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Abstract
The hub location–allocation problem under uncertainty is a real-world task arising in the areas such as public and freight 
transportation and telecommunication systems. In many applications, the demand is considered as inexact because of the 
forecasting inaccuracies or human’s unpredictability. This study addresses the robust uncapacitated multiple allocation hub 
location problem with a set of demand scenarios. The problem is formulated as a nonlinear stochastic optimization problem 
to minimize the hub installation costs, expected transportation costs and expected absolute deviation of transportation costs. 
To eliminate the nonlinearity, the equivalent linear problem is introduced. The expected absolute deviation is the robustness 
measure to derive the solution close to each scenario. The robust hub location is assumed to deliver the least costs difference 
across the scenarios. The number of scenarios increases size and complexity of the task. Therefore, the classical and improved 
Benders decomposition algorithms are applied to achieve the best computational performance. The numerical experiment on 
CAB and AP dataset presents the difference of resulting hub networks in stochastic and robust formulations. Furthermore, 
performance of two Benders decomposition strategies in comparison with Gurobi solver is assessed and discussed.

Keywords Hub location problem · Stochastic programming · Absolute deviation · Robust solution · Benders 
decomposition · Pareto-optimal cuts

Introduction

The study of networks is of great importance for such areas 
as freight and passenger transportation, telecommunication, 
postal services and rapid transit systems.

The objects enumerated above can be presented as a set 
of nodes connected by edges. Meanwhile, a large amount of 
nodes are not connected with each other due to the physical 

limitations. That means that the several nodes have to be 
served using intermediate nodes with additional proper-
ties like consolidation and distribution possibility. The 
organization of special nodes as hubs produces savings by 
consolidation and reduces the total operational cost to ser-
vice processes. Hub location problem (HLP) is directed to 
determine hubs and network operation processes in a most 
efficient way.

The epoch of huge amount of works carrying out in HLP 
area has been started from the seminal work of O’kelly 
(1986). The initial stages of HLP theory are associated with 
problems formulation (p-hub median problems, capacitated/
uncapacitated HLPs, single or multiple hubs location, allo-
cation possibilities, etc.), general assumptions, introduc-
tion of rules (flows are allowed to go through hub facilities, 
hubs are facilities to be located, all commodities must be 
routed, discount factor, hubs network is a complete graph, 
etc.) which allow to classify networks design decisions. 
The deep review of HLP progress is discussed by Campbell 
and O’Kelly (2012) and Contreras (2015). The latest works 
present modifications of the initial assumptions and charac-
terize the new features intercalation adapted to real-world 
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needs and problems complexity reduction. These approaches 
are based on achievements in discrete and computational 
mathematics.

The modern planning systems deal with the approximated 
data which tend to realize the expectations of the expert and 
bring it as close as possible to reality. Because of the ambiguity 
of the future, large amount of unpredictable participants and 
factors in the hub networks (users, traffic jams, breakdowns, 
service time, seasons, competitors, prices, etc.), the uncertain-
ties in the data are caused. The network design is the part of the 
strategic planning where the decisions are made on prospect of 
development and striving for improvements. The most profit-
able solutions are also sufficiently risky what makes to take 
into account several scenarios in decision process.

From the other side, the network design at most is mod-
eled using precise optimization approaches (mixed integer 
programming MIP, quadratic programming, nonlinear pro-
gramming) sensible to the input data: the minor changes in 
the data cause the significant differences in final solutions. 
Consideration of several alternatives becomes a necessity for 
solution stability in different implementations.

