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Abstract
A quadrilateral and a triangular element based on the strain approach are developed for static, free vibration and buckling 
analyses of Reissner–Mindlin plates. The four-node triangular element SBTP4 has the three essential external degrees of 
freedom at each of the three corner nodes and at a mid-side node; whereas the quadrilateral element SBQP has the same 
degrees of freedom at each of the four corner nodes. Both elements use the same assumed strain functions which are in the 
linear variation where bending and transverse shear strains are independent and satisfy the compatibility equations. The use 
of the strain approach allows obtaining elements with higher-order terms for the displacements field. The formulated elements 
have been proposed to improve the strain-based rectangular plate element SBRP previously published. Several numerical 
examples demonstrate that the present elements are free of shear locking and provide high-accuracy results compared to the 
available published numerical and analytical solutions.
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List of symbols
L  Length of plate
k  Shear correction factor
ρ  Material density
ν  Poisson’s ratio
E  Young’s modulus
h  Thickness of plate
β  Angle of the skew plate
D  Flexural rigidity of plate = Eh3/[12(1 − v2)]
G  Shear modulus = E/[2(1 + v)]
λ  Non-dimensional frequency parameter
ω  Angular frequency
λcr  Critical buckling load
αi  Constants in displacement fields
W  Displacement in the z-direction
βx, βy  Rotations about y and x axes, respectively
x, y, z  Co-ordinates system
[Ke]  Element stiffness matrix
[Me]  Element mass matrix
[Ke

g
]  Element geometrical matrix

[K]  Structural stiffness matrix
[M]  Structural mass matrix
[Kg]  Structural geometrical matrix
[C]  Transformation matrix
[P]  Displacement matrix
[Q]  Strain matrix
[G]  Geometrical strain matrix
{F}  Structural nodal force vector
{q}  Structural nodal displacements vector
{qe}  Element nodal displacements vector

Introduction

Analyses of static, buckling and free vibration of plate struc-
tures play a large role in structural engineering applications. 
Considerable research works on analysis of plates are still 
being conducted (Mackerle 1997, 2002; Leissa 1969, 1987; 
Liew et al. 1995, 2004).

Designers prefer low-order Reissner–Mindlin plate ele-
ments due to their simplicity and efficiency. However, for 
thin plates, these elements often suffer from the shear lock-
ing phenomenon when dealing with thin plates. To overcome 
shear locking, many research works have been undertaken 
where the use of the selective reduced integration was first 
intervened (Zienkiewicz et al. 1971; Hughes et al. 1978; 
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Malkus and Hughes 1978). The formulation procedure used 
is to divide the strain energy into two parts, one of bending 
and the other of shear. Then, two different integration rules 
for these two parts are used. For low-order polynomial ele-
ments based on displacement model, such as the four-node 
classical bilinear element, an exact integration (two Gauss 
points in each direction) is taken for the bending strain 
energy; whereas a reduced integration (one Gauss point) 
is used for the shear strain energy. This selective integra-
tion can be provided with a more efficient element but often 
leads to numerical instability. Considerable investigations 
have been oriented to develop robust elements using dif-
ferent improved formulations and numerical techniques to 
avoid shear locking such as mixed formulation, enhanced 
assumed strain methods, assumed natural strain methods, 
discrete shear gap method and smoothed finite element 
method (Lee and Wong 1982; Ayad et al. 1998; Lovadina 
1998; César de Sá and Natal Jorge 1999; César de Sá et al. 
2002; Cardoso et al. 2008; MacNeal 1982; Bathe and Dvor-
kin 1985, 1986; Zienkiewicz et al. 1990; Batoz and Katili 
1992; Bletzinger et al. 2000; Nguyen-Xuan et al. 2008; Liu 
and Nguyen-Thoi 2010).

The strain approach has been employed as an alternative 
to formulate robust plate elements (Belarbi and Charif 1999; 
Belounar and Guenfoud 2005; Belounar and Guerraiche 2014; 
Guerraiche et al. 2018; Belounar et al. 2018) to increase the 
accuracy and stability of the numerical solutions as well as 
to eliminate shear locking phenomena. The use of the strain 
approach (Belarbi and Charif 1999; Belounar and Guenfoud 
2005; Belounar and Guerraiche 2014; Guerraiche et al. 2018; 
Belounar et al. 2018; Djoudi and Bahai 2004a, b; Rebiai and 
Belounar 2013; 2014) has several advantages where it enables 
to obtain efficient elements with high-order polynomial terms 
for the displacement functions without the need of includ-
ing internal nodes. The first developed strain-based Mindlin 
plate element SBRP (Belounar and Guenfoud 2005) has been 
adopted for the linear analysis of plates having only rectangular 
shapes. However, this element suffers from shear locking for 
very thin plates (Belounar et al. 2018). Then, the formulation of 
a new three-node strain-based triangular Mindlin plate element 
SBTMP (Belounar et al. 2018) has been developed for static 
and free vibration of plate bending. The assumed curvatures 
and transverse shear strains for the SBRP element (Belounar 
and Guenfoud 2005) are coupled and contain quadratic terms. 
The key idea used in this paper is to formulate new elements to 
overcome shear locking for very thin plates and to improve the 
accuracy for plates with regular and distorted shapes.

In this paper, a quadrilateral and a triangular strain-based 
plate element have been formulated for static, free vibra-
tion and buckling analyses of plates using Reissner–Mindlin 
theory. The opportunity is taken to explore the displacements 
field obtained from the strain-based quadrilateral plate ele-
ment (SBQP) by applying it to a four-node triangular element 

strain-based triangular plate with four nodes (SBTP4) hav-
ing the same degrees of freedom (W, βx, and βy) at each of 
the three corner nodes and a mid-side node. In the process of 
formulation, these elements are based on linear variation for 
the five strain components where bending and transverse shear 
strains are independent and satisfying the compatibility equa-
tions. The numerical study shows that the SBQP and SBTP4 
elements pass the patch test, are free of shear locking, and can 
be found numerically more efficient than the SBRP element 
(Belounar and Guenfoud 2005).

