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Abstract: This paper aims at studying a trigeneration system, based on an internal combustion 

engine and a steam ejector refrigeration system. The designed cycle is to generate cooling and 

heating energies, and supply power simultaneously. The cycle is studied from thermodynamics 

point of view and for this purpose, the first law of thermodynamics is applied to all the compo-

nents of the cycle. The efficiency of the cycle is studied by changing a number of parameters 

such as the pinch point temperature, evaporator temperature, heat generator temperature, and 

condenser temperature to simulate summer and winter seasons. The results show an increase in 

the fuel efficiency up to 88% for the winter and 71% for the summer, and also a 28% fuel sav-

ings for the winter and 18% for the summer seasons. 

Keywords: Combined Generation, Gas Fired Engine, Steam Ejector Refrigeration System, 

Thermodynamic Analysis 

1. Introduction 

In recent years numerous and extensive re-

searches have been conducted to evaluate cogene-

ration of cooling, heating, and power systems 

(CCHP) from both thermodynamic and exergy 

points of view. 

In 2009, exergy analysis of combined generation 

of heating, cooling, and power system was con-

ducted by Abdul Khaliq and in this research the 

effects of different parameters on the efficiencies of 

the first and second laws were studied [1, 2]. In 

2006, Wu and Wang made a detailed review on the 

types of cogeneration systems and stated specifica-

tions of those systems, briefly [3]. In 2005, an ex-

perimental investigation on a combined generation 

of cooling, heating, and power system driven by a 

gas engine and a micro absorption chiller was con-

ducted by Kong and Wang [4].  

In 2008, Mehmet Kanoglu and Ibrahim Dincer 

conducted a performance assessment of various 

ogeneration systems for a building in which they 

investigated the effects of certain operating para-

meters such as steam pressure and water tempera-

ture on energy and exergy efficiencies [5]. In 2008, 

Yiping Dai and his colleagues presented a cogene-

ration system based on a steam turbine and an ejec-

tor refrigeration system. They did an exergy analy-

sis to examine the system efficiency. In this study a 

parametric study on the power and refrigeration 

output of the steam turbine and the ejector refrige-

ration system was made [6]. Cardona and Piacenti-

no did a research on optimal design of CCHP system 

using thermodynamic analyses to use their system 

in buildings [7].  

Investigating the trigeneration simultaneous 

production systems have been conducted from de-

termining cooling and heating loads point of view. 

However, combining such systems with internal 

combustion engines and determining the effect of 

different thermodynamic properties to optimize the 

efficiency of the system for both summer and win-

ter seasons have not been focused on thoroughly. 

The present work does just that for when the cycle 
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goes through producing cooling and heating ener-

gies together with providing the required power 

simultaneously. 

2. Cycle descriptions 

A schematic view of the designed heating, cool-

ing, and power cogenerating system coupled with a 

gas-fired engine and a steam ejector refrigeration 

system is shown in Fig. 1. 

As the first stage, air and fuel at the environment 

temperature (depending on the season) and atmos-

pheric pressure enter the engine. Combustion oc-

curs with excess air in the engine. Next, combus-

tion products enter a heat recovery steam generator 

(HRSG) and the required amount of heating and 

cooling energies are produced. After exchanging 

heat in the heat recovery steam generator, combus-

tion products are discharged to the atmosphere.  

To supply electricity, an internal combustion 

engine is coupled with a generator and the required 

electricity is produced here by the working engine. 

It should be mentioned that, in summer, a small 

amount of work produced by the engine is utilized 

to provide enough energy for the pump in the cool-

ing cycle.  

