

* Corresponding author. E-mail: sabbagh@cc.iut.ac.ir

Journal of Industrial Engineering International������ Islamic Azad University, South Tehran Branch

January 2008, Vol. 4, No. 6, 39-50

���������	
���	�
�	�	����������	��������	�������������������

	�����������	�����
�������	���
��������

M. S. Sabbagh*

Assistant Professor, Dep. of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran

M. Roshanjooy

M.Sc., Dep. of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran

 Abstract

Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-

tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also

developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are

present to speedup the search for a solution. The method is easy to understand and implement, yet very effec-

tive in dealing with many integer programming problems, including knapsack problems, reliability optimiza-

tion, and spare allocation problems. To see some application of the generalized algorithm, we notice that the

branch-and-bound is the popular method to solve integer linear programming problems. But branch-and-

bound cannot efficiently solve all integer linear programming problems. For example, De Loera et al. in their

2005 paper discuss some knapsack problems that CPLEX cannot solve in hours. We use our generalized algo-

rithm to find a global or near global optimal solutions for those problems, in less than 100 seconds. The algo-

rithm is based on function values only; it does not require continuity or differentiability of the problem func-

tions. This allows its use on problems whose functions cannot be expressed in closed algebraic form. The re-

liability and efficiency of the proposed algorithm has been demonstrated on some integer optimization prob-

lems taken from the literature.

Keywords: Algebraic form; Function values; Generalized implicit enumeration; Integer programming; Lin-

ear speedup

1. Introduction

Many practical optimization problems involve de-

cision variables whose values have to be integers.

Examples of such problems abound in applications;

for example plant operation, design, location, sched-

uling, set covering, set partitioning, set packing prob-

lems and allocation models, etc.

The earlier methods for solving Integer Program-

ming (IP) problems are due to Land and Doig [10]

and to Gomory [7]. These methods are designed to

solve limited subclasses of IP problems rather than

the general category of IP problems. In some in-

stances, the general IP problems can be approximated

and solved as a Linear Programming (LP) problem

and then the solution to that LP optimization are

rounded. This approach may provide a feasible solu-

tion, but the solution may be far from optimal one.

In order to solve Integer Linear Programming (ILP)

problems, there are many proposed methods, includ-

ing Branch and Bound (B&B), cutting planes, poly-

hedral developments, hybrid algorithms, Reformula-

tion-Linearization Technique (RLT), facial disjunc-

tive programming, and post-solution analysis [14]. A

great deal of work has been carried out on optimiza-

tion methods of the reliability problems with separa-

ble objective function and multiple constraints. Ex-

amples of these are given by Chern and Jon [4]. Most

of these methods do not guarantee a global optimum

solution. Lawler and Bell [11] developed an optimi-

zation method for solving Integer Nonlinear Pro-

gramming (INLP) problems with zero-one variables.

Their method is closely related to the ‘lexicographic’

method of Gilmore and Gomory [6] for the knapsack

���

�

problem and the ‘additive’ algorithm of Balas [3].

Lawler and Bell assume that the objective function is

a monotone non-decreasing one and the functional

constraints can be expressed (rewritten) as the differ-

ence of two monotone non-decreasing functions. Sa-

saki et al. [17] developed an optimization method for

solving a spare allocation problem which is applica-

ble to integer problems with non 0-1 variables. They

called their method New Lawler and Bell. Sabbagh

[15,16] generalized the Lawler and Bell algorithm to

solve a broader class of INLP problems. Srivastava

and Fahim [19] presented a two-phase optimization

procedure for integer programming problems. Aardal

et al. [2] presented a survey of non-standard ap-

proaches to integer programming problem.

Several computational techniques (such as B&B

technique, cutting planes technique, relaxation tech-

nique, outer-approximation technique etc.) which are

reasonably efficient on many problems have been

proposed in the literature for solving ILP problems

(see, for instance, [12] and [18]). However, there is as

yet no computational technique which can claim to

efficiently solve many INLP problems [8].

The rest of the paper is organized as follows: Sec-

tion 2 gives a description of the problem, followed by

the method’s motivation in Section 3. In Section 4,

the authors describe their new exact procedure. They

also illustrate the procedures using numerical exam-

ples. A section is reserved on detailed computational

results for comparisons. The last section draws over-

all conclusions.

2. Description of the problem

The general nonlinear integer programming prob-

lem, with bounded integer variables, can be stated as:

Maximize)()()(21 XfXfXf −=

Subject to:

iiii bXgXgXg ≤−=)()()(21 , mi ,...,1= ,

,SX ∈ (1)

+
Ζ∈≤≤≤= jjjj xuxlXS ,0{ , }.,...,1 nj =

where,),,(1 nxxX �= is the design vector,)(Xf is

the objective function, ()ig X is the
th

i functional con-

straint and jj uandl are the integer lower and upper

bound on the
th

j element jx ,
+

Z is the set of non-

negative integers, and ib is the resource constant for

the
th

i constraint. It should also be noted that satisfy-

ing the design vector X upper and lower bound con-

straints does not imply satisfying the functional con-

straints ()ig X .