Formulation of the proposed elements

Derivation of the displacements field

For Reissner–Mindlin plate elements (Fig. 1), the strains in 
terms of the displacements are given as:

In matrix form, it can be given as

(1a)

�x =
��x

�x
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��y

�y
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��x
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Fig. 1  Quadrilateral and triangular Reissner–Mindlin plate elements
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The five strains, bending (κx, κy and κxy) and transverse 
shear (γxz and γyz), given in Eq. (1a) cannot be considered 
independent, for they are in terms of the displacements W, 
βx and βy and therefore, they must satisfy the compatibility 
equations (Belounar and Guenfoud 2005) given as:

The field of displacements due to the three rigid body 
modes is obtained by having Eq. (1a) equal to zero and the 
following results are obtained:

The proposed quadrilateral and triangular elements 
(SBQP and SBTP4) have three degrees of freedom (W, βx 
and βy) at each of the four nodes. Therefore, the displace-
ments field should contain twelve independent constants and 
having used three (α1, α2, α3) for the representation of the 
rigid body modes, the remaining nine constants (α4, α5, …, 
α12) are to be apportioned among the five assumed strains 
of the two elements.

The interpolation of the assumed strains field for the pre-
sent elements (SBQP and SBTP4) is given as:

Assumed bending (κx, κy and κxy) and transverse shear (γxz 
and γyz) strains given in Eq. (4) of the proposed elements are 
independent and have only linear terms contrarily for the 
SBRP element (Belounar and Guenfoud 2005), where bend-
ing and transverse shear strains are coupled and quadratic 
terms are included in the assumed shear strain components.

The bracketed terms of the assumed strains (Eq. 4) are 
added to have the compatibility equations (Eq. 2) to be satis-
fied. The strain functions (κx, κy, κxy, γxz, γyz) given by Eq. (4) 
are substituted into Eq. (1a) and after integration, we obtain:

The displacement functions obtained from Eq. (5a) are 
summed to the displacements of rigid body modes given 
by Eq. (3) to obtain the final displacement shape functions:
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.

The displacement functions of Eq. (5b) and the strain func-
tions of Eq. (4) can be given in matrix form, respectively, as:

And the matrices [P] and [Q] are given as:

And the displacements field, the strains field, and constant 
parameters vectors are:

The geometrical strains can be expressed as:
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(6){U} = [P]{�} = [N]{qe},

(7){�} = [Q]{�} = [B]{qe}

(8)Where [N] = [P][C]−1, [B] = [Q][C]−1.
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We substitute Eq. (6) into Eq. (12), we obtain:

And the matrix [G] is given as:

The transformation matrix [C] which relates the element 
nodal displacements ({qe}T = (W1, βx1, βy1, …, W4, βx4, βy4)) 
to the 12 constants ({α}T = (α1, …, α12)) can be given as:

The constant parameters vector {α} can be derived from 
Eq. (16a) as follows:

The matrices [N] (Eq. 8), [B] (Eq. 8) and [Bg] (Eq. 14) 
are obtained, respectively, by substituting Eq. (16b) into 
Eqs. (6), (7) and (13):

And the matrix [Pi] calculated from Eq. (9) for each of 
the four element nodes coordinates (xi, yi), (i = 1, 2, 3, 4) to 
obtain:

Element matrices

The standard weak form for free vibration and buckling can, 
respectively, be expressed as:

By substituting Eqs. (6), (7) and (13) into Eqs. (19) and 
(20), we obtain:
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.
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(19)∫
Se

𝛿{𝜀}T [D]{𝜀}dS + ∫
Se

𝛿{U}T [T]{Ü}dS = 0,

(20)∫
Se

�{�}T [D]{�}dS + ∫
Se

�{�g}T [�]{�g}dS = 0.

Where the element stiffness, mass and geometrical stiff-
ness matrices ([Ke], [Me], [Ke

g
] ), are, respectively, as:

The stress–strain relationship is given by:

where  {�} = {Mx,My,Mxy, Tx, Ty}
T , {�} = {�x, �y, �xy,

�xz, �yz}
T
.

where [D], [D]b, [D]s are, respectively, rigidity, bending 
rigidity, shear rigidity matrices and [T] is the matrix contain-
ing the mass material density:

(21)

𝛿{qe}
T

⎛⎜⎜⎝∫Se
[B]T [D][B]dS

⎞⎟⎟⎠
{qe} + 𝛿{qe}

T

⎛⎜⎜⎝∫Se
[N]T [T][N]dS

⎞⎟⎟⎠
{q̈e} = 0,

(22)

�{qe}
T

⎛
⎜⎜⎝∫Se

[B]T [D][B]dS

⎞
⎟⎟⎠
{qe}

+ �{qe}
T

⎛
⎜⎜⎝∫Se

[Bg
]
T
[�][Bg

]dS

⎞
⎟⎟⎠
{qe} = 0.

(23)

[Ke] = ∫Se

[B]T [D][B]dS

[Ke] = [C]−T
(
∫ [Q]T [D][Q] det(J)d�d�

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[K0]

[C]−1 = [C]−T [K0][C]
−1,

(24)

[Me] = ∫
Se

[N]T [T][N]dS

[Me] = [C]−T
(
∫ [P]T [T][P] det(J)d�d�

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[M0]

[C]−1

= [C]−T [M0][C]
−1,

(25)

[
Ke
g

]
= ∫Se

[
Bg

]T
[�][Bg]dS

[
Ke
g

]
= [C]−T

(
∫ [G]T [�][G] det(J)d�d�

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[Kg0]

[C]−1 = [C]−T [Kg0][C]
−1.

(26){�} = [D]{�},

(27)
[D] =

�
[D]b 0

0 [D]s

�
, [D]b =

Eh3

12(1 − �2)

⎡
⎢⎢⎣

1 � 0

� 1 0

0 0
(1−�)

2

⎤⎥⎥⎦
[D]s = khG

�
1 0

0 1

�
,



215International Journal of Advanced Structural Engineering (2019) 11:211–230 

1 3

where �0
x
 , �0

y
 and �0

xy
 are the in-plane stresses.

The matrices [K0], [M0] and [Kg0] given in Eqs. (23), (24) 
and (25) are numerically computed with exact Gauss and 
Hamer rule integration, respectively, for quadrilateral and 
triangular elements (SBQP and SBTP4). The element stiff-
ness, mass and geometrical matrices ([Ke], [Me] and [Ke

g
] ) 

can then be obtained. These are assembled to obtain the 
structural stiffness, mass and geometrical matrices ([K], [M] 
and [Kg]).