Moreover, water jacket around the engine which 

is used to cool the engine, supplies hot water for all 

seasons. Steam exiting the heat recovery steam ge-

nerator, depending on the the season, is divided in-

to two parts. Path 7 (Fig. 1) is considered for the 

winter and path 8 (Fig. 1) for the summer. In the 

summer, steam enters the steam ejector refrigera-

tion system and the required cooling is generated. In 

the winter, the produced steam in the heat recovery 

steam generator enters the heat exchanger (heat ex-

changer No. 1 shown as E.1 in Fig. 1) and the re-

quired heating is generated. To provide the cooling 

energy, the produced steam in the heat recovery 

steam generator enters the heat generator of the re-

frigeration system and the required steam (primary 

flow) is produced. Next, the steam in the heat gene-

rator enters the nozzle. Since the steam entering the 

nozzle has a high pressure, this pressure is de-

creased at the outlet of the nozzle and this pressure 

drop makes the generated steam to be sucked 

through the evaporator (secondary flow). The pri-

mary and secondary flows are mixed together in-

side the ejector and the mixture enters the diffuser 

shown in Fig. 1 in order to provide the necessary 

pressure for exiting from the ejector and entering 

the condenser. After this stage, the flow in the con-

denser is condensed and a part of it is pumped into 

the heat generator by a pump and the process is re-

peated. The other part of the condensed water, after 

passing through an expansion valve enters the eva-

porator to capture the heat from the environment, 

and the cooling cycle is repeated again. 

3. Thermodynamic calculations of cycle compo-

nents 

The assumptions used in this study are presented 

in Table 1. 

3.1. Gas fired engine– generator 

First, the reaction carried out in the engine is 

considered [9,10], 
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In Eq. (2) �

f
h  and h∆ are formation enthalpy, 

and enthalpy difference between each mode and 

enthalpy at the base conditions, respectively. Also, 

n is the number of moles. By finding the formation 
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Table 1. Required assumptions for investigating the cycle performance 

Heat transfer from the engine to the environment 21 kW 

The environment air conditions in summer T= 30 °C, P = 1bar 

The environment air conditions in winter T= 10 °C, P = 1bar 

Output required potency from the engine 150 kW 

Input energy into engine 515 kW 

Outlet gas temperature from engine 627 °C 

Engine compression ratio  10 

Generated heat load by the engine casing 178 kW 

Evaporator temperature 12, 14, 16, 18 °C 

Heat generator pressure 3, 4, 5, 6, 7 bar 

Condenser temperature 42.5, 45, 50, 52.5 °C 

HRSG pressure 15 bar 

Efficiency of the ejector’s mixing part 1 

Efficiency of the ejector’s nozzle 1 

Efficiency of the ejector’s diffuser 0.5 

enthalpy )
f

h( � and the enthalpy difference )h( ∆  us-

ing tables of thermodynamics, the unknown coeffi-

cients of the reaction )a(  will be determined. 

If a gas is composed of a mixture of two gases A 

and B [9], 
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Thus, for these two points (points 1 and 2), for 

example, for point 2, h2 becomes [9], 
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In Eq. (4) enthalpy of point 2 (Fig. 1) is calcu-

lated at the engine exhaust temperature. Now, to 

calculate entropy, the equation for mixture of gases 

is needed [11]: 
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Fig. 1. Simplified schematic view of a simultaneous power, cooling and heating energy generating system driven by 

an internal combustion engine and a steam ejector refrigeration system. 
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where, 
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In the above equations, *
i

S  is the specific en-

tropy of component i in the mix, 
i

y is the compo-

nent mole fraction, P  is total pressure, and �

iT
S  is 

the specific entropy at the given temperature and 

base pressure. Using Eqs. (5) and (6), the following 

equation can be obtained [11]: 
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3.2. Heat recovery steam generator 

As shown in Fig. 2, a heat recovery steam gene-

rator consists of three major parts: an economizer, 

an evaporator and a superheater. Water enters the 

economizer where its temperature is increased to 

the saturation point. The water then enters the eva-

porator, where it is converted into saturated vapor. 

To find the pinch point, (temperature  difference 

of the inlet gas and outlet water from the econo-

mizer) the following equation can be written: 

PinchTT ∆+′=′′ 322
                                                   (8) 

where the subscript indicates various parts of Fig. 2. 

To calculate 
23

m� , the first law is written for the eco-

nomizer [9], 
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In Eq. (9), 
2 ′′h  can be readily found based on 

the previous equation with having 
2

T . To find 
6

h

and the temperature at that point, the first law 

should be written for the superheater.   

Temperature of point 2′  is found based on a trial 

and error. In this way, first a temperature is guessed 

for point 2′  (a temperature between 2  and 2′ ) then 

like the previous method (Eq. (4)), 
N

h
2′  is calcu-

lated at this temperature. Now, the calculated re-

sult should be compared with 
2′h  which was ob-

tained from the general equation for the evapora-

tor (Eq. 10). 
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If the difference is reasonable, then, 

22 ′=′ h
N

h                                                              (11) 

3.3. Heat exchanger No. 1 

This heat exchanger is used only in winter. For 

analysis, writing the first law for heat exchanger 

No. 1 (E.1) is required [9], 
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3.4. Analysis of steam ejector refrigeration system 

Entrainment Ratio is the most important factor 

which is used to evaluate a steam ejector system 

(Fig. 3). 