To overcome this issue, different robust HLP formulations 
of various uncertainty sources are discussed in the last ten 
years research in facility location area. Following Alumur 
et al. (2012), the data ambiguity in the decision-making pro-
cess may be divided into two directions: the first one, which 
this work adhere to, when the uncertainties in the data are 
weighted via the known probability distribution and the sec-
ond one, where the uncertainties without probabilistic laws 
or uniformly distributed possible situations are considered. 
Besides, the M/D/c queuing system is used in Marianov and 
Serra (2003) and Kahag et al. (2019) to obtain the number of 
the customers in the network with the estimated probabilities 
for hub capacities evaluation. The stochastic programming 
formulations (Contreras et al. 2011; Sim et al. 2009; Yang 
2009) use the scenarios with probabilistic assessment for 
expected total costs minimization. In Yahyaei and Bashiri 
(2017), the authors propose the stochastic formulation with 
hub disruption risks where the sample average approxima-
tion algorithm is applied to reduce the complexity of the 
problem. The reliability of the solution based on the worst-
case scenario belongs to the second one. The minmax regret 
formulation of hub setup costs uncertainty paired with the 
stochastic model of demand uncertainties (Alumur et al. 
2012; Boukani et al. 2016) aligns with the second uncer-
tainty type too. The popular way to take demand uncer-
tainty into consideration is to use the hose model where the 
demand has polyhedral uncertainty. The possible demand 
maximization under hose approach and total transporta-
tion costs minimization problem are offered in Meraklı and 
Yaman (2016) to generate robust hub network. Uncertainties 
budget model is described in Zetina et al. (2017) where the 
limits for demand interval uncertainties (known as lower 

and upper bounds) are set. The budget constraint in robust 
HLP formulation is discussed in de Sá et al. (2018) where 
the total cost for infrastructure development and activities 
scheduling is limited.

In this work, the demand uncertainty in uncapacitated 
multiple allocation hub location problem is considered and 
analyzed. The feature of present article consists of uncertainty 
representation in the mathematical formulation where the 
network design robustness is positioned as follows: the total 
transportation costs for each demand scenario should strive to 
be equal and lowest as far as a hub installation costs allow cost 
minimization. The trade-off between transportation costs min-
imization and equalization in the context of scenarios is the 
core point of the study. The hub network for different demand 
scenarios quantifies the lowest reliable upper bound of trans-
portation costs and provides an opportunity to reduce them by 
node-hub re-allocation on separate scenario and estimated hub 
network. The node-hub re-binding is postponed to the later 
planning levels when the demand scenario becomes clear. The 
hub location in proposed robust HLP formulation reduces the 
transportation costs fluctuations among the demand scenarios 
and provides the reliable solution.

To the best of authors’ knowledge, the transportation costs 
equalization approach under the scenarios in hub location 
problem was not considered before. The new robust uncapaci-
tated multiple allocation hub location problem under demand 
uncertainties is formulated. Initially, the proposed problem is 
formulated as a nonlinear problem because of absolute devia-
tion of transportation costs inclusion. To avoid nonlinearity. 
the equivalent linear problem is provided. The scenario set 
introduction into the model entails an increase in the problem 
complexity. Therefore, Bender’s decomposition and improved 
Bender’s cuts (Pareto-optimal cuts) are selected to simplify 
and reduce the complexity of the problem.

The work is organized as follows: basic and stochastic for-
mulations of UMAHLP are described in the “Basic definitions 
and notation” section, robust approach for solving of hub loca-
tion problem is proposed in the “Robust hub location problem 
concept” section, Benders decomposition and Pareto-optimal 
cuts are presented in the “Benders decomposition” section. 
Computational experiments and results’ analysis are discussed 
in the “Computational experiments” section.

Basic definitions and notation

In this section, notations and the mathematical problems’ 
formulation as a reference point of the analysis are pre-
sented. Moreover, it should be stressed that special type of 
the HLP described here could be replaced by another one, 
because general approach discussed later does not depend 
on the formulation type. The uncapacitated multiple alloca-
tion hub location problem (UMAHLP) is considered as a 
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base model (see Hamacher et al. 2004), where non-hub node 
could be allocated with more than one hub. The model is 
constructed under following assumptions: (1) The hub net-
work represents complete graph where links between non-
hub nodes are forbidden; (2) the capacities of hub facilities 
are unlimited; (3) shipment costs represent costs for collec-
tion, transfer and distribution; (4) transshipment is allowed 
only on hubs (i.e., only three actions are permitted: flow 
from spoke nodes to hub, flow between hubs, flow from hub 
to spoke.)

Hereinafter, the notation is used: N = {1,… , n} is the 
set of nodes which could send or receive a traffic; K ⊂ N 
is the set of hub candidates; dij is the distance between i 
and j where i, j ∈ N and ak is fixed hub setup cost for hub 
node candidate k ∈ K ; � , � and � are transfer, collection 
and distribution costs per unit flow and per unit distance, 
respectively; wij is a flow originated from node i ∈ N that is 
destined to node j ∈ N.