For static analysis, we use

For free vibration, we use

For the buckling analysis, we use

(28)[T] = �

⎡
⎢⎢⎢⎣

h 0 0

0
h3

12
0

0 0
h3

12

⎤
⎥⎥⎥⎦
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(29)[�0] =

�
�0
x
�0
xy

�0
xy

�0
y

�
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⎡
⎢⎢⎢⎣

h[�0] 0 0

0
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12
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12
[�0]

⎤
⎥⎥⎥⎦
,

(30)[K]{q} = {F}.

(31)([K] − �2[M]){q} = 0.

(32)([K] − �cr[Kg]){q} = 0.

Numerical validation

To validate the accuracy and efficiency of the formulated 
quadrilateral and triangular elements (SBQP and SBTP4), 
several numerical examples have been investigated for 
static, free vibration and buckling analysis of isotropic 
plates where the patch test of rigid body modes and the 
mechanic patch test are first carried out. The obtained 
results of the SBQP and SBTP4 elements are compared 
with other numerical and analytical solutions available in 
the literature.

Patch test of rigid body modes

To verify that both SBQP and SBTP4 elements pass the 
patch test of rigid body modes, the eigenvalues of the stiff-
ness matrix for a single element are computed for vari-
ous shapes and different aspect ratio. The only three zero 
eigenvalues obtained correspond to the three rigid dis-
placement modes for a plate.

Mechanic patch test

In this patch test, a rectangular plate of (L = 2a = 40) length 
and (2b = 20) width simply supported at the three corner 1,2 
and 3 (W1 = W2 = W3 = 0) is considered where the plate is 
modeled by several elements as shown in Fig. 2 (Batoz and 
Dhatt 1990) for various side–thickness L/h ratio (10,100 and 

Fig. 2  Quadrilateral and trian-
gular meshes for the patch test 
(E = 1000, ν = 0.3)
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1000). The plate boundaries are subjected to solicitations 
that produce the state of constant moments (or stresses). For 
the case of Mn = 1 applied on all sides (Fig. 2), the obtained 
results are Mx = My = 1 everywhere in the plate (Table 1). 
Whereas for the case of Mns = 1 applied on all sides (Fig. 2), 
the obtained results at any points of the plate are Mxy = 1 
(Table 1). The results given in Table 1 confirm that both 
SBQP and SBTP4 elements fulfill the mechanic patch test.

Square plates

A classical benchmark is first studied of square plate bend-
ing problem (Fig. 3) with different boundary conditions 
and various thickness–side (h/L) ratios subjected to a uni-
form load (q = 1), where the shear locking free test and 

convergence investigation of central deflection are consid-
ered in this study.

Shear locking free test is considered for a clamped square 
plate with several values of ratios (L/h = 10–1,000,000) 
using a mesh of 12 × 12. The central deflection results of 
the plate illustrated in Table 2 and Fig. 4, confirm that the 
new formulated elements (SBQP and SBTP4) are able to 
solve the shear locking problem when the plate thickness 
becomes gradually small. However, it is observed that the 
SBRP element (Belounar and Guenfoud 2005) exhibits from 
shear locking phenomena for (L/h > 100).

Now, convergence tests of a square plate are investigated 
with three cases of boundary conditions [clamped, soft sim-
ply supported SS1 (W = 0), and hard simply supported SS2 
(W = βs = 0)]. Various values of h/L ratios of 0.1, 0.01, and 
0.001 are considered for thick, thin and very thin plates, 
respectively. The obtained results of the vertical displace-
ment at the center of the plate are presented in Tables 3, 4 
and 5 and Figs. 5, 6 and 7, which show that:

• Faster convergence towards analytical solutions (Taylor 
and Auricchio 1993) is obtained using only a small num-
ber of elements for all cases of ratios (h/L = 0.1, 0.01, and 
0.001) and boundary conditions.

Table 1  Results of mechanic patch test

Elements Applied load Moments in 
the plate

L/h

10 100 1000

SBQP Mn = 1 Mx = My 1 1 1
Mns = 1 Mxy 1 1 1

SBTP4 Mn = 1 Mx = My 1 1 1
Mns = 1 Mxy 1 1 1

Y

X

L

L

Fig. 3  Square plate with a mesh of N × N elements (L = 10, E = 10.92, 
ν = 0.3, k = 5/6)

Table 2  Deflections at the 
center [(WD/qL4)100] of a 
clamped square plate with 
different aspect ratios

L/h 10 100 1000 10,000 100,000 1,000,000 Taylor and 
Auricchio 
(1993)

SBQP 0.1490 0.1254 0.1252 0.1252 0.1252 0.1252
SBTP4 0.1508 0.1256 0.1252 0.1252 0.1252 0.1252 0.1267
SBRP 0.1453 0.1035 0.0074 7.90 × 10−5 7.90 × 10−7 7.90 × 10−9
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Fig. 4  Shear locking test (Wc/WRef) of a clamped square plate
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• The SBQP and SBTP4 elements have similar behaviors 
for thin and very thin plates (h/L = 0.01, 0.001); whereas, 
for thick plates (h/L = 0.1), the SBTP4 element is a little 
better than the SBQP element.

• Both proposed elements are free from shear locking phe-
nomena where they are able to provide excellent results 
for thin and very thin plates (h/L = 0.01, 0.001).

• Slow convergence to analytical solutions (Taylor and 
Auricchio 1993) is obtained using the SBRP element 

(Belounar and Guenfoud 2005) for thick and thin plates 
(h/L = 0.1, 0.01) and suffers from shear locking for very 
thin plates (h/L = 0.001).