To analyze this system, which works only in the 

summer, first, the heat generator is examined. To 

find the mass flow rate, the enthalpy of the input 

and output to / from the heat generator are required. 

Knowing that the given conditions for point 8 are 

quite similar to those of point 6, conditions of point 

8 are defined and, because the the conditions of 

points 9 and 23 are quite similar, the conditions of 

point 9 must be known. Assuming that pressure is 

3bar for the heat generator, the enthalpy of point 11 

which is the enthalpy of the saturated steam is 

computed. To find enthalpy of point 17, the pump 

is analyzed. By writing the first law for the pump, 

enthalpy of point 17 is calculated as follows [9]: 
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It should be noted that, 
Enter

P  is the pressure of 

point 15 )P(
15

, which is equal to the saturation 

pressure at the condenser outlet temperature. Also, 
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the ratio of the mass flow rate for point 12 to that 

for point 11 can be estimated, and is denoted W 
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It should be mentioned here that, 
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Now, the speed of the sound is calculated [11]: 
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Now,
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 is obtained through the following 

equation [12]: 
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Finally, after using the above equations, en-

thalpy of point 13 is determined as [11], 

d
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Considering the assumptions of most references, 

entropy of point 13 is equal to the entropy of point

E
C

3
. Now, having two properties for point 13 (en-

tropy and enthalpy), pressure for point 13 is ob-

tained. Since the pressure drop in the condenser is 

assumed to be zero, the pressure for point 13 is 

equal to that of point 14. Now, the obtained pres-

sure in the ejector is compared with the pressure of 

point 14. If there are obvious differences, the initial 

value for (
11

12
m

m

�

�
) should be changed and the proce-

dure should be repeated. Therefore, enthalpy, en-

tropy, and the mass flow rate of all components of 

the cycle are now found. A program has been writ-

ten for the above processes and for all the steps of 

the repetitions, using the trial and error method. 

4. Thermodynamic parameters performance 

evaluations 

The standards used to evaluate the performance 

of the cogeneration systems were studied by X. 
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to about 30%. The results of the analyses also indi-

cate 28% fuel efficiency in winter (Fig. 7) and an 

18% in summer (Fig. 8) seasons. 
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Nomenclature 

Condition A A 

Condition B B 

Velocity of sound (m/s) c 

Combined cooling, heating and power 

generation 

CCHP 

Heat exchanger number 1 E.1 

Expansion valve E.V 

Specific enthalpy (kJ/kg) h 

Difference between reference and speci-

fied enthalpy (kJ/kg) 

h�  

Saturated liquid enthalpy (kJ/kg) �

f
h  

Heat generator H.G 

Heat recovery steam generator HRSG 

Saturated vapor enthalpy (kJ/kg) gh  

Enthalpy of mixture (kJ/kg) mh  

Mass (kg) m 

Molecular weight (kg/Kmol) M 

Mass flow rate (kg/s) m�  

Mach number aM  

Number of mole n 

Number of condensate mole (Kmol) vn  

Natural gas NG 

Pressure (bar) p 

Heat transfer (kJ) Q 

Gas constant (kJ/kg k) R  

Specific entropy (kJ/kg k)  s  

Specific entropy of a mixture constitu-

ents (KJ/kg k) 

*
s  

Specific entropy at a given temperature 

and base pressure (kJ/kg k) 

�

iT
s  

Temperature (C) T  

Velocity (m/s) V  

Work (kJ) W  

Quality  x 

Mole fraction y  

Efficiency (%) η  

Subscripts 

Combined cooling & power generation ccp 

Combined heating & power generation chp 

condenser Cond. 

diffuser d 

Ejector location  E 

Heat exchanger number 1 E.1 

Evaporator Evap. 

Saturated liquid  f 

Difference between Saturated liquid 

and vapor 

fg 

Saturated gas g 

Heat generator H.G 

Heat recovery steam generator HRSG 

i component i 

Mixture m 

Nozzle n 

Product P 

Heat transfer q  

Rate of heat transfer Q�  

Refrigeration Ref 

Isentropic s/is 

Temperature T 

Output work w 

Cycle location 1,2,3,… 

Cycle location ,...2′  

Cycle location ,...2 ′′  
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