3. Motivation for the proposed method

For very small optimization problems one can find

a global optimal integer solution by doing a full

enumeration of its integer points in the n-dimensional

cube defined by the bounds of the variables. There

are ∏
=

+−=
n

j

jj luN
1

)1(such integer points. The

following nested loop generates all those N points.

1 1 1

n n n

DO x u to l

DO x u to l

Begin

End

=

=

�

�

For example, doing full enumeration on the follow-

ing problem with N =3×2×3=18 points in its cube,

see Column 1 of Table 1, we get)2,0,1(=X with

11)(=Xf as a global optimal integer solution.

Maximize 32
2

1 325)(xxxxf +−=

Subject to:

22 321 ≤−+ xxx ,

3321 ≤++ xxx , (2)

.2,1,0,1,0,2,1,0 321 === xxx

Now let us try to solve the following problem by

full enumeration.

Max 321
)(1.03

31 32)(5)(32 xxxxxxf
xx

−++=
+

 87
)(1.02

4 224 65 xxx
xx

−+−
+

� ���	
���	�
�	�	�������	������������������ ����������������� ���

�

Subject to:

,5002328 87654321 ≤−−++−+− xxxxxxxx

,100086
2

7
2

5
2

4
2

3
2

2
2

1 ≤−++−+− xxxxxxxx

,3000))((87654321 ≤++++++ xxxxxxxx

.8,...,1,50,...,0 == jx j (3)

This problem has N points in its cube to be enu-

merated an N is calculated as follows:

∏
=

=+=
8

1

401,570,944,767,45)150(
j

N . (4)

Let’s say that our PC, on the average, can enumer-

ate about 1,500,000 of those points per second then it

takes about 12 months or a full year to do full enu-

meration on this problem. However if we use implicit

enumeration, as is shown later on, we obtain a global

optimal solution for it in seconds. Of course the

amount of time saved varies from problem to prob-

lem and depends, amongst other things, on the order

of variables, see [11,15] for details. Nevertheless, for

some problems like the given example the time saved

in solving a problem can be drastic.

4. Description of the proposed method for solving

constrained integer problems

4.1 First let us make the necessary definitions

As is done in the Lawler and Bell method, we de-

fine the vector partial order relation where:

.,...,1, njyxYX jj =≤�≤ (5)

We expand the numerical order relation so that for

any X we define n(X) as:

∏
=

+−−=
n

j

jj lulxXn
2

11)1()()(

 ...)1()(
3

22 ++−−+ ∏
=

n

j

jj lulx (6)

).()1()(11 nn

n

nj

jjnn lxlulx −++−−+ ∏
=

−−

Here vector X is a “general base number”, like a

number in the nonmetric measurement systems, and

)(Xn represents the numerical order of that X. In

general base numbers each position of the number

can have its own range.

When all components of vector X can take values

from 0 to 9 then we can look at X as a decimal num-

ber. Let:

}.,,1,,,1,0|),,({ 1 njuxxxXS jjn ��� ====

If for ,X S Y S∀ ∈ ∀ ∈ in which X ≥ Y implies

() ()g X g Y≥ then the function (.)g is called discrete

isotone non-decreasing function on S.

Let 0V ≥ be an n-vector of integers. It is easy to

prove that (.)g is a discrete isotone non-decreasing

function on S (,) () () 0,iff h X V g X V g X= + − ≥

for all V and X such that X S∈ and () .X V S+ ∈

Notice that a function that is not an isotone

non-decreasing function may be a discrete isotone

non-decreasing function. For example,
2

21

2

1)(xxxXf +−= is not an isotone non-

decreasing function on }0,0|),{(2121 ≥≥= xxxxT

because for X = 0, we have () 0f X = and for

 X = (1/ 2,0) , we have () 1/ 4.f X = − However, this

is a discrete isotone non-decreasing function on the

set S.

Lexicographic (alphabetical or complete) ordering:

Let 1(, ,), .nY y y Y R= ∈� A vector Y is said to be

lexicographically positive, written 0,L
Y > if

1 2 1 0jy y y −= = = =� and 0jy > , for some

nj ,...,1= . For ,X S Y S∀ ∈ ∀ ∈ we write ,L
Y X> to

mean () 0.L
Y X− >

We write L
X Y≤ to mean either (a) () 0,LY X− >

or (b) .X Y= We say “X precedes Y” (in the lexico-

graphic ordering) to mean .L
Y X>

The set S, defined earlier, has ∏
=

+=
n

j

juN
1

)1(

members. The lexicographic ordering allows us to

uniquely order the N members of S as NSS ,,1 �

such that 1 2 3 1, ,L L L L
n NS U S S S S L−= > > > > =�

and)()(),...()()(1321 Nn SnSnSnSnSn >>>> − .