As it was mentioned previously, the traffic is routed 
at least through the one hub and in most cases, two hubs 
are enough in UMAHLP for consideration (Campbell and 
O’Kelly 2012; Contreras 2015). Therefore, the transporta-
tion costs routed via one or two hubs are denoted as follows: 
cijkm = �cik + �ckm + �cmj , that is transportation cost per unit 
flow from i ∈ N to j ∈ N routed via hubs k ∈ K and m ∈ K , 
where k = m is the flow routed via one hub.

UMAHLP

The mathematical formulation of the nominal UMAHLP 
uses the following decision variables:

yk Binary variable indicates that node k ∈ K is chosen to be a hub
xijkm Continuous variable which corresponds to the flow from node 

i ∈ N to j ∈ N routed through hubs k,m ∈ K

Using the aforementioned notation, the UMAHLP can be 
stated as follows:

(1)���

∑

k∈K

akyk +
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmxijkm

(2)
S.t.

∑

m∈K,m≠k

xijmk +
∑

m∈K

xijkm

≤ wijyk i, j ∈ N, k ∈ K

(3)
∑

k∈K

∑

m∈K

xijkm = wij i, j ∈ N

(4)xijkm ≥ 0 i, j ∈ N, k,m ∈ K

(5)yk ∈ {0, 1} k ∈ K

The objective function (1) represents the total costs to be 
minimized. Constraints (2) state that flow is routed via oper-
ating hubs. Constraints (3) ensure flow i − j routing exactly 
via hubs. Finally, (4) and (5) are domain constraints.

The UMAHLP consists of locating a set of hubs, assign-
ing and routing the commodities flows through hubs without 
hub capacity constraints with objective function to minimize 
hub setup and transportation costs; therefore, the problem 
always will have a solution if K is not an empty set. Nonethe-
less, this formulation is not suitable for the real life, since 
the solution is very sensitive for the input data scenario and 
could be notably changed due to flow variation. For the stra-
tegic planning, the variation should be taken in account by 
using stochastic formulation.

Stochastic formulation of UMAHLP

The UMAHLP model (1)–(5) is extended on stochastic case 
where uncertainty of demand is introduced. The discrete set 
of scenarios S = {1,… , f } accounts the possible traffic 
changes with certain probability ps for s ∈ S . The demand 
associated with each scenario is ws

ij
 , i.e., flow originated 

from node i ∈ N which is destined to node j ∈ N in scenario 
s ∈ S.

Uncertainty representation via a set of scenarios with 
occurrence probabilities is called to emphasize the most 
realistic situations which have great impact on the decision-
making process. The normalized weights of scenario influ-
ence power characterize their occurrence probabilities; thus,
it is assumed that 

∑
s∈S ps = 1.

So that, an additional index should be added to the flow 
variables:

xs
ijkm

Flow from node i ∈ N to j ∈ N 
which is routed through hubs 
k,m ∈ K in scenario s ∈ S

The stochastic formulation of the model is following:

S.t.    (5)

(6)���

∑

k∈K

akyk +
∑

s∈S

ps

∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

(7)

∑

m∈K,m≠k

xs
ijmk

+
∑

m∈K

xs
ijkm

≤ ws
ij
yk i, j ∈ N, k ∈ K, s ∈ S

(8)
∑

k∈K

∑

m∈K

xs
ijkm

= ws
ij

i, j ∈ N, s ∈ S

(9)xs
ijkm

≥ 0 i, j ∈ N, k,m ∈ K, s ∈ S
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The objective function (6) represents the hub installation 
costs and expected transportation costs to be minimized 
under set of scenarios S. The constraints (7)–(9) correspond 
to deterministic case constraints (2)–(4) for each scenario 
s ∈ S . The solution of the stochastic problem will be used 
as a referent plan further.

Robust hub location problem concept

In this section, the methodological concept of a robust hub 
network design is described. The expected transportation 
costs do not make the influence on the hub robustness evalu-
ation, since it is the “optimal mean” between scenarios. The 
main feature of new approach is an inclusion of the abso-
lute deviation between expected solution and every scenario 
into the objective function of stochastic HLP. This addend 
serves as a measure of transportation cost equalization on 
scenario set.

