(c)= {z1 ,z2 , z3, z4, z5, z6} =I*                (45) 

4.numerical results 

Deflection of buckled a saturated porous annular plate in this paper is researched. Effect of porosity, pore 

dispensation and boundary condition and radial ratio are investigated.  
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 Fig1. Deflection of porous annular plate after buckled for clamped-clamped boundary conditions and for 

e1=0.5,0.7 (B=0, ν = 0.3, c = 0.3) 

 

Figure.1 is drawn under different boundary conditions and for e1=0.5,0.7 coefficients and for λ =

70,100.Figure explained the value of deflection and its proportional load for each point of the plate. For 

this, they can be called post-buckling configuration [14]. Fig 10 presented variations deflection in clamped-

clamped boundary conditions for e1=0.5 porosity coefficient.it can be understood that increasing the load 

causes increase of the deflection. Figure.1shows increasing the porosity coefficient, increase the deflection 

and reducing the post-buckling strength. 

 

 

2. variation of radial ratio for deflection of clamped-clamped symmetric pore distribution (e1=0.7, B=0, ν =
0.3, lambda=120) 
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In Fig 2.  investigated effect of variation radial ratio for deflection under the clamped-clamped boundary 

conditions for e1=0.7 and symmetric pore distribution is selected. The figure expresses with increase the 

radial ratio, deflection of the annular plate decreasing and also the post-buckling strength of the annular 

plate increases. It can be found maximum deflection occurred at the middle of the two edges in clamped- 

clamped boundary condition. 

conclusions 

In this paper, Deflection of buckled an annular plate under uniform radial pressure was investigated. 

Mechanical properties plate is variable in the thickness orientation. Three pore distributions are considered 

such as Symmetric, nonsymmetric and monotonous. Governing equilibrium is obtained from classical plate 

theory and sanders assumption. In this study boundary condition is considered clamped-clamped. Shooting 

method is used for solving BVP. The effects of porosity, radial ratio on deflection was investigated. The 

conclusion of this study description as follows: 

This study described with increase the porosity coefficient, Deflection increase, then with decreasing the 

porosity coefficient, Deflection decrease.  As the porosity factor increment, the deflection of the annular 

plate increases like the circular plate. Maximum deflection in the clamped-clamped boundary conditions 

occurred in the middle of two edges. Increase the radial ratio, decrease the deflection. 
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