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Abstract: Determination a sequence of extracting ore is one of the most important problems in mine 
annual production scheduling. Production scheduling affects mining performance especially in a poly-
metallic open pit mine with considering the imposed operational and physical constraints mandated by 
high levels of reliability in relation to the obtained actual results. One of the important operational 
constraints for optimization is the uniformity of metallic minerals grade after the blending process. This 
constraint directly affects the performance of the mineral processing plant. The sequence of extracting ore 
is usually determined by the order of pushbacks, which should be mined. Metallic minerals’ grade in each 
pushback is stochastic in nature that comes from some statistical errors committed by the sampling. In 
such situations, decision making about the order of pushbacks for extraction as an exact defined process is 
not possible. Moreover, the decision-maker should maximize the total Net Present Value NPV as the 
main objective of mining operations by considering the high performance of mineral processing plant. To 
deal with such cases, this research proposes a model based on the chance-constrained one-sided goal-
programming and the obtained results from this procedure confirms the model’s reliability and 
correctness. 
 
Keywords: ORE blending; Poly-metallic open pit mine; Chance-constrained programming; Goal 
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1. Introduction 

The production-scheduling models directly affect 
the quality of ore entering the mineral processing 
plant mined from the pushbacks. Ore entering the 
mineral processing plant is named run-of-mine ore 
or feed. Maximizing the net present value is 
usually the main objective function of mine 
production scheduling. To maximize the net 
present value, a set of the operational and physical 
constraints should be considered (Lerchs and 
Grossmman, 1965; Whittle, 1997). The number of 
technical constraints parameters, i.e. the number 
of both operational and physical constraints in the 
poly-metallic mines, such as copper-molybdenum 
and gold mines, are too many and frequently 
stochastic in nature. In mining operations, the 
mineralized zone or orebody is generally divided 
into three-dimensional rectangular representative 
blocks. Each block is assigned by attributes of the 
deposits such as the grade of minerals or elements 
and the block mass. Mineral's grade and other 
attributes should be obtained and estimated by the 
sampling process from drill cores. Some attributes 
are applied for calculation of the net economic 
value of each block, i.e., value of the metal(s) 

contained in the ore minus the costs of mining, 
mineral processing, refinery, tax, etc. (Abrishamifar, 
2003; Dimitrakopoulos and Ramazan, 2004; 
Ramazan, 2007). The positive net economic value 
refers to the “ore” blocks. The “waste” blocks have 
the negative economic value, which is the cost of 
their removing or mining costs. Determining and 
choosing those blocks within the orebody, i.e. 
pushbacks, especially in poly-metallic open pit 
mines must be mined in appropriate years to 
maximize the total NPV, is a decision-making 
problem. Integer programming is usually a 
suitable method for application in decision-
making problems when the number of integer 
variables is limited. But in mining field especially 
for the proposed model application of the integer 
programming to decide which blocks should be 
mined in what sequence and in which year is not 
usually possible in practice because the number of 
the blocks within the orebody is too numerous.  

The proposed model for this study is based on 
goal programming. Goal programming model 
allows taking into consideration several objectives 
in a given problem simultaneously in order to 
choose the most satisfactory solution in conditions 
at hand. One can find a solution with minimizing 
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the deviations between the achievement levels of 
the objectives and the goals set for them by using 
of the goal-programming model. When the goals 
are surpassed, the deviations will be positive and 
in the case of under achievement of the goals, the 
deviations will be negative. 

Goal-programming developed by Charnes et 

al. (1955), Charnes and Cooper (1961), and 
applied by Lee (1973), and Lee and Clayton 
(1972). Goal-programming models apply in 
diverse fields such as management of solid waste, 
accounting and financial aspect of stock 
management, marketing, quality control, 
transportation, site selection, and some other 
technical fields (Aouni et al., 2001). Although the 
applications of goal-programming are very limited 
in mining field, but it has been applied and 
developed successfully in open pit mining production 
scheduling (Abrishamifar, 2005; Esfandiari et al., 
2004; Esfandiari et al., 2003).  

