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Abstract: This paper introduces discretionary imprecise data in Data Envelopment Analysis (DEA) and 

discusses the efficiency evaluation of Decision Making Units (DMUs) with non-discretionary imprecise 

data. Then, suggests a method for evaluation the efficiency of DMUs with non-discretionary imprecise data. 

When some inputs and outputs are imprecise and non-discretionary, the DEA model becomes non-linear 

programming problem. By a Theorem, we use the translation of imprecise data into exact data and then use 

the standard linear DEA model for evaluating DMUs with non-discretionary and imprecise data, which is 

the generalized form of envelopment form in input oriented of CCR model. To illustrate the proposed 

method, a numerical example with non-discretionary imprecise data is solved. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a math-

ematical programming technique for identifying 

efficient frontiers for peer Decision Making Units 

(DMUs). The original DEA models, say CCR 

model (Charnes et al., 1978), assume that inputs 

and outputs of DMUs are homogeneous and pre-

cise, i.e. they perform the same task with similar 

objective, consume similar inputs and produce 

similar outputs, and operate in similar operational 

environments (Golany and Roll, 1993); and inputs 

and outputs are measured by exact values (do not 

take into account non-discretionary or imprecise 

inputs and outputs). Often the assumption of ho-

mogeneous environments is violated and factors 

that describe the differences in the environments 

need to be included in the analysis. These factors, 

and other factors outside the control of the DMU, 

are frequently called non-discretionary factors, 

(Fired et al., 1993; Ruggiero, 1996). On the other 

hand, the CCR model assumes that all inputs and 

outputs are known exactly. However this assump-

tion may not be true, i.e. some or all of inputs and 

outputs may be imprecise. Imprecise data means 

that some data are known only to the extent that 

the true values lie within prescribed bounds while 

other data are known only to satisfy certain ordin-

al relations (Zhu, 2003). If we incorporate impre-

cise data into the standard linear CCR model, the 

resulting DEA model is a nonlinear and non-

convex program, and is called imprecise DEA 

(IDEA) (Zhu, 2003). Cooper et al. (1999) ad-

dressed the problem of imprecise data in DEA in 

its general form. Kim et al. (1999) discuss how to 

deal with bounded data, ordinal data, and ratio 

bounded data with an application to a set of tele-

phone office.  

In a recent study Zhu (2003), the nonlinear Im-

precise DEA (IDEA) is solved in the standard li-

near CCR model and discusses the incorporation 

of weight restrictions in IDEA. 

A number of different approaches have been 

developed to take into account non-discretionary 

inputs and outputs, when DMUs are evaluated. 

The first approach to account for difference in 

non-discretionary inputs and outputs was intro-

duced by Banker and Morey (1986). Lovell 

(1994) and Ruggiero (1996) suggest an alternative 

approach. Golany and Roll (1993) generalize the 

approach introduced by Banker and Morey (1986) 

to account for both non-discretionary inputs and 

nondiscretionary outputs. Also, a number of mul-

tiple stage models have been suggested. Ray 

(1991) and Fried et al. (1993) introduced two- 

stage approaches. The first stage consists of a 

standard DEA with only discretionary factors. In 

the second stage, the efficiency score are cor-

rected using regression analysis, in which non-

discretionary factors are used as independent va-

riables. Ruggiero (1998) and Fried et al. (1999) 

have further extended the two-stage approaches. 

But in this paper the researchers discuss the effi-

ciency evaluation of DMUs with non-discretio-

nary imprecise data in DEA and suggest a method 

for evaluation the efficiency of DMUs.  
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The rest of the paper is structured as follows: 

Section 2 briefly introduces the background of 

DEA and IDEA. In Section 3, the researchers in-

troduce the non-discretionary imprecise data and 

propose a method for evaluating DMUs with non-

discretionary imprecise data. In Section 4, the re-

searchers obtain the efficiency of DMUs through 

an example. Conclusion is given in Section 5. 

2. DEA and imprecise data 

To describe the DEA efficiency measurement, 

we assume that there are n DMUs to be evaluated, 

indexed by ( 1, , )j j n= …  and each DMU is as-

sumed to produce s different outputs from m dif-

ferent inputs. Let the observed input and output 

vectors of DMUj be ),,( 1 mjjj xxx …=  and 

),,( 1 sjjj yyy …= respectively, that all compo-

nents of vectors jx  and jy  for all DMUs are 

non-negative and each DMU has at least one 

strictly positive input and output.  

