Journal of Industrial Engineering International

January 2008, Vol. 4, No. 6, 39-50

Islamic Azad University, South Tehran Branch

A generalized implicit enumeration algorithm for a class of

integer nonlinear programming problems

M. S. Sabbagh*

Assistant Professor, Dep. of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran

M. Roshanjooy
M.Sc., Dep. of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-
tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also
developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are
present to speedup the search for a solution. The method is easy to understand and implement, yet very effec-
tive in dealing with many integer programming problems, including knapsack problems, reliability optimiza-
tion, and spare allocation problems. To see some application of the generalized algorithm, we notice that the
branch-and-bound is the popular method to solve integer linear programming problems. But branch-and-
bound cannot efficiently solve all integer linear programming problems. For example, De Loera ef al. in their
2005 paper discuss some knapsack problems that CPLEX cannot solve in hours. We use our generalized algo-
rithm to find a global or near global optimal solutions for those problems, in less than 100 seconds. The algo-
rithm is based on function values only; it does not require continuity or differentiability of the problem func-
tions. This allows its use on problems whose functions cannot be expressed in closed algebraic form. The re-
liability and efficiency of the proposed algorithm has been demonstrated on some integer optimization prob-
lems taken from the literature.

Keywords: Algebraic form; Function values; Generalized implicit enumeration; Integer programming; Lin-

ear speedup

1. Introduction

Many practical optimization problems involve de-
cision variables whose values have to be integers.
Examples of such problems abound in applications;
for example plant operation, design, location, sched-
uling, set covering, set partitioning, set packing prob-
lems and allocation models, etc.

The earlier methods for solving Integer Program-
ming (IP) problems are due to Land and Doig [10]
and to Gomory [7]. These methods are designed to
solve limited subclasses of IP problems rather than
the general category of IP problems. In some in-
stances, the general IP problems can be approximated
and solved as a Linear Programming (LP) problem
and then the solution to that LP optimization are
rounded. This approach may provide a feasible solu-

tion, but the solution may be far from optimal one.

In order to solve Integer Linear Programming (ILP)
problems, there are many proposed methods, includ-
ing Branch and Bound (B&B), cutting planes, poly-
hedral developments, hybrid algorithms, Reformula-
tion-Linearization Technique (RLT), facial disjunc-
tive programming, and post-solution analysis [14]. A
great deal of work has been carried out on optimiza-
tion methods of the reliability problems with separa-
ble objective function and multiple constraints. Ex-
amples of these are given by Chern and Jon [4]. Most
of these methods do not guarantee a global optimum
solution. Lawler and Bell [11] developed an optimi-
zation method for solving Integer Nonlinear Pro-
gramming (INLP) problems with zero-one variables.
Their method is closely related to the ‘lexicographic’
method of Gilmore and Gomory [6] for the knapsack

* Corresponding author. E-mail: sabbagh@cc.iut.ac.ir

40 M. S. Sabbagh and M. Roshanjooy

problem and the ‘additive’ algorithm of Balas [3].
Lawler and Bell assume that the objective function is
a monotone non-decreasing one and the functional
constraints can be expressed (rewritten) as the differ-
ence of two monotone non-decreasing functions. Sa-
saki et al. [17] developed an optimization method for
solving a spare allocation problem which is applica-
ble to integer problems with non 0O-1 variables. They
called their method New Lawler and Bell. Sabbagh
[15,16] generalized the Lawler and Bell algorithm to
solve a broader class of INLP problems. Srivastava
and Fahim [19] presented a two-phase optimization
procedure for integer programming problems. Aardal
et al. [2] presented a survey of non-standard ap-
proaches to integer programming problem.

Several computational techniques (such as B&B
technique, cutting planes technique, relaxation tech-
nique, outer-approximation technique etc.) which are
reasonably efficient on many problems have been
proposed in the literature for solving ILP problems
(see, for instance, [12] and [18]). However, there is as
yet no computational technique which can claim to
efficiently solve many INLP problems [8].

The rest of the paper is organized as follows: Sec-
tion 2 gives a description of the problem, followed by
the method’s motivation in Section 3. In Section 4,
the authors describe their new exact procedure. They
also illustrate the procedures using numerical exam-
ples. A section is reserved on detailed computational
results for comparisons. The last section draws over-
all conclusions.