Figure 1 shows Sarcheshmeh-Copper Mine as 
the poly-metallic open pit mine that several ore 
and waste blocks have been mined according to a 
three-dimensional rectangular block model. 

2. Chance-constrained goal programming 

The goal programming model minimizes the 
undesired deviations through the following functions: 
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Where T is the number of two-sided goals, U is 
the number of one-sided goals for upward 
deviations, and D is the number of one-sided 
goals for downward deviations. 

 
−+−+−+ ′′′′′′
dduutt D,D,D,D,D,D  are the positive 

and negative deviations. 
dut G,G,G ′′′  represent 

the levels of expected aspirations or goals associated 
with the objectives )(xFt , )(xH u , and )(xYd  

respectively.  
In mining fields, the vector of objective 

function coefficients and some of the constraints 
are represented in probabilistic forms. Therefore, 
stochastic goal programming, or chance-constra-
ined goal programming, may be used as an 
acceptable and feasible method to determine the 
production scheduling in poly-metallic open pit 
mines. The first formulation of the stochastic goal-
programming model was defined by Contini’s work 
(Contini, 1968). The selected goals have been 
considered as uncertain variables with a normal 
distribution. The model maximizes the probability 
that the consequences of the decision-making will 
belong to a certain region encompassing the 
uncertain goals by generating a solution close to 
the uncertain goals. 

 

 

Figure 1: Some ore and waste blocks have been mined in previous years in Sarcheshmeh-Copper Mine. 

Waste Blocks 

Ore Blocks 
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Several other techniques have been proposed 
to formulate and solve the stochastic goal-
programming model. The most widely used 
technique is the chance-constrained programming 
developed by Charnes and Cooper (1952; 1959; 
1963). In chance-constrained programming, some 
parameters of the constraints are introduced as 
random variables with a minimum probability. 
The following equations show the outline and layout 
of chance-constrained programming (Glynn and 
Robinson, 1997; Taha, 2007):  
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According to the conditions of ija and ib  for all 

i and j , three situations can occur: a) only ija  is 

random variable; b) only ib  is random; and c) 

both ija  and ib  are random variables. In mining 

studies the model may be defined by the use of the 
last situations, i.e. both ija  and ib  are random. By 
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Since in mining operations the parameters (aij, aik) 
are independent, the VAR(Si) is reduced as follows: 
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Where 
)S(VAR

)S(ES

i

ii −
 is standard normal with the 

mean of zero and variance of one. This means that 
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the following nonlinear deterministic constraints: 
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Equation (13) can be put in a separable 
programming scheme by using the following 
substitution: 
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Therefore, the chance-constrained programming 
can be modified as follows: 
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If only the ija  variable is random, all the above 

equations (8) through (16) must be modified by 
substituting 0)( =ibE and 0)( =ibVAR , and all the 

zero number must be changed to ib .  
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Combination the goal-programming model with 
the chance-constrained programming is named as the 
chance-constrained goal programming CCGP. The 
general form of the chance-constrained goal-
programming model can be defined as follows 
(Ruszczynski and Shapiro, 2003; Zhigljavsky and 
Zilinskas, 2008; Boland et al., 2008): 
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In mining operations, application of the two-
sided goal is not usually applied in practice and 
they are almost as one of the forms of the one-
sided goals, i.e. upward or downward deviations.  

The deterministic equivalent for one-sided 
goals with upward and downward deviations can 
be defined as follows respectively: 
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Deterministic equivalent transformation of chance 
constrained goal-programming causes the appearance 
of some the constraints as a non-linearity property in  
 

the model. The model can be solved by various non-
linear programming techniques such as the 
generalized reduced gradient technique. Here the 
proposed model is solved by “LINGO” software. 