To obtain efficiency of DMUo we use the CCR 

model, which is as follows: 

Max∑
=

s

r

roy
1

ru  

Subject to: 

 1
1

=∑
=

m

r

ioi xv                                                  (1) 

njxvyu
m

i

iji

s

r

rjr ,..,1,0
11

=≤−∑∑
==

 

srur ,...,1,0 =≥  

mivi ,...,1,0 =≥  

where iv and ru  are the weights associated, re-

spectively, with input i and output r  and 

1( , , )o o mox x x= …  and 1( , , )o o soy y y= …  are 

inputs and outputs of DMUo, respectively. When 

ijx (for some i) and rjy  (for some r) are imprecise 

and unknown decision variables such as bounded 

and ordinal data, Model (1) becomes a nonlinear 

programming and is called imprecise DEA 

(IDEA) (Cooper et al., 1999). The bounded data 

can be expressed as: 

BOryyy rjrjrj
∈≤≤ ,                         

BIixxx ijijij ∈≤≤ ,                               (2) 

where ijx  and rjy  are upper bounds, ijx  and 

rj
y are lower bounds and BO and BI represent the 

associated sets containing bounded outputs and 

inputs, respectively. The weak ordinal data can be 

expressed as: 

ioij xx ≤   

and  

rorj yy ≤     
WOrWIioj ∈∈≠∀ ,,                (3) 

or to simplify the representation, 

WOryyyy rnrkrr ∈≤≤≤≤≤ ,......21  

WIixxxx inikii ∈≤≤≤≤≤ ,......21      (4) 

where WO and WI represent the associated sets 

containing weak ordinal outputs and inputs, re-

spectively. The strong ordinal data can be ex-

pressed as: 

SOryyyy rnrkrr ∈≤≤≤≤≤ ,......21  

SIixxxx inikii ∈≤≤≤≤≤ ,......21       (5) 

where SO and SI represent the associated sets con-

taining strong ordinal outputs and inputs, respec-

tively.  

If we incorporate Equations (2) to (5) into 

Model (1), we have: 

Max ∑
=

s
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where 
−∈ iij Hx )(  and 

+∈ rrj Hy )(  represent any 

of or all of (2)-(5). The following theorem pro-

vides the theoretical foundation to the approach 

developed by Zhu (2003) where the standard DEA 

model is used to solve the IDEA Model (6). 

Theorem 1. Suppose 
−
iH  and +

rH are given by 

(2). Then for DMUo the optimal value to (6) can 

be achieved at ioio xx =  and roro yy =  for 

DMUo and ijij xx =  and 
rjrj yy =  for DMUj 

)( oj ≠ . 

Proof. See Zhu (2003). 

Theorem 1 shows that when DMUo is under 

evaluation we can have a set of exact data via set-

ting at ioio xx =  and roro yy =  for DMUo and 

ijij xx =  and 
rjrj yy =  for DMUj )( oj ≠ . 

3. Non-discretionary imprecise data 

For simplicity and without loss of generality, 

all the models presented are formulated in an in-

put oriented form and without non-discretionary 

imprecise outputs. These assumptions can be re-

laxed. Suppose 
k

j Rx ∈  and 
l

j Rz ∈  present the 

discretionary and non-discretionary inputs, re-

spectively, where lkm += . When ijx (for some 

i) and kjz  (for some k) are imprecise and nondi-

scretionary imprecise inputs and unknown deci-

sion variables such as bounded and ordinal data, 

Model (1) becomes a nonlinear programming and 

is called non-discretionary imprecise DEA (ND-

IDEA). The discretionary and non-discretionary 

bounded inputs can be introduced as: 

DBIixxx ijijij ∈≤≤ ,   

NDBIKzzz kjrjkj ∈≤≤ ,                        (7) 

where, ijx  and kjz  are upper bounds, ijx  and 

kjz are lower bounds and DBI and NDBI represent 

the associated sets containing bounded imprecise 

and non-discretionary imprecise inputs, respec-

tively. The discretionary and nondiscretionary 

weak ordinal data can be introduced as: 

WNDIKWDIiojzzxx kokjioij ∈∈≠≤≤ ,,,,   (8) 

or to simplify the representation, 

WDIixxxx inipii ∈≤≤≤≤≤ ,......21  

WNDIkzzzz knkpkk ∈≤≤≤≤≤ ,......21   (9) 

where WDI and WNDI represent the associated 

sets containing weak ordinal imprecise and non-

discretionary imprecise inputs, respectively. The 

discretionary and non-discretionary strong ordinal 

data can be expressed as: 

SDIixxxx inipii ∈<<<<< ,......21   

SNDIkzzzz knkpkk ∈<<<<< ,......21  (10) 

where SDI and SNDI represent the associated sets 

containing strong ordinal imprecise and non-

discretionary imprecise inputs, respectively. 