Skew plates

To show the performance of the present elements to the 
sensitivity of mesh distortion, two examples of thin skew 

Table 3  Central deflection 
[(WD/qL4)100] for clamped 
square plates with uniform load

h/L Elements 4 × 4 8 × 8 10 × 10 12 × 12 16 × 16 Taylor and 
Auricchio 
(1993)

0.001 SBQP 0.1149 0.1235 0.1246 0.1252 0.1258 0.1265
SBTP4 0.1150 0.1235 0.1246 0.1252 0.1258
SBRP 2.77 × 10−5 0.0011 0.0032 0.0074 0.0234

0.01 SBQP 0.1151 0.1237 0.1248 0.1254 0.1260 0.1267
SBTP4 0.1153 0.1239 0.1250 0.1256 0.1261
SBRP 0.0027 0.0558 0.0860 0.1035 0.1179

0.1 SBQP 0.1372 0.1473 0.1484 0.1490 0.1497 0.1499
SBTP4 0.1446 0.1507 0.1509 0.1508 0.1507
SBRP 0.0903 0.1384 0.1429 0.1453 0.1476

Table 4  Central deflection 
[(WD/qL4)100] for SS1 square 
plates with a uniform load

h/L Elements 4 × 4 8 × 8 10 × 10 12 × 12 16 × 16 Taylor and 
Auricchio 
(1993)

0.001 SBQP 0.3858 0.4014 0.4032 0.4041 0.4050 0.4062
SBTP4 0.3859 0.4014 0.4032 0.4041 0.4051
SBRP 8.43 × 10−4 0.0152 0.0363 0.0697 0.1624

0.01 SBQP 0.3861 0.4019 0.4037 0.4048 0.4058 0.4062
SBTP4 0.3864 0.4021 0.4040 0.4050 0.4061
SBRP 0.0673 0.3115 0.3589 0.3802 0.3962

0.1 SBQP 0.4228 0.4450 0.4493 0.4522 0.4556 0.4617
SBTP4 0.4277 0.4487 0.4523 0.4545 0.4572
SBRP 0.3587 0.4311 0.4407 0.4463 0.4524

Table 5  Central deflection 
[(WD/qL4)100] for SS2 square 
plates with a uniform load

h/L Elements 4 × 4 8 × 8 10 × 10 12 × 12 16 × 16 Taylor and 
Auricchio 
(1993)

0.001 SBQP 0.3858 0.4014 0.4032 0.4041 0.4050 0.4062
SBTP4 0.3859 0.4014 0.4032 0.4041 0.4050
SBRP 6.23 × 10−4 0.0147 0.0357 0.0691 0.1619

0.01 SBQP 0.3860 0.4016 0.4034 0.4043 0.4052 0.4064
SBTP4 0.3862 0.4017 0.4034 0.4044 0.4053
SBRP 0.0523 0.3081 0.3572 0.3789 0.3952

0.1 SBQP 0.4079 0.4227 0.4244 0.4253 0.4261 0.4273
SBTP4 0.4110 0.4240 0.4253 0.4260 0.4266
SBRP 0.3260 0.4048 0.4131 0.4175 0.4218
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Fig. 5  Central deflection [(WD/qL4)100] for clamped square plates
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Fig. 6  Central deflection [(WD/qL4)100] for SS1 square plates
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plates subjected to a uniform load (q = 1) are considered 
which are known in the literature as severe tests and studied 
by many researchers (Razzaque 1973; Morley 1963). The 
first is concerned with Razzaque’s skew plate (Razzaque 
1973) (β = 60°) with simply supported on two sides and free 
on the other sides (Fig. 8). The results of the vertical dis-
placement at the center of the plate using uniform meshes 
N = 2, 4, 8, 12 and 16 are given in Table 6 and Fig. 9 for 
(h/L = 0.001). The obtained results for both elements (SBQP 
and SBTP4) are in quite a good agreement with the refer-
ence solution given by Razzaque (1973). But it can be seen 
that the SBTP4 element is a little better than the SBQP and 
MITC4 (Nguyen-Xuan et al. 2008) elements.

The second example treated by Morley (β = 30°) (Morley 
1963) is simply supported (W = 0) on all sides (Fig. 8). Using 
meshes of N = 4, 8, 16 and 32, the obtained vertical displace-
ment at the center of the plate are presented in Table 7 and 
Fig. 10 for h/L = 0.01 and 0.001. It can be observed that for 
h/L = 0.01, the results of the SBTP4 and SBQP elements 
are in good agreement with the reference solution (Mor-
ley 1963); whereas, for h/L = 0.001, the SBTP4 element is 
more efficient than the SBQP and MITC4 (Chen and Cheung 
2000) elements.

Free vibration of square plates

Convergence tests of the formulated quadrilateral and tri-
angular elements are first undertaken for simply supported 
(W = βs = 0) and clamped plates with two thickness–side 
ratios (h/L = 0.005 and 0.1) (Fig. 3). The results of the first 
six non-dimensional frequencies (λ = (ω2ρL4h/D)1/4) using 
the SBQP and SBTP4 elements with four regular meshes 
(N = 4, 8, 16 and 22) are presented in Tables 8, 9, 10 and 11 
and Figs. 11 and 12 together with the four-node mixed inter-
polation of tensorial component MITC4 (Nguyen-Thoi et al. 
2012), the discrete shear gap triangle DSG3 (Nguyen-Thoi 
et al. 2012) and the edge-based smoothed discrete shear gap 
triangular ES-DSG (Nguyen-Thoi et al. 2012) elements. It 
can be demonstrated that:

• Both elements (SBQP and SBTP4) agree well with ana-
lytical solutions (Abbassian et al. 1987) and other ele-
ments (MITC4, DSG3, and ES-DSG) (Nguyen-Thoi et al. 
2012).

• Figures 11 and 12 show that the SBQP and SBTP4 ele-
ments produce more accurate results than those given by 
other elements (MITC4, DSG3, and ES-DSG) (Nguyen-
Thoi et al. 2012) when few elements are employed (4 × 4 
mesh).
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Fig. 7  Central deflection [(WD/qL4)100] for SS2 square plates
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Having verified the convergence rate of the formulated 
elements, thin square plates (h/L = 0.005) with five different 
kinds of boundary conditions (SSSF, SFSF, CCCF, CFCF, 
and CFSF) for a 22 × 22 mesh are considered. The results of 
the four non-dimensional frequencies (λ = ωL2(ρh/D)1/2) are 
presented in Table 12 and the first four mode shapes of SSSF 
and CFCF plates are plotted in Figs. 13 and 14. For all cases 
of boundary condition, the following can be concluded:

• The present results are very close to analytical solutions 
(Leissa 1969) and are more accurate than those of the 
MITC4, DSG3 and ES-DSG elements (Nguyen-Thoi 
et al. 2012).