The new robust HLP concept is based on the UMAHLP 
case with stochastic demand as uncertainty source. The 
introduced problem formulation averages the weighted 
absolute differences among considered scenarios and 
thereby assures the resistance to expected changes in the 
demand. Thus, hubs location result is substantial for stra-
tegic planning.

Robust UMAHLP formulation

Thereby, the stochastic formulation of the problem to find a 
robust solution is given as:

S.t. (5), (7)–(9).
We propose the stochastic programming model where the

robust hub location remains “close” to optimal for each sce-
nario s ∈ S . The problem is abbreviated as StHLPAD that 
means stochastic hub location problem with absolute deviation.

The first term in (10) represents the hub setup costs, the 
second addend in the goal function is the expected trans-
portation costs, and the third addend is the weighted mean 
absolute deviation of the transportation costs. The parameter 

(10)

���

∑

k∈K

akyk

+
∑

s∈S

ps

∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

+ �
∑

s∈S

ps|
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

−
∑

s�∈S

ps�

(
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s�

ijkm

)
|

� can be regarded as risk trade-off factor between expected
costs and deviation.

Nonlinearity elimination

The objective function (10) contains absolute value function 
which adds some complexity into the model. The literature 
proposes the efficient linearization approach in application 
of robust optimization with mean absolute deviation. We use 
the Yu and Li (2000) results for (10) reformulation.

Theorem  1 (Yu and Li 2000) A problem Minimize 
Z = |f (X) − g| , subject to X ∈ F (F is a feasible set), can be 
linearized by using the following formulation:

The multiple application of Yu and Li (2000) theorem 
to the third term of (10) converts the robust hub location 
problem with absolute deviation into the mixed integer pro-
gramming task:

S.t. (5), (7)–(9)

The zs is an absolute value linearization auxiliary nonnega-
tive continuous variable for any scenario s ∈ S . The (15) is 
a linear objective function with the constraints (16) and (17) 
which collectively are equivalent to (10). The constraints 
(16) and (17) correspond to (12) and (13).

(11)min f (X) − g + 2�

(12)S.t. g − f (X) − � ≤ 0

(13)� ≥ 0

(14)X ∈ F

(15)

���

∑

k∈K

akyk +
∑

s∈S

ps

∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

+ �
∑

s∈S

ps

(
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

−
∑

s�∈S

ps�
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s�

ijkm
+ 2zs

)

(16)

∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

−
∑

s�∈S

ps�
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s�

ijkm

+ zs ≥ 0 ∀s ∈ S

(17)zs ≥ 0,∀s ∈ S
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The third term of (16) by the means of using the scenario
occurrence integrality constraint 

∑
s∈S ps = 1 is simplified:

Benders decomposition

The Benders decomposition method is the procedure of par-
titioning linear and nonlinear integer programming prob-
lems with a stair-case matrix structure introduced by Bender 
(1962). The partitioning method relies on projections usage 
in combination with dual problem and relaxation stages. In 
this section, decomposition parts formulation for problem 
(5), (7)–(9), (16)–(18) are offered. The new smaller sub-
problems as original problem splitting result are described 
in “SP formulation” and “Master problem MP” sections, 
respectively, subproblem (SP) and master problem (MP).

SP formulation

By fixing the integer variables yk = yh
k
 at iteration h calculated 

in MP optimization stage, we obtain the primal linear SP:

The dual problem is derived by associating the dual varia-
bles es, us

ijk
, vs

ij
 with the constraints (20)–(22), respectively. 

Thus, a dual SP is formulated as follows:

(18)

���

∑

k∈K

akyk +
∑

s∈S

ps

[
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

+ 2�zs

]

(19)

���

∑

s∈S

ps

∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

+ 2�
∑

s∈S

psz
s

(20)

S.t.
∑

s�∈S

ps�
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s�

ijkm

−
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈K

cijkmx
s
ijkm

− zs ≤ 0 s ∈ S

(21)