    Banker and Morey (1986) suggested the follow-

ing model for evaluation DMUs with non-

discretionary inputs: 

θMin=MB  

Subject to: 

o

n

j

jj yy ≥∑
=1

λ                                              (11) 

∑
=

≥+−
n
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1
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∑∑
==
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jj zz
11

0λλ  
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The dual of the model (11) is as follows: 

Max ouy  

Subject to:  

11 =oxv                                                       (12) 

njzzvxvuy ojjj ,...,1,0)(21 =≤−−−        

0,0,0 21 ≥≥≥ vvu  

Now suppose some of the inputs are imprecise 

data in the forms of bounded data, ordinal data 

and ratio bounded (discretionary and non-
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discretionary imprecise inputs). If we incorporate 

(2)-(6) and (7)-(10) into Model (12), we have: 

Max ∑
=

s

r

ror yu
1

 

Subject to: 

1

1

1 =∑
∈Ii
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where, 1I  and 2I  are the  index sets of discretion-

ary and non-discretionary inputs, respectively. 

The above model is nonlinear, but its ratio form is 

as follows: 

Max ∑∑
∈= 1

1

1

/
Ii

ioi

s

r

ror xvyµ   

Subject to:                                                         (14) 

1))((/

21
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srvv kir =≥≥≥µ  

21 , IkIi ∈∀∈∀  

The Models (13) and (14) are equivalent. By 

Theorem (2), Model (13) can be converted a li-

near programming problem.  

The following theorem provides the theoretical 

foundation to the approach developed by Zhu 

(2003), where the DEA Model (12) is used to 

solve the ND-DEA model. 

Theorem 2. Suppose −
iH  and +

rH are given by (2) 

and (7). Then for DMUo the optimal value to (13) 

can be achieved at
  

,, iioio Iixx ∈=  2, Ikzz koko ∈=   

and roro yy =  for DMUo and ijij xx = , 

2, Ikzz kjkj ∈=  and 
rjrj yy = for DMUj 

)( oj ≠ . 

Proof. Suppose the optimal value to (13) or (14)    

is achieved at 
** , rjij yx  and 

*
ijz  for DMUj 

)( oj ≠  such that: 

DBIixxx ijijij ∈≤≤ ,*
 

BINDizzz ioioio −∈≤≤ ,*
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∈≤≤ ,*

                                 (15) 

where DBI and ND-BI are discretionary bound 
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,,, kjkjijij zzDBIixx =∈=  

),, BOryyBiNDk
rjrj ∈=−∈                  (17) 

is a feasible solution to (14). Therefore, the op-

timal value to (14) can be achieved at ijij xx = , 

and 
rjrj yy = for DMUj )( oj ≠ .  

By contradiction suppose that for DMUo the 

optimality is achieved at DBIixxx ioioio ∈≤< ,*
, 

BOryyy rororo
∈<≤ ,*

 and ,*
kokoko zzz ≤<
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which is a contradiction. □ 

Theorem 2 asserts that for obtaining efficiency 

score of DMUo we can have a set of exact data via 

setting at ,, iioio Iixx ∈=  2, Ikzz koko ∈=  and 

roro yy =  for DMUo and ijij xx = , 

2, Ikzz kjkj ∈=  and BOryy
rjrj ∈= ,  for DMUj 

)( oj ≠ , while the Model (13) maintains the effi-

ciency score rating for DMUo. In this case the 

Model (13) is converted to the following linear 

programming model: 

=*
oϕ Max ∑∑
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+
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The dual of the Model (19), which is used for 

evaluating of DMUs, is as follows: 

Min 0θ  

Subject to:  

,
0,1
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jj
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,
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∑
≠=

≤−
n

jj

kokjj zz
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∑
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n

jj
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Theorem 3. The Problem (20) is feasible and 

bounded. 

Proof. It can be seen that ,0,1,1( === joo λλθ  

),,,1 ojnj ≠= �  is a feasible solution of the 

Model (20) and 1* ≤oθ . Therefore, the Model 

(20) is feasible and bounded.□  

Zhu (2003) proposed a procedure to convert the 

weak and strong ordinal data, into a set of exact 

data. In this paper, we apply Zhu’s method, Zhu 

(2003), for converting the discretionary and non-

discretionary weak and strong ordinal data, into a 

set of exact data. 