• The two elements (SBQP and SBTP4) have similar 
behavior, are shear locking free and their accuracy is 
insensitive to boundary conditions.

Free vibration of parallelogram plates

A cantilever parallelogram plate of skew angle = 60° with 
two h/L ratios (0.001 and 0.2) is studied (Fig. 15) using 
22 × 22 mesh. The computed six non-dimensional frequen-
cies (λ = ωL2/π2(ρh/D)1/2) and the mode shapes are illus-
trated in Table 13 and Fig. 16, respectively. These results 
are compared with other numerical (DSG3, ES-DSG3, and 
MITC4) (Nguyen-Thoi et al. 2012) and analytical solutions 

(Karunasena et al. 1996). It can be seen that the SBQP and 
SBTP4 elements have a good accuracy compared to exact 
solutions (Karunasena et al. 1996) and are good competitors 
to ES-DSG3 and MITC4 (Nguyen-Thoi et al. 2012) and bet-
ter than DSG3 (Nguyen-Thoi et al. 2012).

Fig. 8  Skew plates (a Razzaque, 
b Morley) with N × N meshes 
(L = 100, E = 10.92, ν = 0.3, 
k = 5/6)
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Table 6  Convergence of central 
displacement (Wc) for the 
Razzaque’s skew plate

Elements Wc = Wc (D/qL4) × 102

2 × 2 4 × 4 6 × 6 8 × 8 12 × 12 16 × 16

SBQP 0.4835 0.7180 0.7596 0.7643 0.7732 0.7807
SBTP4 0.5312 0.7124 0.7518 0.7670 0.7792 0.7841
MITC4 (Nguyen-Xuan 

et al. 2008)
0.3856 0.6723 0.7357 0.7592 0.7765 0.7827

Razzaque (1973) 0.7945
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Fig. 9  Central displacement (Wc/WRef) for the Razzaque’s skew plate
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Buckling of square plates subjected to uniaxial 
compression

Square plates subjected to uniaxial compression (Fig. 17) 
with h/L of 0.01 is analyzed for both simply supported 
(SSSS) and clamped (CCCC). The buckling load factor 
is defined as Kh = λcrL2/(π2/D). The results of the buckling 
load factor for the SBQP and SBTP4 elements using 4 × 4, 
8 × 8, 12 × 12, 16 × 16 and 20 × 20 meshes are presented in 
Table 14 and Fig. 18. For all cases of boundary condition, 
the two elements (SBQP and SBTP4) have similar results 
and converge to analytical solutions (Timoshenko and Gere 
1970). In addition, these elements have excellent accu-
racy compared to other elements (DSG3 and ES-DSG3) 
(Nguyen-Xuan et al. 2010a, b).

The results of the buckling load factor (Kh) and the rela-
tive error using 20 × 20 mesh are presented in Table 15. 

Numerical results of the SBQP and SBTP4 elements are in 
good agreement with analytical solutions (Timoshenko and 
Gere 1970) and other numerical solutions (Nguyen-Xuan 
et al. 2010a, b; Tham and Szeto 1990; Vrcelj and Bradford 
2008; Liew and Chen 2004).

Buckling of square plates subjected to biaxial 
compression

Square plate subjected to biaxial compression (Fig. 19) with 
three essential boundary conditions (SSSS, CCCC, SCSC) 
is considered for h/L = 0.01 using a mesh of 16 × 16. The 
buckling load factor results (Kh = λcrL2/(π2/D)) of the pro-
posed elements are presented in Table 16 with analytical 
(Timoshenko and Gere 1970) and other numerical solu-
tions (Nguyen-Xuan et al. 2010a, b; Tham and Szeto 1990; 

Table 7  Convergence of central displacement (Wc) for the Morley’s skew plate

Mesh Wc = Wc (D/qL4) × 103

L/h = 0.01 L/h = 0.001

SBQP SBTP4 MITC4 (Chen and 
Cheung 2000)

SBQP SBTP4 MITC4 (Chen and 
Cheung 2000)

4 × 4 0.231 0.372 0.359 0.143 0.369 0.358
8 × 8 0.323 0.388 0.357 0.206 0.324 0.343
16 × 16 0.380 0.411 0.383 0.280 0.324 0.343
32 × 32 0.405 0.419 0.404 0.339 0.366 0.359
Morley (1963) 0.408 0.408
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Fig. 10  Central displacement (Wc/WRef) for the Morley’s skew plate
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Table 8  Six first 
nondimensional frequency 
parameters (λ) of a SSSS thin 
square plate (h/L = 0.005)

Meshing Elements Mode sequence number

1 2 3 4 5 6

4 × 4 SBQP 4.4004 7.1140 7.1140 8.6298 10.7342 10.7342
SBTP4 4.4001 7.1126 7.1139 8.6298 10.7336 10.7336
MITC4 (Nguyen-Thoi et al. 2012) 4.6009 8.0734 8.0734 10.305 15.0109 15.0109
DSG3 (Nguyen-Thoi et al. 2012) 5.5626 8.8148 11.8281 13.4126 18.1948 19.2897
ES-DSG3 (Nguyen-Thoi et al. 2012) 4.9168 8.1996 9.4593 11.5035 14.2016 15.0164

8 × 8 SBQP 4.4315 7.0383 7.0383 8.7997 10.1044 10.1044
SBTP4 4.4313 7.0377 7.0379 8.7988 10.1029 10.1029
MITC4 (Nguyen-Thoi et al. 2012) 4.4812 7.2519 7.2519 9.2004 10.7796 10.7796
DSG3 (Nguyen-Thoi et al. 2012) 4.7327 7.4926 8.2237 10.2755 11.6968 12.4915
ES-DSG3 (Nguyen-Thoi et al. 2012) 4.5376 7.2981 7.4659 9.6486 10.8937 11.0280

16 × 16 SBQP 4.4398 7.0271 7.0271 8.8618 9.9727 9.9727
SBTP4 4.4398 7.0267 7.0267 8.8612 9.9714 9.9714
MITC4 (Nguyen-Thoi et al. 2012) 4.4522 7.0792 7.0792 8.9611 10.1285 10.1285
DSG3 (Nguyen-Thoi et al. 2012) 4.5131 7.1502 7.3169 9.3628 10.3772 10.4461
ES-DSG3 (Nguyen-Thoi et al. 2012) 4.4641 7.0870 7.1193 9.0582 10.1444 10.1489