2. Description of the problem

The general nonlinear integer programming prob-
lem, with bounded integer variables, can be stated as:

Maximize f(X)= f,(X)~ f,(X)
Subject to:
8:(X)=gy(X)—gpn(X)<b;,

XeSs,)

i=1,...m,

S={X OSlj ij Suj,xje Z+,j=1,...,n}.

where, X = (x,,---,x,) is the design vector, f(X)is
the objective function, g;(X)is the i ™ functional con-

straint and [i and u ; are the integer lower and upper

bound on the j” element x iz ™ is the set of non-
negative integers, and b, is the resource constant for

the i” constraint. It should also be noted that satisfy-
ing the design vector X upper and lower bound con-
straints does not imply satisfying the functional con-

straints g; (X) .

3. Motivation for the proposed method

For very small optimization problems one can find
a global optimal integer solution by doing a full
enumeration of its integer points in the n-dimensional
cube defined by the bounds of the variables. There

are N = H(u j —1; +1) such integer points. The
j=1
following nested loop generates all those N points.
DO X1 =Up to ll
DO x, =u,tol,
Begin
End
For example, doing full enumeration on the follow-

ing problem with N =3X2X3=18 points in its cube,
see Column 1 of Table 1, we get X = (1,0,2) with

f(X) =11as a global optimal integer solution.

Maximize f(x)= 5)612 —2x, +3x5

Subject to:
2x,+xy, —xy3 <2,
X+ X, + x5 <3, 2)
x; =0,L2,

x, =01, x3=0L2.

Now let us try to solve the following problem by
full enumeration.

Max f(x) = 5(x; + x3)° +2%1027%) 3y x x,

- 4X42 + 20.1(XS+X6) - 2X7)C8

A generalized implicit algorithm for a class of ... 41

Subject to:

() + x5 + x5 +x4)(X5 + X6 + x5 + xg) <3000,

x;=0,..,50, j=1..8. 3)

This problem has N points in its cube to be enu-
merated an N is calculated as follows:

8
N = H (50 +1) =45,767,944,570,401. 4)

j=!

Let’s say that our PC, on the average, can enumer-
ate about 1,500,000 of those points per second then it
takes about 12 months or a full year to do full enu-
meration on this problem. However if we use implicit
enumeration, as is shown later on, we obtain a global
optimal solution for it in seconds. Of course the
amount of time saved varies from problem to prob-
lem and depends, amongst other things, on the order
of variables, see [11,15] for details. Nevertheless, for
some problems like the given example the time saved
in solving a problem can be drastic.

4. Description of the proposed method for solving
constrained integer problems
4.1 First let us make the necessary definitions

As is done in the Lawler and Bell method, we de-
fine the vector partial order relation where:

X<Y=ux;<y;,, j=l.,n 4)

We expand the numerical order relation so that for
any X we define n(X) as:

n(X)=(q =)@, -1;+D

j=2

+ 0 =)], =1+ +... (6)

Jj=3

+ (=L D] =1+ +(x, —1,).

Jj=n

Here vector X is a “general base number”, like a
number in the nonmetric measurement systems, and
n(X) represents the numerical order of that X. In

general base numbers each position of the number
can have its own range.

When all components of vector X can take values
from O to 9 then we can look at X as a decimal num-
ber. Let:

S={X = (X505 x,) L x; =0,1,...,uj,j:1,...,n}.

If for VX € §,VY € S in which X > Y implies
g(X)=g(Y) then the function g(.)is called discrete
isotone non-decreasing function on S.

Let V 20 be an n-vector of integers. It is easy to
prove that g(.)is a discrete isotone non-decreasing

function on § iff h(X,V)=g(X+V)—-g(X) =0,
forall V and X suchthat X € § and (X +V)e S.

Notice that a function that is not an isotone
non-decreasing function may be a discrete isotone
non-decreasing function. For example,

f(X)=x—x,+x, is not an isotone non-
decreasing function on 7' ={(x,,x,) | x, 20,x, =0}
because for X = 0, we have f(X)=0 and for
X =(1/2,0), we have f(X)=-1/4. However, this

is a discrete isotone non-decreasing function on the
set S.