∑

m∈K,m≠k

xs
ijmk

+
∑

m∈K

xs
ijkm

≤ ws
ij
yh
k

i, j ∈ N, k ∈ K, s ∈ S

(22)
∑

k∈K

∑

m∈K

xs
ijkm

= ws
ij

i, j ∈ N, s ∈ S

(23)xs
ijkm

≥ 0 i, j ∈ N, k,m ∈ K, s ∈ S

(24)yk ∈ {0, 1} k ∈ K

(25)zs ≥ 0,∀s ∈ S

(26)���

∑

i∈N

∑

j∈N

∑

s∈S

ws
ij
vs
ij
−
∑

i∈N

∑

j∈N

∑

k∈K

∑

s∈S

us
ijk
ws
ij
yh
k

The dual SP (26)–(32) is a linear problem. The objective 
function (26) participates in optimality Benders cuts con-
struction with a combination of auxiliary continuous non-
negative variable � for estimation of the total expected flow 
transportation costs in sum with the expected deviation:

where variables of the dual SP problem esh, ush
ijk
, vsh

ij
 are fixed 

by optimal values in the iteration h.

Master problem MP

The MP consists of binary variables yk and � , and most of 
original problem (5), (7)–(9), (16)–(18) constraints belong 
to the SP problem; therefore, we have the following MP:

S.t. (33)

where the (36) is added to assure the installation at least one 
hub; otherwise, the extreme ray generation is not excluded in 
Benders iterations. This constraint guarantees the feasibility 
of (26)–(32).

(27)S.t. es ≤ 2�ps s ∈ S

(28)

cijkmes − pscijkm

∑

s∈S

es + vs
ij
− us

ijk
− us

ijm

≤ cijkmps i, j ∈ N, k ≠ m, k,m ∈ K, s ∈ Si, j ∈ N,

(29)

k ≠ m, k,m ∈ K, s ∈ S

cijkkes − pscijkk

∑

s∈S

es + vs
ij
− us

ijk

≤ cijkkps i, j ∈ N, k ∈ K, s ∈ S

(30)es ≥ 0 s ∈ S

(31)vs
ij
≥ 0 i, j ∈ N, s ∈ S

(32)us
ijk

∈ R i, j ∈ N, k ∈ K, s ∈ S

(33)� +
∑

s∈S

∑

i∈N

∑

j∈N

∑

k∈K

ush
ijk
ws
ij
yk ≥

∑

i∈N

∑

j∈N

∑

s∈S

ws
ij
vsh
ij
,

(34)���

∑

k∈K

akyk + �

(35)
∑

k∈K

yk ≥ 1

(36)yk ∈ {0, 1} k ∈ K

(37)� ≥ 0
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The basic benders algorithms

The basic Benders algorithm in UMAHLP application is 
discussed in de Camargo et al. (2008) and is illustrated in 
Algorithm 1, where �MP(y, �) and �SP(e, u, v) are the MP and 
dual SP objective functions optimal values. 

Algorithm 1: A basic Benders decomposition for StHLPAD
UB ← +∞, LB ← 0, h ← 0
while UB = LB do

Solve MP (34)–(37)
LB ← φMP (y, η)
Solve SP (26)–(32)
Add cut (33) to MP
if φSP (e, u, v) + k∈K akyk < UB then

UB = φSP (e, u, v) + k∈K akyk
else

Nothing
end
h ← h+ 1

end

Improved benders algorithm

The Benders decomposition algorithm’s efficiency depends 
on the number of iterations to reach the stop criterion, espe-
cially, it depends on the dual problem variables, i.e., the dual 
SP usually has several optimal solutions which derive the 
same optimal objective function. However, it has an effect 
on cuts quality and convergence.

A Pareto-optimality introduction into the Benders cuts 
generation helps to increase the quality of cuts, that is shown 
in De Camargo et al. (2011) and de Sá et al. (2013). We 
follow the Papadakos (2008) of Pareto-optimal cuts update 
scheme; therefore, the dual SP is modified:

S.t. (27)–(32)
where y0

k
 is a start core point, a point which belongs to

the relative interior of the convex hull of Y; however, as 
it is shown in Papadakos (2008) the Magnanti and Wong 
points (Magnanti and Wong 1981) can be used instead of the 
core points to derive Pareto-optimal cuts. Since there are not 
practical methods of the core points or Magnanti and Wong 
points evaluation according to Mercier et al. (2005), the 
results of De Camargo et al. (2011) and de Sá et al. (2013) 
are used for Magnanti and Wong points initialization (39) 
and points update algorithm (40):

(38)���

∑

i∈N

∑

j∈N

∑

s∈S

ws
ij
vs
ij
−
∑

i∈N

∑

j∈N

∑

k∈K

∑

s∈S

us
ijk
ws
ij
y0
k

(39)y0
k
=1∕2 k ∈ K

(40)y0
k
=(1 − �)y0

k
+ �yh

k
k ∈ K

where 0 < 𝛾 < 1 . The improved Benders decomposition 
algorithm is presented on Algorithm 2, where it is assumed 
to set � = 1∕2 as the best empirically obtained value by 
Papadakos (2008) and Mercier et al. (2005). 