���

�

The adaptation of the Lawler and Bell algorithm

requires the calculation of:

•
−

X , the first vector after X in the lexico-

graphic ordering or the numeric ordering. If

kSX = , 1,...,1 −= Nk then 1+=
−

kSX ,

and if LSX N == , we say its
−

X does not

exist. To get
−

X subtract 1 from X.

• X
~

, the first vector that comes after the vec-

tor X according to the lexicographic ordering

but which is not in relation with X by the par-

tial ordering. If for a particular X all the vec-

tors after it have partial relation with X then

we say that its X
~

 does not exist.

• X̂ , the vector immediately coming before X
~

in the lexicographic ordering. That is to say

SX ∈ˆ is the last vector in the lexicographic

ordering such that for every SY ∈ in which

ˆL L
X Y X≥ ≥ we have partial ordering i.e.,

ˆX Y X≥ ≥ . The first vector after X̂ in the

lexicographic ordering, if it does exist, was

called X
~

. This means that for every SX ∈

its X̂ always exists but if LX =ˆ then there

is no vector after that, that belongs to S so in

this case its X
~

 does not exist. The vector X̂

can be used to obtain useful function bounds

for the constraints of the form .)(ii bXg ≤

To calculate the above vectors, we designate by

X_tilde the algorithm that calculates X
~

, X_hat the

algorithm that calculates X̂ , and X_minus the algo-

rithms that calculates
−

X . These algorithms are

given below:

The generating algorithms for X_hat (see [11, 15,

16 and 17]). We first set XX =ˆ . Then, starting from

the rightmost vector component, nx̂ , find the first

component which is not equal to its upper bound, and

then set this component and all the components to its

right equal to their lower bounds. If all the compo-

nents are equal to their upper bounds, i.e., if X = U

then LX =ˆ .

The generating algorithms for X_tilde (see [11, 15,

16 and 17]). We first set XX =
~

. Then, starting from

the rightmost vector component, nx~ , find the first

component which is not equal to its upper bound, and,

if possible, deduct 1 from its first left neighbor, and

then set all the components to the right of the last

changed component, equal to their upper bounds. No-

tice that, X
~

does not exist if either X = U or the de-

duction can not be made.

The generating algorithms for X_minus (see [11,

15, 16 and 17]). Subtract 1 from X: We first

set XX =
−

. Then, if n nx l
−

> then let 1n nx x
− −

← −

otherwise if X� does exist let XX
~

=
−

, otherwise
−

X does not exist. For example, consider model (2)

again with

}.2,1,0,1,02,1,0),,{ 321321 ===== xxxxxxXS

This set has 18323 =××=N members. For each

member of S its ,
−

X X̂ and X
~

are given in the Table

1. Notice that one can generate X̂ and X
~

indirectly

by doing the following operations:

ˆ ˆ1 1

ˆ

X X X X if X exists

X L otherwise

� = + � = −�
�

=��

� � �

 (7)

4.2. The algorithm

Let us again consider the model (III) optimization

problem. Here, we assume (.)kf and (.)ikg ,

2,1,,...,1 == kmi are discrete isotone non-decreasing

functions. Notice that some of those functions can be

zero. We can use the algorithm presented in this pa-

per to find a global optimal integer solution for such a

problem without having to check every individual

point in its n-dimensional cube. In general, the more

points we skip over the more efficient the algorithm

becomes. As we proceed through the list of vectors

we keep a record of “ X ”, the most profitable solu-

tion, and)(Xff = its most profitable value. The

following rules indicate conditions under which cer-

tain vectors in the lexicographic ordering can be

skipped over. The vector X S∈ is the one currently

being examined and keep in mind that the functions

(.)kf and (.)ikg are discrete isotone non-decreasing

functions. Initially set X = U and f = −∞ . The rules

of the algorithm are (see [11,15, 16 and 17]):

� ���	
���	�
�	�	�������	������������������ ����������������� � �

�

Rule 1. If 1 2
ˆ() ()f X f X f− ≤ then skip to X

~
and re-

turn to rule 1, otherwise, go to rule 2.

Justification. Clearly, for any SY ∈ such that:

))ˆ()()(((ˆ
111 XfYfXfXYX ≥≥�≥≥

))()()ˆ((& 222 XfYfXf −≥−≥− (8)

)()()ˆ()(2121 YfYfXfXff −≥−≥�

).ˆ()ˆ(21 XfXf −≥

Therefore, no better solution will be found between

X and X̂ so we can safely skip to X
~

.

Rule 2. If 1 2
ˆ() ()i i ii g X g X b∃ ∋ − > then skip to X

~

and go to rule 1, otherwise, go to rule 3.

Justification. Clearly

1 2 1 2 1 2
ˆ() () () () () ()i i i i i i ig Y g Y g Y g X g X g X b− ≥ − ≥ − >

for any SY ∈ such that ˆX Y X≥ ≥ . Therefore, no

new vector between X and X̂ will be found such that

this
th

i constraint will be satisfied, and we can safely

skip to X
~

.

Table 1. All integer points of model (2).

