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Abstract: In this paper, we focus on a continuously deteriorating critical equipment which its failure cannot 

be measured by cost criterion. For these types of systems like military systems, nuclear systems, etc it is 

extremely important to avoid failure during the actual operation of the system. In this paper we propose an 

approach which constrains failure probability to a pre-specified value. This value guarantees a chance of 

failure less than or equal to the pre-specified value during real operation of the system. The inspection 

periods and maintenance policy are found in two phases. Failure probability is limited to a pre-specified 

value In the first phase, and in the second phase optimum maintenance thresholds and inspection periods 

are obtained in such a way that minimize long-run expected costs. Due to the complexity of the model, 

Monte Carlo simulation is used to obtain optimum results.    
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1. Introduction 

Reliability is one of the important issues in the 

assessment of industrial equipment or products. 

Good product design is of course essential for 

products with high reliability. However, no matter 

how good the product design is, products 

deteriorate over time since they are operating 

under certain stress or load in real environments, 

often involving randomness. Maintenance has, 

thus, been introduced as an efficient way to assure 

a satisfactory level of reliability during the useful 

life of a physical asset. 

The main idea behind Condition Based 

Maintenance (CBM) is to provide a decision 

support for maintenance actions. As such, it is 

natural to include maintenance policies in the 

consideration of the machine prognostic process.  

The aim of CBM is to optimize the maintenance 

policies according to certain criteria such as risk, 

cost, reliability and availability. In those CBM 

models, which cost is taken into account as 

optimization criterion, the optimum policy is often 

obtained by minimizing the long run cost per time 

unit (Kumar and Westberg, 1997).   

Generally CBM models fall into two 

categories: completely observable systems and 

partially observable systems. The state of the 

system in a completely observable system can be 

completely observed or identified. First of all we 

discuss completely observable systems. Jardine et 

al. (2006) focus on the analytical modeling of a 

condition based inspection / replacement policy 

for a stochastically and continuously deteriorating 

single unit system.  

They consider both the replacement threshold 

and the inspection schedule as decision variables 

for the problem. They minimize the long run 

expected cost per unit time by the stationary law 

for the system state. Amari and McLaughlin 

(2004) utilized a Markov chain to describe the 

CBM model for a deterioration system subject to 

periodic inspection and the optimal inspection 

frequency and maintenance threshold were found 

to maximize the system availability. Castanier et 

al. (2005) consider a two unit system which can 

be maintained by good as new preventive or 

corrective replacements. They develop a 

stochastic model based on the semi-regenerative 

properties of the maintained system state and the 

associated cost model is used to optimize the 

performance of the maintained model. Barata et 

al. (2002) use Monte-carlo simulation to model 

the continuously monitored deteriorating systems. 

They assume that after each maintenance action a 

random amount of improvement is made on the 

state of the system which is independent of 

current system state. Then the optimized 

thresholds of maintenance are found such that the 

total expected cost of system is minimized. 

Dieulle et al. (2003) consider a continuously 

deteriorating system which is inspected in random 
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times. In this model, they assume that deterio-

ration follows a gamma distribution and system 

fails if its condition lies upper than a pre-specified 

threshold. In their model two types of replacement 

can be done depending on the fact that system is 

failed or the condition of system exceeds a critical 

threshold.  

For partially observable systems, Barbera et al. 

(1996) propose a CBM model which assumes that 

failure rate of the system depend on the variables 

of the system state and fixed inspection periods. 

Then the maintenance action is optimized such 

that the long term costs of maintenance actions 

and failures are minimized. Kumar and Westberg 

(1997) suggest an approach based on reliability 

that inspection periods and maintenance 

thresholds are estimated such that the global cost 

per unit time is minimized. Chen and Trivedi 

(2005) build the semi-Markov decision process 

for the maintenance policy optimization of 

condition based preventive maintenance problems 

and present the approach for joint optimization of 

inspection rate and maintenance policy. Wang 

(2002) applied a stochastic recursive control 

model for CBM optimization based on the 

assumptions that the item monitored follows a 

two-period failure process with the first period of 

a normal life and the second one of a potential 

failure. A stochastic recursive filtering model was 

used to predict the residual, and then a decision 

model was established to recommend the optimal 

maintenance actions. The optimal condition 

monitoring intervals were determined by a hybrid 

method of simulation and analytical approach. 

Goode and Roylance (2000) determine the length 

of the next condition monitoring interval for a 

given risk level. 