Algorithm 2: An improved Benders decomposition for StHLPAD
UB ← +∞, LB ← 0, h ← 0, γ = 0.5
y0 initialization, as example: (39)
while UB = LB do

Solve SP (38), (27)-(32)
Add cut (33) to MP
Solve MP (34)–(37)
LB ← φMP (y, η)
Solve SP (26)–(32)
Add cut (33) to MP
Update Magnanti and Wong points (40)
if φSP (e, u, v) + k∈K akyk < UB then

UB = φSP (e, u, v) + k∈K akyk
else

Nothing
end
h ← h+ 1

end

Computational experiments

Here, the extensive computational experiments are described 
in order to demonstrate the absolute deviation effects on the 
resulting solutions under demand uncertainty. Besides, a 
comparison of the performance of Algorithms 1 and 2 is 
presented.

Calculations have been carried out using Civil Aeronautic 
Board (CAB) and Australian Post (AP) data sets from OR-
Library (Beasley 1990). The data in CAB refers to 25 US 
cities, where distances between cities approximated by the 
Euclidean ones dij and the service demand between every 
pair of cities are provided. The demands are normalized 
for CAB and AP, i.e., total demand is equal to 1. Since the 
hub setup costs are omitted in CAB data set, the following 
procedure has been done to model missed data: (Alumur
et al. 2012): ak = 15log

∑
j∈N wkj, k ∈ K . There are 25 and 40

nodes selected for analysis from CAB and AP data sets cor-
respondingly, where all nodes are the candidates to be a hub.

The stochastic formulation, in current work notions, 
assumes the set of scenarios for the demands uncertainty 
with certain probabilities. The scenarios generation algo-
rithm is associated with procedures from Alumur et al. 
(2012), where the demands are realized from the inter-
val [0.01wij, 10wij] for CAB and AP. The interval is divided 
into two parts: [0.01wij, 5wij] and [5wij, 10wij] , where the 
demand for i, j and each scenario s takes a random value 
with probability 2/3 from the first half and with probability 
1/3 from the second one. This procedure is introduced to 
avoid the symmetry in scenarios.
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The instances designation is CAB and AP for appropri-
ate data set where 5 and 3 scenarios are generated corre-
spondingly. We consider two types of scenario occurrence 
probabilities: uniform distribution and decreasing prob-
abilities, i.e., [1/3, 1/4, 1/6, 1/6, 1/12] and [1/2, 1/3, 1/6] 
probability sets for CAB and AP accordingly. The names of 
the instances are coded as CAB10�.d and AP10�.d, where 
10� is � discount factor multiplying by 10 and d ∈ {U,C} , 
i.e., U uniform distribution, C decreasing probabilities. The
� ∈ {0.5, 5} are considered.

The solutions for every instance were obtained with
GUROBI Optimizer 8.0.1 on the server with 4.2 GHz and 
64 GB of RAM under Linux environment. The algorithms 
and LP/MIP models are implemented on PyCharm IDE by 
using Python 3.6.

In Tables 1 and 2, the “Time (s)” columns list the proces-
sor time of solving the problem, the “Installed hubs” list the 
numbers of hubs to be located, and the “Obj.” presents the 
value of the objective function. Table 2 also contains the 
results for each risk trade-off factor �.

Table 1 presents the computational results obtained by 
the stochastic model described in “Stochastic formulation of 
UMAHLP” section. Table 2 is derived from the experiments 
with the problem in “Robust hub location problem concept” 
section. The “Obj. Stoch.” in Table 2 lists the values of the 
objective function without absolute deviation term with the 
purpose of the absolute deviation influence detection. The 
objective function values “Obj.” in Table 1 and “Obj. Stoch.” 
values for � = 0.5 in Table 2 are equal as well as the installed 
hubs for the corresponding instances; it is due to small 

weight of absolute deviation term in the objective function, 
where for CAB instances it constitutes 0.7% in average and 
for AP instances 0.3% from objective value. In case, when 
� = 5 the hub locations for � ∈ {0.6, 0.8} in Table 2 differ
from the described one in Table 1, the objectives in Table 1
and “Obj. Stoch.” differ from each other for all instances.
The expected costs increase for 2% in the CAB instances and
for 0.6% in the AP instances where the expected costs are the
hub installation costs and the expected transportation costs.