X X
−

 X̂ X�

(2,1,2) (2,1,1) (0,0,0)
Does not

exist

(2,1,1) (2,1,0) (2,1,0) (2,0,2)

(2,1,0) (2,0,2) (2,1,0) (2,0,2)

(2,0,2) (2,0,1) (2,0,0) (1,1,2)

(2,0,1) (2,0,0) (2,0,0) (1,1,2)

(2,0,0) (1,1,2) (2,0,0) (1,1,2)

(1,1,2) (1,1,1) (0,0,0)
Does not

exist

(1,1,1) (1,1,0) (1,1,0) (1,0,2)

(1,1,0) (1,0,2) (1,1,0) (1,0,2)

(1,0,2) (1,0,1) (1,0,0) (0,1,2)

(1,0,1) (1,0,0) (1,0,0) (0,1,2)

(1,0,0) (0,1,2) (1,0,0) (0,1,2)

(0,1,2) (0,1,1) (0,0,0)
Does not

exist

(0,1,1) (0,1,0) (0,1,0) (0,0,2)

(0,1,0) (0,0,2) (0,1,0) (0,0,2)

(0,0,2) (0,0,1) (0,0,0)
Does not

exist

(0,0,1) (0,0,0) (0,0,0)
Does not

exist

(0,0,0)
Does not

exist
(0,0,0)

Does not

exist

Rule 3. If

1 2 1 2() () () & , () ()i i if x f X f X f i g X g X b= − > ∀ − ≤ ,

let XX = ,)(Xff = . Skip to
−

X and go to rule 1.

Justification. Clearly if the conditions hold then the

current X is a better feasible solution. Also,
−

X

might be a better feasible solution. Notice that when-

ever we say continue the enumeration with
−

X or X
~

but there is no such vector, it means that the

enumeration is complete and we should stop the cal-

culations.

4.2.1 Numerical examples

Example 1. Let’s solve model (2) that its 18 points

are given in the Table 1. First we transform it into the

format of model (1) as:

Max 32
2

1 325)(xxxxf +−=

)()(235 2123
2

1 XfXfxxx −=−+=

Subject to:

22)()()(32112111 ≤−+=−= xxxXgXgXg ,

3)(3212 ≤++= xxxXg , (9)

.2,1,0,1,0,2,1,0 321 === xxx ,

We now apply our algorithm on this problem and

get)2,0,1(X with 11)(=Xf as a global optimal in-

teger solution.

Example 2. Let solve model (3). Fist we transform it

into the format of model (1). Let

Max)22)(5()(
)(1.0)(1.03

31
6532 xxxx

xxxf
++

+++=

)()()243(2187
2

4321 XfXfxxxxxx −=++−

Subject to:

653111 238)(xxxxXg +++= ,

874212 2)(xxxxXg +++= , (10)

2
7

2
5

2
3

2
121)(xxxxXg +++= ,

86
2

4
2

222)(xxxxXg ++= ,

���

�

)()(331 XgXg = ,

0)(32 =Xg .

Then, this model is in the form of model (1).

 If we apply the algorithm on this problem

 we get)26,0,26,0,0,29,0,28(=X with

5271.925978)(=Xf as a global optimal integer

solution in 23.84 seconds.

Let us use GAMS\BARON software (GAMS IDE

2.0.32.15) to solve this problem in two modes:

• As an NLP problem to get

(28.919,0, 28.919,0,0, 25.935,0, 25.934)X
∗

=

 with .3127.967410)(*
=Xf .

• As an INLP problem to get

(28,0, 28, 0, 0, 25,0, 25)X =� with

() 878092.6213f X =� .

These results show that our integer solution is far

better than the integer solution returned by

GAMS\BARON commercial software.

4.3. Linear speedup: Taking advantage of the linear

constraints

The algorithm of Section 4.2 starts with UX =

and moves forward toward LX = until all the points

in the cube are enumerated either directly or indi-

rectly (implicitly). As was mentioned earlier the more

points we are allowed to skip over in the cube the

more efficient the algorithm becomes. The presence

of linear constraints in the model can enable us to

skip over more points with far fewer computations.

To elaborate consider a typical linear constraint,

�
=

≤=
n

j

jj bxaXg
1

)(, and define �
=

−=
n

j

jj bxad
1

.

If 0>d then the constraint is not satisfied at the

current X and we move toward the largest vector

after X , in the lexicographical ordering, that satisfies

it, thus implicitly enumerating all the infeasible

points in between these 2 points. The algorithm that

we give is an exact algorithm not a heuristic one. It is

based on the fact that: if a constraint is not satisfied at

the current X , then to get the largest vector after

X , either in lexicographical order or numeric order,

we should change the vector X , starting from its

rightmost component i.e., nx and observe the follow-

ing rules:

• If na is negative, then increasing nx will de-

crease d, while its reduction will increase d.

which is counter productive.

• If na is zero then changing nx will not affect

d. To insure we get the largest vector after X,

in the lexicographical ordering, let nx be

equal to its upper bound.

• If na is positive, then increasing nx will in-

crease d, while its reduction will decrease it.