As discussed earlier, in CBM the maintenance 

policies are optimized according to certain criteria 

such as risk, cost, reliability and availability. Risk 

is defined as the combination of probability and 

consequence. Usually, consequence can be 

measured by cost. In this case, risk criterion is 

equivalent to the cost criterion. However, there 

are some cases, e.g., critical equipments in a 

power plant, in which consequence cannot be 

estimated by cost. For some systems, such as 

aircrafts, submarines, military systems, and 

nuclear systems, it is extremely important to avoid 

failure during actual operation because it can be 

dangerous or disastrous (Wang, 2002). Therefore, 

failure probability is more important than cost in 

such systems. In these scenarios, probability or 

reliability criterion would be more appropriate. In 

this paper we consider a two unit series system 

suffering from continuous deterioration. The 

inspection periods and maintenance thresholds are 

determined to constrain failure probability to a 

pre-specified value and total maintenance costs 

per time unit is minimized. The novelty of the 

present work stems from the fact that system 

failure due to random shocks is constrained to a 

pre-specified value for our supposed critical 

system. 

2. Notations and problem formulation 

First of all we declare the notations which are 

used in this research. 

t
X  State of the system at time t. 

t
Y  The amount of deterioration occurred in 

period t. 

1ξ  Preventive maintenance threshold. 

2ξ  Preventive replacement threshold. 

pm
C  The cost incurred by preventive mainten-

ance action. 

pr
C  The cost incurred by preventive 

replacement action which is strictly   

bigger than
pm

C . 

C∞  The long-run cost of system. 

( )xπ  Stationary law of the deterioration 

process. 

( )
t

Xλ  Failure rate of the system. 

T  The time between two successive inspec-

tion periods. 

( )f x  Probability density function of 

deterioration occurring during one period. 

( ) ( )T
f x T th convolution of ( )f x . 

p   Maximum allowed Failure probability 

determined by decision maker group. 

dC   System down time cost per time unit. 

( )C t  Cumulative cost per time unit till time t. 

The measurement is taken on continuous scale. 

Also we assume that system is inspected at 

equidistant times and time to failure follows an 
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exponential distribution and failure rate is a linear 

increasing function of system condition. 

For each change of time t∆ , the random 

deteriorations 
t t t

X X+∆ −  is assumed to be 

independent and have the same probability density 

function. Natural candidates for the associated 

probability density function can be obtained in the 

class of infinitely divisible distributions, e.g. 

gamma distributions (Feller, 1971). The 

exponential distribution is a special case of 

gamma distributions. This distribution is easier to 

further investigate the evaluation of the 

maintenance policy. 

At the end of each period a decision is made to 

initiate either a preventive maintenance or 

preventive replacement action according to each 

unit condition. The preventive maintenance action 

is initiated when the state of the unit exceeds a 

threshold 1ξ  and the preventive replacement 

action is initiated when the state of the unit 

exceeds a threshold 2ξ  where 2 1ξ ξ> .  

We assume time to failure follows a non-

homogeneous Poisson process, and the failure rate 

is an increasing function, ( )
t

Xλ , of the variable 

t
X . We assume a linear relationship between 

( )
t

Xλ  and 
t

X . The reliability of the system, 

( )R t , is the probability that the system will not 

fail by the end of time period t. The state of the 

system at the end of period t is 1t t t
X X Y+ = + , 

So the reliability of the system at the end of period 

t is given by: 

TYX ttetR
)(

)(
+−= λ

                                             (1) 

where T is the time between two successive 

inspection periods. Equation (1) is identical to the 

probability that time between failures is greater  

than T. 

We define conditional failure probability of the 

system by: 

TYX
tf

ttetRXP
)(

1 1)(1)(
+−

+ −=−= λ
              (2) 

As discussed in Section 1, we also assume that 

the failure of our critical equipment cannot be 

measured by cost. So in order to avoid failure 

during operation of the system, the decision maker 

group constrains failure probability to a maximum 

allowed value p. Because in optimum policy the 

failure probability must not exceed p, first of all in 

phase 1 we obtain an interval for the thresholds 

and the length of inspection periods which 

constrains failure probability to value less than p. 

Then in the next phase the optimum thresholds 

and inspection periods are determined by 

minimizing the cumulative cost per time unit. 

If no failure occurs during period t, the 

condition of system at the beginning of period t+1 

is: 

ttt YXX +=+1                                                   (3) 

where tY  is the deterioration occurred on system 

in period t. 

A stochastic regeneration process is character-

rized by accumulation of a stochastic input 

process and an output mechanism that removes 

all the present quantity whenever it exceeds a 

critical level. As discussed in Section 2, after 

replacement of the unit, it is in the good as new 

initial state and its future evolution does not 

depend any more on the past. These replacement 

times are regeneration points for the system. Ross 

(1983) shows for a regeneration process, as time 

increases the distribution of tX  converges to the 

steady state distribution. The assumption of 

restoring the system state to 0X when unit state 

reaches 2ξ  tells us that after each preventive 

replacement action the system state is 

independent of what has happened before. 