The absolute deviation value is calculated by a formula 
“Obj.” minus “Obj. Stoch.” by using the columns in Table 2. 
This difference for � = 0.5 is not equal to 0 for all consid-
ered instances; however, the 75% of the instances have the 
absolute deviation value equal to zero for � = 5 . Evidently, 
the solutions correspond to the concept of robustness that 
was described in the “Robust hub location problem concept” 
section  because the zero absolute deviation means the same 
objective value for each scenario separately. The 25% of the 
instances with nonzero absolute deviation are the decreas-
ingly distributed scenario cases (marked by “C”), and the 
scenarios with higher probability have the stronger influence 
on the solution than the lower one.

The trade-off factor � is a control parameter of expected 
absolute deviation term influence, which in zero case 
reduces the proposed in the “Robust hub location problem 
concept” section problem to basic stochastic formulation. 
The large � values in comparison with transportation and 
hub setup costs increase absolute deviation term impact on 
the objective function, as a consequence, the optimization 
of setup and transportation costs will be relegated to the 
background.

The second part of the experiments focuses on the algo-
rithms in the “Benders decomposition” section performance. 
In Table 3, the computational results of Standard Benders 
cuts and Pareto-optimal cuts on the instances introduced 
above are obtained. The classical Benders decomposition 
shows the best results for all instances except CAB2.C in 
comparison with the improved Benders cuts (Pareto-optimal 
cuts) by processor time measure. From the other side, the 
Pareto-optimal cuts are designed to reduce the number of 
cuts: about 4 times less cuts in CAB and about 1.5 times 
less in the AP instances. It demonstrates us the cuts com-
plexity grows if the cuts quality increases. Additionally, the 
“Time (s)” of Standard Benders cuts algorithm in Table 3 
and GUROBI Optimizer with basic parameters in Table 2 
vary by instances: GUROBI Optimizer about 4 times faster 
on CAB and 6.3 times more slowly in average on AP in com-
parison with classical Benders cuts. This effect manifests 
itself because CAB data set generates HLP which is easier 
to solve as compared with AP data set.

Table 1  Calculations on Stochastic model from “Stochastic formula-
tion of UMAHLP” section

Instance Time (s) Installed hubs Obj.

CAB2.U 11.87 4, 7, 12, 17, 24 963.85
CAB4.U 10.71 4, 12, 18, 24 1104.25
CAB6.U 8.59 12, 18, 21 1216.76
CAB8.U 7.61 12, 18, 21 1288.86
CAB2.C 11.54 4, 7, 12, 17, 24 961.38
CAB4.C 10.53 4, 12, 18, 24 1099.1
CAB6.C 10.08 12, 18, 21 1209.69
CAB8.C 8.16 12, 18, 21 1280.01
AP2.U 145.64 0, 13, 32 196,344.12
AP4.U 130.4 0, 13, 32 203,471.52
AP6.U 181.31 13,18 209,540.29
AP8.U 110.51 18,21 211,718.21
AP2.C 152.5 0, 13, 32 196,847.98
AP4.C 137.22 0, 13, 32 203,949.18
AP6.C 118.92 13,18 209,330.98
AP8.C 113.73 13,18 211,965.67
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Conclusion

This work proposes a new decision robustness concept in 
hub location problem. The method is applied to stochas-
tic formulation of UMAHLP under uncertainty in demand 
in scenario form. The absolute deviation of the expected 
transportation costs is added into the objective function of 

the problem to realize the basic idea: the solution is robust 
with respect to optimality if it is “close” to optimal for any 
scenario in the scenario set. It is shown that trade-off param-
eter λ has a significant influence on the result. For example, 
for the large λ = 5, several nodes are served by other hub in 
contrary to the simple stochastic case. That fact means that 

Table 2  Robust results

Instance λ = 0.5 λ = 5
Time (s) Installed hubs Obj. Obj. Stoch. Time (s) Installed hubs Obj. Obj.Stoch.