When decreasing nx , make sure its lower

bound is not violated and you deduct the

minimum integer amount required. If deduct-

ing the minimum integer amount required

means decreasing the left side of the con-

straint more than d units, then starting from

the component to the right of the current one,

if possible, try to add the shortage amount.

To see the importance of it, consider the following

constraint:

�
=

++−+−==
8

1

654321 2328)(
j

jj xxxxxxxaXg

 ,2387 ≤−− xx .8,...1,9,...,0 == jx j (11)

If we start with UX = and use the algorithm of

Section 4.2, after applying rules 2 and 3 totals of 144

times we get (8 9 1 9 0 1 9 9)X = as

the largest vector in lexicographical ordering that sat-

isfies the above constraint.

Starting at UX = , we can get the same X , more

efficiently, by doing the followings:

• Compute 5823)(=−= Ugd and start with 8x .

• Since 8a is negative let keep 98 =x and start

with 7x .

• Since 7a is negative let keep 97 =x and start

with 6x

• Since 6a is positive, let 06 =x and

49958 =−=d and start with 5x .

� ���	
���	�
�	�	�������	������������������ ����������������� �!�

�

• Since 5a is positive, let 05 =x and

319249 =×−=d and start with 4x .

• Since 4a is negative, let keep 94 =x and

start with 3x .

• Since 3a is positive, let 03 =x and

49331 =×−=d and start with 2x .

• Since 2a is negative, let keep 92 =x and start

with 1x .

• Since 1a is positive, let 81 =x and

4184 −=×−=d .

• Since 4−=d , this means we have decreased

the left side of the constraint 4 units more

than the minimum of 58. Thus start with 2x

and, if possible, try to add 4 units. Let

4)4(=−−=d .

• Since 2a is negative, start with 3x .

• Since ,33 =a let � � 13/43 ==x and

1134 =×−=d and start with 4x .

• Since 4a is negative, start with 5x .

• Since 25 =a but � � ,02/1 = start with 6x .

• Since ,16 =a let � � 11/6 == dx and

0111 =×−=d and stop.

Thus, we started with UX = and ended

with (8 9 1 9 0 1 9 9)X = . As a result,

we skipped about 10,809,800 infeasible points that

are between those points.

The operations are as follows. Let’s denote all the

linear constraints of the model by bAX ≤ in which

A is a nk × matrix. Check the first linear constraints

at the current X : If it is satisfied go to the next con-

straint, otherwise find the largest vector after X , in

the lexicographical ordering, that satisfies it. Let

that X , to be the new current X and continue until

all the linear constraints are satisfied at the current X .

4.3.1. Numerical examples.

Example 1. Let’s solve model (2) that was solved in

4.2.1. The model has two linear constraints. So we

start with UX = and we get)2,0,1(=X with

11)(=Xf as a global optimal integer solution.

Example 2. Let solve model (3) that its full enumera-

tion requires about one year execution time and using

the algorithm of Section 4.2 requires 23.84 seconds

and taking advantage of its only linear constraints the

execution time becomes 1.57 seconds. Thus the exe-

cution time of this problem is reduced more than 15

times.

5. Computational results

Linear Speedup was coded in Visual C++ and exe-

cuted on a Pentium IV computer with 2.8 GHz proc-

essor and 512 MB of RAM under Windows XP 2002.

The algorithm was tested on three different sets of

benchmark instances that are given in the Appendix:

Set A. The 15 benchmark hard equality constrained

integer knapsack instances generated by Aardal and

Lenstra [1]. Each instance contains between 5 and 10

variables. De Loera et al. [5] have reported that the

commercial solver CPLEX 6.6 could not solve 14 of

these problems in two hours.

 We tried to solve some of those problems includ-

ing the first instance that has 5 variables by the com-

mercial solvers CPLEX 10 and LINGO 10 but did not

succeed to get even a feasible solution in two hours.

We have selected these problems because they are

challenging. We refer to Table 2 in Appendix A, for

the data used here. Their form is maximize cxz =

subject to ,bax = x � 0 ,
dZx ∈ , where Zb ∈ and

where
dZa ∈ with gcd (

1
a , . . . ,

d
a) = 1. For the

cost vector c, we took the first d entries of the vector:

c=(213,-1928,-11111,-2345,9123,-12834,-123, 122331,0,0).

Set B. The 2 largest problems solved by Mohan and

Nguyen [13]. The first instance has 40 variables and

3 constraints and the second instance has 100 vari-

ables and 2 constraints.

Set C. A bridge system [8].

5.1. Results on benchmark instances

Set A. We have transformed this model into the for-

mat of model (1) and reordered the variables such

that nn cacaca /...// 2211 ≥≥≥ hold for the new

order of the variables. Table 3 shows the results of

�"���������������������������������������

�

Linear Speedup on Aardal and Lenstra [1] benchmark

instances for at most 100 CPU seconds on each prob-

lem.

From Table 3 in Appendix A, it is evident that Lin-

ear Speedup achieved the best-known solution in 14

of the 15 test problems, and a solution not very close

to the best known one for the Prob2 instance.