22 × 22 SBQP 4.4412 7.0256 7.0256 8.8722 9.9535 9.9535
SBTP4 4.4411 7.0252 7.0253 8.8717 9.9522 9.9522
MITC4 (Nguyen-Thoi et al. 2012) 4.4477 7.0531 7.0531 8.9247 10.0349 10.0349
DSG3 (Nguyen-Thoi et al. 2012) 4.4781 7.0905 7.1718 9.1455 10.1643 10.1814
ES-DSG3 (Nguyen-Thoi et al. 2012) 4.4537 7.0565 7.0729 8.9731 10.0410 10.0422
Exact (Abbassian et al. 1987) 4.4430 7.0250 7.0250 8.8860 9.93500 9.93500

Table 9  Six first 
nondimensional frequency 
parameters (λ) of a SSSS thick 
square plate (h/L = 0.1)

Meshing Elements Mode sequence number

1 2 3 4 5 6

4 × 4 SBQP 4.3296 6.8538 6.8538 8.2153 10.0531 10.0531
SBTP4 4.3212 6.7855 6.8014 8.1724 9.8150 9.8166
MITC4 (Nguyen-Thoi et al. 2012) 4.5146 7.6192 7.6192 9.4471 12.2574 12.2574
DSG3 (Nguyen-Thoi et al. 2012) 4.9970 8.1490 9.4311 11.354 14.1290 14.9353
ES-DSG3 (Nguyen-Thoi et al. 2012) 4.7376 7.6580 8.4524 10.1882 12.1227 12.7533

8 × 8 SBQP 4.3566 6.7647 6.7647 8.3052 9.3981 9.3981
SBTP4 4.3522 6.7315 6.7409 8.2739 9.2985 9.2986
MITC4 (Nguyen-Thoi et al. 2012) 4.4025 6.9402 6.9402 8.6082 9.8582 9.8582
DSG3 (Nguyen-Thoi et al. 2012) 4.4891 7.0697 7.2530 9.1263 10.2195 10.3361
ES-DSG3 (Nguyen-Thoi et al. 2012) 4.4433 6.9495 7.0727 8.8487 9.8575 9.9221

16 × 16 SBQP 4.3639 6.7488 6.7488 8.3412 9.2637 9.2637
SBTP4 4.3625 6.7384 6.7415 8.3305 9.2333 9.2333
MITC4 (Nguyen-Thoi et al. 2012) 4.3753 6.7918 6.7918 8.4166 9.3728 9.3728
DSG3 (Nguyen-Thoi et al. 2012) 4.3943 6.8227 6.8587 8.5447 9.4557 9.4616
ES-DSG3 (Nguyen-Thoi et al. 2012) 4.3846 6.7922 6.8196 8.4744 9.3666 9.3698

22 × 22 SBQP 4.3650 6.7466 6.7466 8.3473 9.2437 9.2437
SBTP4 4.3643 6.7408 6.7425 8.3413 9.2270 9.2271
MITC4 (Nguyen-Thoi et al. 2012) 4.3711 6.7692 6.7692 8.3872 9.3009 9.3009
DSG3 (Nguyen-Thoi et al. 2012) 4.3809 6.7854 6.8037 8.4543 9.3441 9.3457
ES-DSG3 (Nguyen-Thoi et al. 2012) 4.3759 6.7692 6.7834 8.4173 9.2968 9.2976
Exact (Abbassian et al. 1987) 4.3700 6.7400 6.7400 8.3500 9.2200 9.2200
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Table 10  Six first 
nondimensional frequency 
parameters (λ) of a CCCC thin 
square plate (h/L = 0.005)

Meshing Elements Mode sequence number

1 2 3 4 5 6

4 × 4 SBQP 6.2197 9.6440 9.6440 11.0163 47.3130 47.3130
SBTP4 6.2185 9.6418 9.6428 11.0195 32.7089 33.3128
MITC4 (Nguyen-Thoi et al. 2012) 6.5638 11.523 11.523 13.9510 62.6050 62.6054
DSG3 (Nguyen-Thoi et al. 2012) 8.4197 12.772 14.965 17.2580 21.3890 21.7600
ES-DSG3 (Nguyen-Thoi et al. 2012) 6.9741 10.193 11.476 13.0550 15.4040 15.9360

8 × 8 SBQP 6.0465 8.7528 8.7528 10.484 12.0573 12.0881
SBTP4 6.0458 8.7509 8.7511 10.4819 12.0533 12.0842
MITC4 (Nguyen-Thoi et al. 2012) 6.1235 9.0602 9.0602 11.019 12.998 13.0263
DSG3 (Nguyen-Thoi et al. 2012) 6.7161 9.7867 10.567 12.998 14.531 15.3143
ES-DSG3 (Nguyen-Thoi et al. 2012) 6.1982 9.0117 9.2894 11.562 12.795 13.0357

16 × 16 SBQP 6.0097 8.6083 8.6083 10.4173 11.5973 11.6256
SBTP4 6.0091 8.6068 8.6069 10.4152 11.5938 11.6222
MITC4 (Nguyen-Thoi et al. 2012) 6.0285 8.6801 8.6801 10.5443 11.7989 11.8266
DSG3 (Nguyen-Thoi et al. 2012) 6.1786 8.8759 9.0680 11.2450 12.2180 12.2992
ES-DSG3 (Nguyen-Thoi et al. 2012) 6.0355 8.6535 8.7081 10.6580 11.7430 11.7720

22 × 22 SBQP 6.0041 8.5875 8.5875 10.4084 11.5342 11.5620
SBTP4 6.0036 8.5861 8.5862 10.4065 11.5309 11.5588
MITC4 (Nguyen-Thoi et al. 2012) 6.0140 8.6252 8.6252 10.4750 11.6390 11.6661
DSG3 (Nguyen-Thoi et al. 2012) 6.0889 8.7239 8.8202 10.8567 11.8519 11.8845
ES-DSG3 (Nguyen-Thoi et al. 2012) 6.0158 8.6075 8.6353 10.5252 11.6032 11.6293
Exact (Abbassian et al. 1987) 5.9990 8.568 8.568 10.4070 11.4720 11.4980