4. Numerical example 

The researchers provide a numerical example 

via Table 1. This Table portrays 14 DMUs that 
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produce 4 outputs using 4 inputs. Table 1 reports 

the data x1, x2, x3 and x4 as the four inputs and y1, 

y2, y3 and y4 as the four outputs. Note that x4 and y4 

are ordinal inputs and outputs, respectively. Sup-

pose that the relations between x4 and y4 are weak 

ordinal and factor of x4 is outside of the control of 

the DMU and is non-discretionary imprecise input 

and have 4 ordinal scales, i.e. "4" for the worst 

and "1" for the best. y4 have 14 ordinal ranks. The 

current paper reports y4 differently with "1" for 

the worst and "14" for the best. Since small input 

values and larger output values are preferred in 

DEA. y4 imprecise and x4 non-discretionary im-

precise and they hold in (5) and (9), respectively. 

Therefore, we can convert y4 and x4 into bounded 

data by Zhu's method.  

Then by Theorem 1 and Model (20), the enve-

lopment form in input oriented, we obtain the ef-

ficiency of DMUs. To illustrate the proposed me-

thod we consider 4z . From column 10 of  Table 1 

we have: 

10,4 9,4 8,4 3,4 2,4

5,4 11,4 1,4

( 1)

( 14)

z z z z z

z z z

= ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ =�

 

Now, for the input 4z  in weak ordinal relations, 

we set up the following intervals, Zhu (2003): 

[ ] )10(,1,0 =∈ jzkj                                  

[ ] )14,...,11,9,...,2,1(,14,1 =∈ jzkj                 (21) 

 

Suppose DMU10 is under evaluation by Model 

(20). Based upon Theorem 1, we know that op-

timal value of Model (20), *
10θ , remains the same 

and (21) is satisfied if 10,4 0z =  (lower bound) for 

DMU10 and 4 14, ( 10)jz j= ≠  (upper bound for 

other DMUs). A similar illustration holds 

about 4y . The column 10 of Table 1 shows the 

efficiency scores under the assumption of weak 

ordinal relations when they evaluated by Model 

(20).  For }14,12,10,6,5,2{=Λ∈o  using Model 

(20) DMUo is efficient and other DMUs are inef-

ficient. Finally, the researchers obtained a model, 

Model (20), which is the generalized form of en-

velopment form of CCR model in input oriented. 

The proposed method can be generalized to 

DMUs with variable retunes to scale. 

5. Conclusion 

    In some situations, some inputs and outputs of 

DMUs are non-discretionary and imprecise. In 

this paper, the researchers introduced these data 

and proposed a method, by CCR model, for effi-

ciency evaluation of DMUs with non-discre-

tionary imprecise data. The CCR model with non-

discretionary imprecise data is a non-linear prob-

lem. By the second Theorem, the researchers con-

vert resulted non-linear problem to a linear prob-

lem. Therefore, the presented procedure uses the 

linear programming problem for efficiency evalu-

ation, which is always feasible and bounded.  

 

 

 

 
Table 1:  Data for the 14-DMUs and efficiency scores with weak ordinal relations. 

DMU 
1x  2x  3x  4 4x z=  

1y  2y  3y  
4y  Efficiency 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

217 

441 

204 

216 

242 

234 

204 

356 

292 

141 

220 

239 

261 

170 

4.11 

7.71 

3.64 

3.24 

5.12 

2.52 

4.24 

7.95 

4.52 

5.21 

6.09 

7.03 

3.94 

2.1 

131 

214 

163 

154 

270 

126 

174 

299 

236 

63 

179 

158 

163 

90 

14 

5 

4 

9 

6 

11 

8 

3 

2 

1 

13 

12 

10 

7 

11.39 

25.59 

9.57 

11.46 

24.57 

8.55 

11.15 

22.25 

14.77 

9.76 

17.25 

16.67 

14.11 

6.8 

4.38 

33.01 

3.56 

9.02 

20.72 

7.27 

2.95 

14.9 

16.35 

16.26 

22.09 

34.04 

19.97 

12.64 

29.41 

61.2 

32.27 

32.81 

65.06 

31.55 

32.47 

66.04 

49.97 

21.48 

47.94 

47.1 

37.47 

20.7 

2 

3 

4 

2 

1 

2 

3 

2 

3 

2 

2 

2 

3 

3 

0.8226 

1 

0.7894 

0.8573 

1 

1 

0.7336 

0.8527 

0.8725 

1 

0.9853 

1 

0.9904 

1 
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