Let ( )xπ denote the stationary law of the 

deterioration process and x  and y be the system 

deterioration levels observed at the end of two 

successive maintenance operations. The possible 

scenarios are the followings: 

Scenario 1. 1x ξ< . System is left as it is and the 

probability density function of amount of 

occurring deterioration is 
( ) ( )T

f y x−  where 

T is the length of inspection period. 

Scenario 2. 1 2xξ ξ< < . The system is 

preventively maintained to its initial state and the 

probability density function of amount of 

occurring deterioration will be 
( )

( )
T

f y . 

Scenario 3. 2 xξ < . The system is replaced with 

a new one and the probability density function of 

amount of occurring deterioration is 
( )

( )
T

f y . 

By integration on the whole state space, the 

description of the different maintenance actions 

can lead to the following expression of the 

stationary probability density for the deterioration 

process at inspection times. 
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The goal is to determine 1,T ξ  and 2ξ  in a 

way that failure probability at steady state 

remains less than or equal to p  and maintenance 

costs are as low as possible.  

The evaluation of the probability density 

function ( )yπ is rather tricky and requires to 

solve a one sided integral equation. Hence due to 

complexity of Equation (4) we approximate 

stationary probability density function via 

simulation in the next section.  

3. Simulation modeling and two phase solution 

procedure for the proposed approach 

In order to simulate continuous deterioration 

process we discretize state space. We assume that 

between exponentially distributed times there 

exists a small amount of deterioration ∆ . 

Therefore we have 1t t
X X N+ = + ∆  where N  

follows Poisson distribution.  

3.1. Approximation of steady state distribution 

through simulation 

In order to approximate stationary probability 

density function for a given maintenance 

thresholds and inspection period, the deterioration 

process is simulated for 10,000,000 periods. In the 

beginning of each period, if the system condition 

appears to equal 0X n+ ∆ , then 1+  is added to 

the frequency of observing condition variable in 

state 0X n+ ∆ . Since we discretized state space, 

the number of different states at inspection times 

cannot be countless. This allows us to calculate 

observing frequency for a finite number of states. 

Finally the frequency of each state is divided by 

10,000,000 to obtain a probability distribution 

(see Appendix). Figure 1 shows stationary 

probability density function of system state for 

different thresholds and 10T = obtained by 

Monte Carlo simulation. Each subfigure 

corresponds to a different maintenance threshold 

which are 
1 2( , ) (1, 2), (2,3), (3, 4)ξ ξ =  and 

(5,8) .  

Expected failure probability and long run cost 

are obtained through approximated probability 

density function in the next two subsections. 

3.2. First phase optimization 

Let triple 1 2( , , )Tξ ξ  denote a combination of 

thresholds and inspection period for our critical 

deteriorating system. First of all we split feasible 

space into different thresholds and inspection 

periods and select several points 1 2( , , )Tξ ξ  from 

the feasible space for simulation.  

Then probability density function of the 

deterioration at steady state is used to calculate 

failure probability (see Equation (2)) of the 

system at infinity.  

Those triples for which failure probability does 

not exceeds p are selected for the optimization in 

the next period. 

In order to obtain more precise solutions, this 

search can be performed finer. Accumulation of 

deterioration during operation period results in 

higher failure rate at the end of the period. 

Therefore during the operation of the system, the 

failure probability is also at most p . From 

Equation (2) we can infer that failure probability 

for the simulated system at infinity must be 

calculated from Equation (5). 

( )( )

0
1 ( )

x
x T

f
x

P e x dx
λ π

=∞

=
= − ×∫                          (5) 

In order to calculate the failure probability we 

fix maintenance policy (including maintenance 

thresholds and  inspection periods), and simulate 

the deterioration process to obtain corresponding 

probability density function at steady state, then 

failure probability is calculated from Equation (5). 

The maintenance thresholds and inspection 

periods for which the failure probability is less 

than or equal to p  are selected for the next phase 

optimization. In the next stage the optimum value 

for 1ξ , 2ξ and T are obtained by minimizing long 

run expected maintenance costs. 

3.3. Second phase optimization 

In this phase of optimization procedure we 

select triple 1 2( , , )Tξ ξ  among triples provided by 
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the first phase which minimizes system costs. 

Total cost of system is calculated as follows: 

inspdprpr

pmpminspinsp

PCPC

PCPCCE

+

++=∞ ][
                       (6) 

where insp pm pr, ,P P P are respectively the 

probability at steady state to have an inspection, 

preventive maintenance action and preventive 

replacement action. Computation of these 

probabilities requires the knowledge of 

probability density function of system 

deterioration at infinity. The probabilities 

insp pm pr, ,P P P  are calculated from Equation (7): 
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Hence the long run expected cost of system is 

given by: 

1
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                    (8) 

where 1ξ , 2ξ and T are provided by the first phase 

as discussed in subsection 3.2. 