Table 11  Six first 
nondimensional frequency 
parameters (λ) of a CCCC thick 
square plate (h/L = 0.1)

Meshing Elements Mode sequence number

1 2 3 4 5 6

4 × 4 SBQP 5.9066 8.6852 8.6852 9.9470 13.0167 13.0351
SBTP4 5.8216 8.4187 8.4313 9.7144 12.0144 12.1514
MITC4 (Nguyen-Thoi et al. 2012) 6.1612 9.5753 9.5753 11.254 14.089 14.1377
DSG3 (Nguyen-Thoi et al. 2012) 6.8748 9.8938 11.085 12.636 15.103 15.6402
ES-DSG3 (Nguyen-Thoi et al. 2012) 6.2662 8.7952 9.6625 10.911 12.610 13.1360

8 × 8 SBQP 5.7477 8.0260 8.0260 9.4133 10.5267 10.5889
SBTP4 5.7098 7.9273 7.9340 9.3085 10.3191 10.3775
MITC4 (Nguyen-Thoi et al. 2012) 5.8079 8.2257 8.2257 9.7310 10.992 11.0457
DSG3 (Nguyen-Thoi et al. 2012) 5.9547 8.3618 8.6293 10.299 11.342 11.5397
ES-DSG3 (Nguyen-Thoi et al. 2012) 5.8068 8.0861 8.2701 9.8397 10.760 10.8960

16 × 16 SBQP 5.7140 7.9117 7.9117 9.3446 10.2143 10.2656
SBTP4 5.7022 7.8816 7.8843 9.3110 10.1541 10.2045
MITC4 (Nguyen-Thoi et al. 2012) 5.7288 7.9601 7.9601 9.4230 10.326 10.3752
DSG3 (Nguyen-Thoi et al. 2012) 5.7616 7.9935 8.0525 9.5772 10.415 10.4697
ES-DSG3 (Nguyen-Thoi et al. 2012) 5.7250 7.9211 7.9627 9.4499 10.263 10.3126

22 × 22 SBQP 5.7088 7.8949 7.8949 9.3351 10.1697 10.2195
SBTP4 5.7023 7.8784 7.8800 9.3165 10.1370 10.1863
MITC4 (Nguyen-Thoi et al. 2012) 5.7166 7.9204 7.9204 9.3764 10.2280 10.2771
DSG3 (Nguyen-Thoi et al. 2012) 5.7337 7.9381 7.9686 9.4589 10.2760 10.3246
ES-DSG3 (Nguyen-Thoi et al. 2012) 5.7141 7.8990 7.9206 9.3896 10.1935 10.2411
Exact (Abbassian et al. 1987) 5.7100 7.8800 7.8800 9.3300 10.1300 10.1800
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Fig. 11  Six first frequencies of a simply supported square plate with a 4 × 4 mesh
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Fig. 12  Six first frequencies of a clamped square plate with a 22 × 22 mesh

Table 12  Four first 
nondimensional frequency 
parameters (λ) of a thin square 
plate (h/L = 0.005)

Boundary 
conditions

Elements Mode sequence number

1 2 3 4

SSSF SBQP 11.6920 27.7371 41.3354 59.0370
SBTP4 11.6914 27.7350 41.3290 59.0289
MITC4 (Nguyen-Thoi et al. 2012) 11.7085 27.8259 41.5907 59.4952
DSG3 (Nguyen-Thoi et al. 2012) 11.7553 28.2580 41.8252 61.1274
ES-DSG3 (Nguyen-Thoi et al. 2012) 11.6817 27.8143 41.3866 59.5521
Exact (Leissa 1969) 11.6850 27.7560 41.1970 59.0660

SFSF SBQP 9.6426 16.1396 36.6991 39.1045
SBTP4 9.6422 16.1381 36.6952 39.0984
MITC4 (Nguyen-Thoi et al. 2012) 9.6560 16.1594 36.8250 39.3439
DSG3 (Nguyen-Thoi et al. 2012) 9.6608 16.3096 37.5011 39.4050
ES-DSG3 (Nguyen-Thoi et al. 2012) 9.6402 16.1214 36.8606 39.1664
Exact (Leissa 1969) 9.6310 16.1350 36.7260 38.9450
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Mode1 Mode4                                       Mode2                                      Mode3                                      

Fig. 13  First four mode shapes of SSSF square plate using the SBQP element

Boundary 
conditions

Elements Mode sequence number

1 2 3 4

CCCF SBQP 24.0205 40.0559 63.8154 76.9320
SBTP4 24.0158 40.0475 63.7906 76.9100
MITC4 (Nguyen-Thoi et al. 2012) 24.0559 40.1776 64.2683 77.5923
DSG3 (Nguyen-Thoi et al. 2012) 24.2149 41.4350 64.6795 80.2128
ES-DSG3 (Nguyen-Thoi et al. 2012) 23.8927 40.1428 63.4463 77.6415
Exact (Leissa 1969) 24.0200 40.0390 63.4930 76.7610

CFCF SBQP 22.2733 26.5042 43.6303 61.7962
SBTP4 22.2691 26.4981 43.6205 61.7722
MITC4 (Nguyen-Thoi et al. 2012) 22.3107 26.5333 43.7558 62.2403
DSG3 (Nguyen-Thoi et al. 2012) 22.3132 27.0330 45.4552 62.2851
ES-DSG3 (Nguyen-Thoi et al. 2012) 22.1684 26.4128 43.8441 61.4711
Exact (Leissa 1969) 22.2720 26.5290 43.6640 64.4660
SBQP 15.2347 20.6194 39.7292 49.7881
SBTP4 15.2331 20.6163 39.7230 49.7750

CFSF MITC4 (Nguyen-Thoi et al. 2012) 15.2590 20.6440 39.8569 50.1204
DSG3 (Nguyen-Thoi et al. 2012) 15.2635 20.9362 40.9260 50.1777
ES-DSG3 (Nguyen-Thoi et al. 2012) 15.2002 20.5789 39.9116 49.7129
Exact (Leissa 1969) 15.2850 20.6730 39.8820 49.5000

Table 12  (continued)

Mode1 Mode4                                       Mode2                                      Mode3                                      

Fig. 14  First four mode shapes of CFCF square plate using the SBTP4 element
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Vrcelj and Bradford 2008). It can be seen that both elements 
(SBQP and SBTP4) provide results which agree well with 
analytical solutions (Timoshenko and Gere 1970) and other 
solutions (Nguyen-Xuan et al. 2010a, b; Tham and Szeto 
1990; Vrcelj and Bradford 2008) for all cases of boundary 
condition.