Set B: Problem 1. The best solution reported in the

source for the first problem, after 13.86 seconds, is a

solution with 1030361max =f .

The result of Linear Speedup on this problem

 for 0.0001 second is 40,...,1,99 == jx j with

.1352439=f This is far better than the best solu-

tion reported for this problem.

Set B: Problem 2. The best solution reported in the

source for the second problem, after 45.23 seconds, is

a solution with .303062432max =f

The result of Linear Speedup on this problem for

10 seconds is a solution with .304147783=f This

also is a far better than the best known solution re-

ported for this problem.

Set C: A bridge system. We solved this problem

using the algorithm of Section 4.2. The final results

are)3,3,4,3,1(*
=x and 999373.0*

=f in 0.0001 of

a second.

6. Conclusion

This paper presents an optimization method that is

very effective for solving some ILP and INLP prob-

lems. The results reported here illustrate the effec-

tiveness and efficiency of the proposed method for

solving some integer programming problems.

In all cases of challenging knapsack problems ex-

cept one, the solution provided by the proposed pro-

cedure is in agreement with the results given in the

reference paper. Where applicable, the results also

agree with the solutions obtained using Sasaki’s

method.

For some INLP problems with linear constraints,

the proposed procedure is far superior to Sasaki et al.

method as far as speed is concerned. In terms of fu-

ture research directions, for some ILP and INLP

problems we may solve its corresponding continuous

problem and then apply the Linear Speedup to search

for a good integer solution in a neighborhood of that

solution. The resulting solution then may be used as

an initial feasible solution in other algorithm.

References

[1] Aardal, K. and Lenstra, A. K., 2002, Hard

Equality Constrained Integer Knapsacks. Pre-

liminary version in W.J. Cook and A.S. Schulz

(eds.), Integer Programming and Combinatorial

Optimization: 9th International IPCO Confer-

ence, Lecture Notes in Computer Science, 2337,

Springer-Verlag, 350-366.

[2] Aardal, K., Weismantel, R. and Wolsey, L. A.,

2002, Non-standard approaches to integer pro-

gramming. Discrete Applied Mathematics, 123,

5-74.

[3] Balas, E., 1965, An additive algorithm for solv-

ing linear programs with zero-one variables. Op-

erations Research, 13, 517-545.

[4] Chern, M. and Jon, R., 1986, Reliability optimi-

zation problems with multiple constraints. IEEE

Trans. Reliability. R-35 4, 431-436.

[5] De Loera, J. A., Haws, D., Hemmecke, R., Hug-

gins, P. and Yoshida, R., 2005, A computational

study of integer programming algorithms based

on Barvinok's rational functions. Discrete Opti-

mization, 2, 135-144.

[6] Gilmore, P. C. and Gomory, R. E., 1966, The

theory and computation of knapsack functions.

Operations Research, 14, 1045-1074.

[7] Gomory, R. E., 1963, An All-Integer Program-

ming Algorithm In Industrial Scheduling, J. F.

Muth and G. L. Thompson, Editors, Prentice-

Hall, Englewood Cliffs, NJ Chapter 13.

[8] Ha, C. and Kao, W., 2006, Reliability redun-

dancy allocation: An improved realization for

non-convex nonlinear programming problems.

European Journal of Operational Research,

171, 24-38.

[9] Kuo, W. and Zuo, M. J., 2002, Optimal Reliabil-

ity Modeling: Principles and Applications. John

Wiley & Sons, Hoboken, NJ.

[10] Land, A. H. and Doig, A. G., 1960, An auto-

matic method of solving discrete programming

problems. Econometrica, 28, 497-520.

[11] Lawler, E. L. and Bell, M. D., 1966, A method

for solving discrete optimization problems. Op-

erations Research, 4, 1098-1112.

[12] Linderoth, J. T. and Savelsbergh, M.W.P., 1999,

A computational study of search strategies for

mixed integer programming, INFORMS Journal

on Computing, 11, 173-187.

[13] Mohan, C. and Nguyen, H. T., 1999, A con-

trolled random search technique incorporating

simulated annealing concept for solving integer

and mixed integer global optimization problems.

� ���	
���	�
�	�	�������	������������������ ����������������� �#�

�

Computational Optimization and Applications,

14, 103-132.

[14] Nemhauser, G. L. and Wolsey, L. A., 1999, In-

teger and Combinatorial Optimization. second

ed., John Wiley & Sons, New York.

[15] Sabbagh, M. S., 1983, A General Lexicographic

Partial Enumeration Algorithm for the Solution

of Integer Nonlinear Programming Problems.

D.Sc. Dissertation, The George Washington

University, Washington, D.C.

[16] Sabbagh, M. S., 1996, A general lexicographic

partial enumeration algorithm for the solution of

integer nonlinear programming problems with

discrete isotone non-decreasing objective func-

tion and constraints. Amirkabir Journal of Sci-

ence and Technology, 8(32), 80-85.