CAB2.U 70.29 4, 7, 12, 17, 24 968.21 963.85 328.29 4, 7, 12, 17, 24 985.66 985.66
CAB4.U 103.25 4, 12, 18, 24 1111.27 1104.25 479.26 4, 12, 18, 24 1137.43 1137.43
CAB6.U 121.17 12, 18, 21 1225.72 1216.76 357.11 2, 12, 21 1252.59 1252.59
CAB8.U 67.5 12, 18, 21 1301.26 1288.86 177.95 2, 12, 21 1333.38 1333.38
CAB2.C 110.73 4, 7, 12, 17, 24 963.72 961.38 825.26 4, 7, 12, 17, 24 981.77 962.34
CAB4.C 85.28 4, 12, 18, 24 1103.47 1099.1 687.6 4, 12, 18, 24 1132.22 1106.18
CAB6.C 94.85 12, 18, 21 1215.9 1209.69 299.59 2, 12, 21 1248.29 1226.8
CAB8.C 84.53 12, 18, 21 1288.72 1280.01 190.36 2, 12, 21 1328.65 1304.98
AP2.U 2653.99 0, 13, 32 196,967.07 196,344.1 2856.97 0, 13, 32 197,498.4 197,498.44
AP4.U 2204.88 0, 13, 32 204,086.93 203,471.5 2203.47 0, 13, 32 204,491.3 204,491.28
AP6.U 3485.79 13, 18 210,190.79 209,540.8 3966.33 0, 13, 32 210,609.5 210,609.5
AP8.U 3010.51 18, 21 212,330.64 211,718.3 2640.76 18, 21 213,555.4 213,555.39
AP2.C 1787.33 0, 13, 32 197,243.43 196,848 2119.67 0, 13, 32 197,498.4 197,498.44
AP4.C 2135.83 0, 13, 32 204,336.5 203,949.2 2484.31 0, 13, 32 204,491.3 204,491.28
AP6.C 1992.08 13, 18 209,911.09 209,331 3013.88 0, 13, 32 210,609.5 210,609.5
AP8.C 2092.54 13, 18 212,538.74 211,965.7 2686.95 18, 21 213,555.4 213,555.39

Table 3  Computational effort Instance λ = 0.5 λ = 5

Standard benders cuts Pareto-optimal cuts Standard benders cuts Pareto-optimal 
cuts

Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter.

CAB2.U 478.51 60 870.57 15 678.45 79 1487.25 19
CAB4.U 453.76 59 751.36 14 651.6 78 1184 18
CAB6.U 348.98 46 606.07 12 299.27 37 1046.96 16
CAB8.U 194.54 26 493.36 10 220.78 28 1124.77 17
CAB2.C 518.76 65 663.1 13 673.29 80 661.46 11
CAB4.C 394.64 51 404.51 9 538.03 64 673.48 12
CAB6.C 297.59 38 456.79 11 394.59 46 667.1 11
CAB8.C 169.89 22 328.26 9 210.95 26 406.11 8
AP2.U 421.28 9 4023.44 6 471.67 11 7785.86 6
AP4.U 421.64 9 4645.4 7 526.32 13 6177.96 7
AP6.U 430.88 10 5852.66 8 529.69 13 7009.95 8
AP8.U 372.83 9 4726.91 6 532.58 14 7096.61 8
AP2.C 391.73 8 3845.97 6 377.36 9 6329.79 7
AP4.C 423.15 9 4311.91 7 466 11 7166.34 7
AP6.C 373.26 9 3994.22 6 468.1 11 7018.26 8
AP8.C 263.94 7 3405.2 6 412.6 11 6704.89 8
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the decision maker has to think about addition investments 
for ensuring the robustness.

Moreover, the formulated problem is linearized and 
decomposed via Benders cuts. Two strategies of cuts genera-
tion for the linear formulation of the problem are performed: 
classical Benders cuts and Pareto-optimal cuts.

The extensive computational analysis of absolute devia-
tion impact on the decision-making process and the decom-
position algorithms performance in application to the CAB 
and AP data are obtained and discussed.

Open Access This article is distributed under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.  
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