Conclusion

A simple and efficient quadrilateral and triangular strain-
based finite elements have been presented for static, free 
vibration and buckling analyses of Reissner–Mindlin 

Y

X
β

L

Clamped

L

Fig. 15  Cantilever skew plate with a mesh of N × N elements

Table 13  Frequency parameters 
(λ) of cantilever skew plates 
(CFFF)

Mode h/L SBQP SBTP4 DSG3 (Nguyen-
Thoi et al. 2012)

ES-DSG3 
(Nguyen-Thoi 
et al. 2012)

MITC4 
(Nguyen-Thoi 
et al. 2012)

Exact (Karuna-
sena et al. 1996)

1 0.001 0.3990 0.3988 0.4019 0.3981 0.3984 0.3980
2 0.9594 0.9568 0.9949 0.9532 0.9552 0.9540
3 2.5871 2.5776 2.6392 2.5692 2.5776 2.5640
4 2.6392 2.6351 2.8569 2.6508 2.6395 2.6270
5 4.2143 4.2046 4.3554 4.2030 4.2163 4.1890
6 5.1612 5.1475 6.0079 5.2283 5.1728 5.1310
1 0.2 0.3781 0.3778 0.3783 0.3772 0.3777 0.3770
2 0.8188 0.8183 0.8187 0.8129 0.8190 0.8170
3 1.9890 1.9869 1.9738 1.9573 1.9911 1.9810
4 2.1695 2.1670 2.1982 2.1786 2.1748 2.1660
5 3.1150 3.1097 3.1374 3.0999 3.1224 3.1040
6 3.7649 3.7585 3.8689 3.8050 3.7835 3.7600

Mode1                                                                     Mode2                                                                     Mode3

Mode4                                                                     Mode5                                                                     Mode6

Fig. 16  Mode shapes of a cantilever skew plate with h/L = 0.2
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plates. The four-node strain-based triangular element 
SBTP4 has the three engineering external degrees of free-
dom at each of the three corner nodes and one mid-edge 
point, while the quadrilateral element SBQP has the same 
engineering degrees of freedom at each of the four cor-
ner nodes. These developed elements passed successfully 
both patch and benchmark tests for plate bending prob-
lems. Numerical results show that the SBQP and SBTP4 
elements are shear locking free, stable and superior to the 
original strain-based rectangular plate element (SBRP) 
(Belounar and Guenfoud 2005) which suffers from shear 
locking when the plate thickness becomes progressively 
very thin and has less rate of convergence to analytical L

L

Fig. 17  Square plate subjected to axial compression

Table 14  Convergence of uniaxial buckling load factor (Kh) of square plates with (h/L = 0.01)

Plates type Elements 4 × 4 8 × 8 12 × 12 16 × 16 20 × 20 Timoshenko 
and Gere 
(1970)

SSSS SBQP 3.8452 3.9568 3.9790 3.9869 3.9905 4.00
SBTP4 3.8434 3.9558 3.9782 3.9862 3.9899
DSG3 (Nguyen-Xuan et al. 2010a, b) 7.5891 4.8013 4.3200 4.1590 4.0889
ES-DSG3 Nguyen-Xuan et al. (2010a, b) 4.7023 4.1060 4.0368 4.0170 4.0089

CCCC SBQP 11.1243 10.3089 10.1625 10.1120 10.0887 10.07
SBTP4 11.1082 10.2955 10.1498 10.0999 10.0774
DSG3 (Nguyen-Xuan et al. 2010a, b) 31.8770 14.7592 11.9823 11.0446 10.6282
ES-DSG3 (Nguyen-Xuan et al. 2010a, b) 14.7104 11.0428 10.3881 10.2106 10.1410
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Fig. 18  Convergence of uniaxial buckling load factor (Kh/Kexact) of square plates with h/L = 0.01
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solutions for thick and thin plates. The obtained results 
using both strain-based elements (SBQP and SBTP4) 
show that a rapid convergence to analytical solutions can 
be achieved with relatively coarse meshes compared with 
other robust elements based on different methods. In per-
spective, these elements can be superposed with membrane 
robust elements to construct shell elements for the analysis 
of complex shell structures.

Table 15  Uniaxial buckling load factor (Kh) of square plates with (h/L = 0.01)

Plates type SBQP SBTP4 DSG3 
(Nguyen-
Xuan et al. 
2010a, b)

ES-DSG3 
(Nguyen-
Xuan et al. 
2010a, b)

Liew and 
Chen (2004)

Ansys (Liew 
and Chen 
2004)

Timoshenko 
and Gere 
(1970)

Tham and 
Szeto (1990)

Vrcelj and 
Bradford 
(2008)

SSSS 3.9905 
(− 0.24%)

3.9862 
(− 0.34%)

4.0889 
(2.22%)

4.0089 
(0.22%)

3.9700 
(− 0.75%)

4.0634 
(1.85%)

4.00 (0.0%) 4.00 (0.0%) 4.0006 
(0.02%)

CCCC 10.0887 
(0.18%)

10.0774 
(0.07%)

10.6282 
(5.54%)

10.1410 
(0.70%)

10.1501 
(0.8%)

10.1889 
(1.18%)

10.07 (0.0%) 10.08 (0.1%) 10.0871 
(0.17%)

L

L

Fig. 19  Square plate subjected to biaxial compression

Table 16  Biaxial buckling load factor (Kh) of square plates with (h/L = 0.01)

Plates type SBQP SBTP4 DSG3 (Nguyen-Xuan 
et al. 2010a, b)

ES-DSG3 (Nguyen-
Xuan et al. 2010a, b)

Timoshenko and 
Gere (1970)

Tham and 
Szeto (1990)

Vrcelj and 
Bradford 
(2008)

SSSS 1.9934 1.9931 2.0549 2.0023 2.00 2.00 2.0008
CCCC 5.3039 5.2991 5.6419 5.3200 5.31 5.61 5.3260
SCSC 3.8331 3.8279 4.0108 3.8332 3.83 3.83 3.8419
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