[17] Sasaki, M., Kaburaki, S. and Yanagi, S., 1977,

System availability and optimum spare units.

IEEE Trans. Reliability. R-26, 182-188.

[18] Sherali, D. and Driscoll, J., 2003, Evolution and

state-of-the-art in integer programming. Journal

of Computational and Applied Mathematics,

124, 319-340.

[19] Srivastava, V. K. and Fahim, A., 2000, A two-

phase optimization procedure for integer pro-

gramming problems. Computers & Mathematics

with Applications. 12, 1585-1595.

Appendix

Set A of test problems:

Table 2. The Benchmark instances generated by Aardal and Lenstra [1].

c 213 -1928 -11111 -2345 9123 -12834 -123 122331 0 0

Problem 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a
b

Cuww1 1 2 2 2 3 12224 3 6 6 7 4 61119 85569 89,643,482

Cuww2 1 2 2 2 8 36679 3 6 6 8 2 48908 61139 73365 89,716,839

Cuww3 1 2 1 3 7 24269 3 6 4 0 5 36407 48545 60683 58,925,135

Cuww4 1 3 2 1 1 13212 3 9 6 3 8 52844 66060 79268 92482 104,723,596

Cuww5 1 3 4 2 9 26850 2 6 8 5 5 40280 40281 53711 53714 6 7 1 4 45,094,584

Prob1 2 5 0 6 7 49300 4 9 7 1 7 62124 87608 88025 113673 1 1 9 1 6 9 33,367,336

Prob2 1 1 9 4 8 2 3330 3 0 6 3 5 44197 92754 123389 136951 1 4 0 7 4 5 14,215,207

Prob3 3 9 5 5 9 61679 7 9 6 2 5 99658 133404 137071 159757 1 7 3 9 7 7 58,424,800

Prob4 4 8 7 0 9 55893 6 2 1 7 7 65919 86271 87692 102881 1 0 9 7 6 5 60,575,666

Prob5 2 8 6 3 7 48198 8 0 3 3 0 91980 102221 135518 165564 1 7 6 0 4 9 62,442,885

Prob6 2 0 6 0 1 40429 4 0 4 2 9 45415 53725 61919 64470 69340 78539 95043 22,382,775

Prob7 1 8 9 0 2 26720 3 4 5 3 8 34868 49201 49531 65167 66800 84069 137179 27,267,752

Prob8 1 7 0 3 5 45529 4 8 3 1 7 48506 86120 100178 112464 1 1 5 8 1 9 125128 129688 21,733,991

Prob9 3719 20289 2 9 0 6 7 60517 64354 65633 76969 1 0 2 0 2 4 106036 119930 13,385,100

Prob10 4 5 2 7 6 70778 8 6 9 1 1 92634 97839 125941 134269 1 4 1 0 3 3 147279 153525 106,925,262

�$���������������������������������������

�

Table 3. Solution values produced by linear speedup on Aardal and Lenstra [1] benchmark instances.

Problem Optimal Solution Optimal z Our Solution Our z

Cuww1 (7334 0 0 0 0) 1562142 (7334 0 0 0 0) 1562142

Cuww2 (3 2445 0 0 0 0) -4713321 (3 2445 0 0 0 0) -4713321

Cuww3 (4855 0 0 0 0 0) 1034115 (4855 0 0 0 0 0) 1034115

Cuww4 (0 0 2642 0 0 0 0) -29355262 (0 0 2642 0 0 0 0) -29355262

Cuww5 (1 1678 1 0 0 0 0 0) -3246082 (1 1678 1 0 0 0 0 0) -3246082

Prob1 (966 5 0 0 1 0 0 74) 9257735 (966 5 0 0 1 0 0 74) 9257735

Prob2 (853 2 0 4 0 0 0 27) 3471390 (852 1 0 0 0 4 0 25) 3186487

Prob3 (708 0 2 0 0 0 1 173) 21291722 (708 0 2 0 0 0 1 173) 21291722

Prob4 (1113 0 7 0 0 0 0 54) 6765166 (1113 0 7 0 0 0 0 54) 6765166

Prob5 (1540 1 2 0 0 0 0 103) 12903963 (1540 1 2 0 0 0 0 103) 12903963

Prob6 (1012 1 0 1 0 1 0 20 0 0) 2645069 (1012 1 0 1 0 1 0 20 0 0) 2645069

Prob7 (782 1 0 1 0 0 0 186 0 0) 22915859 (782 1 0 1 0 0 0 186 0 0) 22915859

Prob8 (1 385 0 1 1 0 0 35 0 0) 3546296 (1 385 0 1 1 0 0 35 0 0) 3546296

Prob9 (31 11 1 1 0 0 0 127 0 0) 15507976 (31 11 1 1 0 0 0 127 0 0) 15507976

Prob10 (0 705 0 1 1 0 0 403 0 0) 47946931 (0 705 0 1 1 0 0 403 0 0) 47946931

Set B of test problems:

Problem 1 (Problem 17 of source [13]).