4. Numerical results 

We simulated the deterioration process for 

10,000,000 periods and 0.1∆ = by a C++ 

program to obtain stationary distribution function. 

Failure probability and maintenance costs are 

calculated for 

pm pr d1, 0.3, 1, 4, 16, 0.2C C C pµ λ= = = = = =   

by excel. The C++ program is presented in the 

appendix. The stationary probability density 

function was estimated for thresholds: 

Figure 1-a: The Probability density functions for the deterioration 

process at steady state, 
1 21, 2ξ ξ= = . 

Figure 1-b: The Probability density functions for the deterioration 

process at steady state, 
1 22, 3ξ ξ= = . 

Figure 1-c: The Probability density functions for the deterioration 

process at steady state,
1 23, 4ξ ξ= = .  

Figure 1-d: The Probability density functions for the deterioration 

process at steady state, 
1 25, 8ξ ξ= = . 
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),( 21 ξξ =(0.5,1), (0.5,2), (1,2), (1,3), (1,4), (2,3), 

(2,4), (3,4), (1,8), (2,8), (3,8), (4,8), (5,8), (6,8) (9) 

and for inspection periods T=3,5,7,8,10 which are 

illustrated orderly in Figure 2. The horizontal axis 

represents maintenance thresholds as shown in 

(9). The six graphs in Figure 2 corresponds to the 

6 inspection periods 3,5,7,8,10. The lowest curve 

corresponds T=3 and others respectively 

correspond T=5,7,8,10.  

As Figure 2 shows for certain pair of 

maintenance thresholds, the larger the inspection 

periods, the greater the failure probability; 

because larger inspection periods allow deteriora-

tion to accumulate without any improvement on 

the system state and consequently this leads to a 

larger failure rate. This is also true for mainte-

nance thresholds. If inspection periods are fixed, 

then larger maintenance thresholds will postpone 

recovery of system. This makes deterioration 

accumulate and resulting in larger failure rate. 

Selected maintenance policies for optimization of 

next phase are as follows:  

(0.5,1,3), …, (0.5,1,5), (0.5,2,5), (1,2,5), (1,3,5), 

(2,3,5), (1,4,5), (2,4,5), (0.5,1,7), (0.5,2,7), (1,2,7), 

(1,3,7), (0.5,1,8), (0.5,2,8). 

Here each triple represents 1 1( , , )Tξ ξ . Figure 

3 shows long-run expected cost for the feasible 

space provided in the first phase of the 

optimization procedure.  

Every point on each graph has failure 

probability at most p = 0.2. 

As Figure 3 shows the optimum maintenance 

policy for the second phase of the algorithm is  

),,( 21 Tξξ =(1,4,5).  The maintenance policy 

(1,4,3) incurs higher maintenance costs while its 

thresholds are the same of (1,4,5); because 

frequent inspections on the system leads to more 

downtime costs on it.  

Other maintenance policies like (1,3,5) or 

(0.5,2,5) which have the same inspection periods 

of the optimum policy (1,4,5) incur higher costs 

too; since they cause much maintenance costs due 

to their lower thresholds. 

 

 

Figure 2: Expected failure probability of the critical system at the steady state. 

 

Figure 3: Expected long-run cost for the policies optimized in first phase. 
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5. Conclusion 

In this paper we considered a critical system 

suffering from continuous deterioration. Since 

failure of this system can be disastrous it had 

better to find a policy which constrains failure 

chance to a pre-specified value. The failure 

probability was obtained for different policies, 

and then optimum policy based on long-run 

expected cost was found. 

Adopting this policy guarantees a chance of 

failure less than p = 0.2 with the most possible 

low cost. The complexity of the system motivated 

us to use simulation for optimizing maintenance 

policy. To find the optimum policy which fulfils 

two objectives failure probability and cost, a 

search in the feasible space of maintenance 

thresholds and inspection periods was employed. 

This procedure can be performed finer and more 

exhaustive especially for inspection periods, but it 

will be time consuming. 

In order to obtain an optimum result with a high 

degree of confidence, probability density function 

of the deterioration process at infinity can be 

numerically computed, though its calculations is 

time consuming. The stationary distribution of the 

deterioration process can be obtained from 

numerical analysis methods like trapezoidal or 

Simpson's method.  

This work can be easily extended to multi-

component systems. Since downtime incurs high 

costs on the system if a replacement or preventive 

maintenance action is performed on a component 

then an opportunistic maintenance action 

(including preventive replacement or preventive 

maintenance action) can be performed on any 

components of the system depending on its 

condition to save in costs. 
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