3. Description the proposed model 

In the proposed model, the goals can be divided 
into two categories: a) economic goal, and b) mineral 
processing and refinery goals. The decision-maker 
needs to know the amount of maximized net present 
value under “ideal conditions” for mining 
operations. Ideal conditions for a poly-metallic 
open pit mine refers to the set of conditions, 
which directly affect mining operations in 
practice. However, the decision-maker and mine 
designer wish that the set of conditions never 
occurs because they cause the reduction of the net 
present value. The maximized net present value is 
somehow unknown for the ideal mining 
operations. The decision-maker is concerned and 
interested in approaching these amounts at real 
conditions. However, the maximized net present 
value in the ideal mining operations is much more 
than the amounts of actual net present value by 
considering all real conditions as technical 
constraints. The maximized net present value in 
the ideal mining operations can be obtained and 
interpreted by the application of a chance-
constrained programming model and maximizing 
the minimum obtained income in the years of 
planning through the following relations: 
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“Program I” as follows, refers and shows the 
real conditions by considering all technical 
constraints.  

Program I: The probability of the net content 
value of each mined ore block and the income in 
the tth year of planning can define through the 
following relationship:  
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The mass balance probability between the k
th 

metallic mineral in feed in tth year and (t+1)th year 
of planning must be presented as the follows: 
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The probability of maximum usage of refinery 
plants’ capacity for kth metallic mineral is shown 
as follows: 
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Total tonnage mined ore and waste blocks 
should be balanced with mining capacity through 
the following relationship:  
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Total tonnage of feed should be balanced with 
mineral processing plant capacity by the following 
equation: 
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Total tonnage of mined ore and waste blocks in 
each pushback should be balanced with its ore 
reserve as follows: 
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The mass balancing between tonnage of mined 
blocks with feed and waste tonnages can be 
shown as follows: 
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Income sorting in each year and its relation to 
the amount in the next year of planning are shown 
as follows: 
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Where jip∈λ
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 is the vector space of p
th 

pushback, ith grade range of principle mineral, and 
j
th grade range of the most valuable of minor 

mineral. tji∈Ω
�

 is the vector space of ith 

grade range of principle mineral, jth grade range of 
the most valuable minor mineral, and t

th year of 
planning. k is kth metallic mineral, and T is the 
time required for the considered planning period. 

mψ  is the total mined materials, i.e. ore & waste 

tonnage. cψ  is the tonnage of ore should be sent 

to mineral processing plant, i.e. run-of-mine ore or 

feed. Wψ  is the tonnage of waste should be sent 

to waste dump. 21 11 αα −− ,  and 31 α−  are the 

minimum probability values. Mc, Pc and Rc are 
the capacities of mining, mineral processing plant, 
and refinery plants respectively. R is the recovery, 
g is the mineral grade, and V is the metallic 
mineral value. Cm, Cp and Cr are the costs of 
mining, mineral processing, and refinery 
respectively. F is the fixed cost. Inc is the income. 
Or is the ore reserve in each pushback. The 

expression 
⊗MNPV  is the maximized net 

present value under ideal conditions of mining 
operations. The net present value in each year at 
ideal conditions for mining operations is usually 
more than the maximized net present value at real 
conditions. Therefore, the economic goal is 
defined in the proposed model as achieving the 
net present value at real conditions with respect to 
the maximized net present value at ideal 
conditions. One can predict that the economic 
goal may not be achieved in other situations that 
are realistic. The optimized planning with 
minimum deviation between the net present 
values at the real conditions with the maximized 
net present value at the ideal conditions is 
obtained by the application of the proposed model 
in the suggested manner. The mineral processing 
and refinery goals may be defined as follows: 

a) minimum harmful or gangue minerals in 
the feed;  
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b) maximum usage of the mining capacity;  

c) maximum usage of the mineral processing 
plant capacity; and  

d) maximum usage of refiner plant capacity. 

“Program II” shows a part of proposed model 
based on stochastic goal-programming as a closed 
form.  

Program II: Minimizing the deviations of one-
sided goals can be presented as:  
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The mathematical relations for the probability 
of economic goal, the probability of minimum 
gangue minerals in feed, the probability of goal of 
the mining capacity, the probability of goal of 
mineral processing plant’s capacity, and the 
probability of goal of refinery plant capacity are 
presented respectively as follows:  
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Indeed the main structure of the proposed model is 
established by combination of “Program I” and 
“Program II” through the following relations: 

Program I + Program II                                    (47) 
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are the minimum probability values for economic, 
gangue minerals in the feed, mining capacity, 
processing capacity, and the refinery capacity 
goals for both of the above sets respectively. 