Maximize 10987654321 36943942424600510924670116215)(xxxxxxxxxxXf +++++++++=

 191817161514131211 171248839485121431952408 xxxxxxxxx +++++++++

 282726252423222120 454485819326281271258278779 xxxxxxxxx +++++++++

 373635343332313029 179268804311479613653297 xxxxxxxxx +++++++++

 403938 28110578 xxx +++

Subject to:

 151413121110987654321 2181621111310976119 xxxxxxxxxxxxxxx ++++++++++++++

 302928272625242322212019181716 210822267432 xxxxxxxxxxxxxxx +++++++++++++++

 ,2500068104299 40393837363534333231 ≤++++++++++ xxxxxxxxxx

 151413121110987654321 7221681526377235 xxxxxxxxxxxxxxx ++++++++++++++

 2928272625242322212019181716 23432813234227 xxxxxxxxxxxxxx ++++++++++++++

 ,2500026436843610 4039383736353433323130 ≤+++++++++++ xxxxxxxxxxx

 151413121110987654321 93316273107322643 xxxxxxxxxxxxxxx ++++++++++++++

 28272625242322212019181716 16613714312166798 xxxxxxxxxxxxx +++++++++++++

 ,250005627238223 403938373635343332313029 ≤++++++++++++ xxxxxxxxxxxx

 ,9910 ≤≤ ix ,20,...,2,1=i ,9920 ≤≤ ix .40,...,22,21=i

� ���	
���	�
�	�	�������	������������������ ����������������� �%�

�

With f = 304147783

Problem 2 (Problem 18 of source [14]).

Maximize 1110987654321 11438101112559210015050)(xxxxxxxxxxxXf ++++++++++=

 21201918171615141312 533221221916581918790 xxxxxxxxxx ++++++++++

 302928272625242322 30822952502045219211856 xxxxxxxxx +++++++++

 41
4
40393837

2
36

3
3534

2
33

2
32

2
31 5232151715949229 xxxxxxxxxxx +++−−++++++

 525150494847464544
2
43

2
42 8211976211257 xxxxxxxxxxx ++++−++++−+

 6362616059585756555453 181312637612161875 xxxxxxxxxxx +++++++++++

 7473727170696867666564 81219189123221937 xxxxxxxxxxx +++++++++++

 8584838281807978777675 1614111291211171625 xxxxxxxxxxx +++++++++++

 979695
2
949392919089888786 7621231231093 xxxxxxxxxxxx ++−−++++++++

 1009998 24 xxx +++

Subject to:

 ,7500
100

1

≤�
=i

ix

 ,4200010
100

1

50

1

≤+��
== i

i

i

i xx

 ,990 ≤≤ ix .100,...,2,1=i

The result of Linear Speedup on the above problem for 10 seconds is:

x = (99 99 99 99 99 99 0 0 0 0

 99 99 99 99 99 99 99 99 99 99

 99 99 99 99 99 99 99 99 99 99

 99 0 99 99 99 99 0 0 0 99

 99 99 0 19 99 0 0 0 0 0

 99 99 99 99 99 99 99 99 0 99

 99 99 99 99 0 99 99 0 99 99

 99 99 99 99 99 0 99 99 99 99

 99 99 99 99 99 0 99 99 0 0

 99 0 99 0 0 99 99 13 0 0)

!��

�

Set C: A bridge system (n = 5, m = 3)

Consider a set of five subsystems 1, 2, 3, 4 and 5

and suppose that they are connected as shown in

Figure 1. Assume each block represents a stage

(subsystem) that can have either parallel, options, or

2-out-of-n:G structure [8].

Figure 1. A bridge system.

This system is called a bridge system and it con-

sists of five subsystems and three nonlinear and

non-separable constraints. The overall system reli-

ability ()
s

f R is acquired by the pivotal decomposi-

tion method [9], where)(jjj xRR = and

1
j j

Q R= − for all j = 1,. . . ,5.

Since the overall system has a complex structure,

the objective function is also nonlinear and non-

separable. A detailed definition of the problem ap-

pears below:

Maximize)1)(1()(42315 QQQQRRf s −−=

)]1)(1(1[43215 RRRRQ −−−+

Subject to:

,2008320)
2

exp(10 5
2
432

1 ≤+++ xxxx
x

)]
4

exp([62)exp(4)
2

exp(10 42
4

3
32

1 x
xxx

x
++++

,310)
4

exp(7 5 ≤+
x

2
41

3
32

2
2 3)

4
exp(5)]exp([12 xx

x
xxx +++

,5202 3
5 ≤+ x

),6,6,5,3,6()1,1,1,1,1(≤≤ x
n

Zx +∈ ,

where

),975.0,95.0,925.0,9.0,85.0,8.0()(11 =xR

,)75.01(1)(2
22

x
xR −−=

,)12.0()88.0()()(
1

1

2

1
33

3

3

3 kxk
x

k

x

kxR
−+

+

=

+�=

,)7.01(1)(4
44

x
xR −−=

.)85.01(1)(5
55

x
xR −−=