4. Verifying the proposed model 

Mathematical logic of the proposed model is 
verified by applying it to solve the proved 
hypothetical complex case study for precious 
metals in poly-metallic minerals. The mine is 
simulated as such to have very difficult conditions 
of the feed characters for planning very near 
characters of some pushbacks in Sarcheshmeh-
Copper Mine. In this study, two pushbacks are 
considered for planning by the use of the proposed 
model. The first pushback has gold accompanying 
copper and molybdenum, with 112.77 million tons 
of ore reserve. The second pushback has a slight 
difference in its characters compared to the first. 
The second pushback does not have gold and has 
24.85 million tons of ore reserve. By simulation 
procedure, the copper grade ranges for the first 
pushback is between (0-1.2) percentage, and for 
the second pushback is (0.31-0.7) percentage. In 
addition, the molybdenum grade ranges in both 
pushbacks are between (0-0.15) percentage and 
(0.026-0.1) percentage respectively. The gold 
grade range in the first pushback is (0-0.048) 
oz/ton. The statistical error entered the sampling is 

about %.52± . 
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Table 1: Annual production scheduling and goals achievement. 

No. Description Amount Unit Goal Achieved 
Prediction of 

Goal Achievement 
1 Optimum duration 12 Years - - 
2 Net profit 106,418,302.1 U.S. dollars No Yes 
3 Mined materials 11,468,330 Tons/Year - - 
4 Feed 7,175,833 Tons/Year - - 
5 Mining capacity usage 99.725 (%) Yes Yes 
6 Mineral processing capacity usage 96.422 (%) Yes Yes 
7 Refinery capacity usage 95.202 (%) Yes Yes 
8 Average Cu grade in mined materials 0.4195 (%) Yes Yes 
9 Average Cu grade in feed 0.6704 (%) Yes Yes 
10 Average Mo grade in mined materials 0.0322 (%) Yes Yes 
11 Average Mo grade in feed 0.0845 (%) Yes Yes 
12 Average Au grade in mined materials 0.0166 Ounces/Ton Yes Yes 
13 Average Au grade in feed 0.0265 Ounces/Ton Yes Yes 

 

By applying the proposed model, the net 
present value at 20% discount rate is obtained 
$1,277,019,625. Optimum obtained operational 
life is 12 years with net profit per year 
$106,418,302.1. The obtained results show an 
improvement of about 22.5% by applying the 
proposed model. Table 1 shows the obtained 
results for annual production scheduling and goals 
achievement. 

5. Conclusion  

As one of the main advances in the recent 
years in the mining field, one can directly point to 
the development and introduction of new 
proposed design methods and planning techniques 
for mining. Many factors play significant roles in 
the design and planning of mining operations and 
this makes up the entire subject of mining design. 
Hence, it is hardly surprising that there are not 
enough mathematical tools available as 
algorithms, which are capable to find an optimal 
solution to this task or problem. The available 
algorithms; however, offer more or less functional 
alternatives, such as a wide set of parameters have 
been “implicitly or explicitly fixed” and non-
changing under the supervision of a mine planner 
and depending on the quantity and quality of the 
input parameters that the model could handle and 
accept. To show the proposed model versatility 
and ability, the required tests must consider too 
much volume of different kinds of random data. 
The proposed evolved and expanded model uses 
the chance-constrained one-sided goal programm-
ing algorithm. The proposed model can be applied 
to provide an optimized planning scheme by 
considering all important factors affecting 
optimum planning. The most important property 
of the proposed model is the standardization of 
metal grade being sent to the mineral processing 

plant. In addition, there are not any significant 
inconsistencies for all of the effective factors in 
the mine planning and design either, so the 
proposed model provides increased flexibility for 
decision makers in evaluating different options 
and alternatives available at hand.  
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