Lexicographic (alphabetical or complete) ordering:
Let Y =(y1,...,y,),Y € R. A vector Y is said to be

lexicographically positive, written Y >bo, if
M= ==Y =0 and Y >0 |
j=1,...n.For VXe S ,vYeS we write Y > X, to

mean (Y —X) Sk,

for some

We write X <Y to mean either (a) (¥ —X) >k,
or (b) X =Y. We say “X precedes Y’ (in the lexico-

graphic ordering) to mean Y >kx.

n
The set S, defined earlier, has N =H(u i +1)
j=1
members. The lexicographic ordering allows us to
uniquely order the N members of S as §,,...,S,

such that S =U >t S, Sk S3,...,>L S, >k Sy =L
and 1(S,) > 1(S,) > 1S3> 1(S,) > n(Sy).

42 M. S. Sabbagh and M. Roshanjooy

The adaptation of the Lawler and Bell algorithm
requires the calculation of:

. X , the first vector after X in the lexico-
graphic ordering or the numeric ordering. If

X=8,,k=1.,N-1then X =5, .
and if X =S, =L, we say its X does not

exist. To get X * subtract 1 from X.

° X , the first vector that comes after the vec-
tor X according to the lexicographic ordering
but which is not in relation with X by the par-
tial ordering. If for a particular X all the vec-
tors after it have partial relation with X then

we say that its X does not exist.

. X , the vector immediately coming before X
in the lexicographic ordering. That is to say

X € S is the last vector in the lexicographic
ordering such that for every Y € § in which
X >y >F X wehave partial ordering i.e.,

X 2Y > X . The first vector after X in the
lexicographic ordering, if it does exist, was
called X . This means that for every X € §

its X always exists but if X = L then there
is no vector after that, that belongs to § so in

this case its X does not exist. The vector X
can be used to obtain useful function bounds

for the constraints of the form g;(X) <b,.

To calculate the above vectors, we designate by
X_tilde the algorithm that calculates)? , X_hat the
algorithm that calculates X , and X_minus the algo-

rithms that calculates X
given below:

. These algorithms are

The generating algorithms for X_hat (see [11, 15,
16 and 17]). We first set X = X . Then, starting from
the rightmost vector component, X, , find the first

component which is not equal to its upper bound, and
then set this component and all the components to its
right equal to their lower bounds. If all the compo-
nents are equal to their upper bounds, i.e., if X = U

then X =L.

The generating algorithms for X_tilde (see [11, 15,
16 and 17]). We first set X = X . Then, starting from

the rightmost vector component, X, , find the first

component which is not equal to its upper bound, and,
if possible, deduct 1 from its first left neighbor, and
then set all the components to the right of the last
changed component, equal to their upper bounds. No-

tice that, X does not exist if either X = U or the de-
duction can not be made.

The generating algorithms for X_minus (see [11,
15, 16 and 17]). Subtract 1 from X: We first
set X =X . Then, if x, >, then let x, < x, —1
otherwise if X does exist let X =X , otherwise

X does not exist. For example, consider model (2)
again with

S={X =x.,x,,x3)|x =012 x, =01, x; =0,1,2}.

This set has N =3Xx2X3 =18 members. For each
member of S its X , X and X are given in the Table

1. Notice that one can generate X and X indirectly
by doing the following operations:

{)2:)2+1:>)Z:)2—11'fiexists
(N

X = L otherwise

4.2. The algorithm

Let us again consider the model (IIT) optimization
problem. Here, we assume f,(.) and g, (.) ,
i=1,...,mk =1,2are discrete isotone non-decreasing
functions. Notice that some of those functions can be
zero. We can use the algorithm presented in this pa-
per to find a global optimal integer solution for such a
problem without having to check every individual
point in its n-dimensional cube. In general, the more
points we skip over the more efficient the algorithm
becomes. As we proceed through the list of vectors
we keep a record of “ X ”, the most profitable solu-
tion, and f = f(X) its most profitable value. The
following rules indicate conditions under which cer-
tain vectors in the lexicographic ordering can be
skipped over. The vector X € Sis the one currently
being examined and keep in mind that the functions
fi(Oand g, (.) are discrete isotone non-decreasing

functions. Initially set X = U and]? =—o0 The rules
of the algorithm are (see [11,15, 16 and 17]):

A generalized implicit algorithm for a class of ... 43

Rule 1. If fl(X)—fz(X) < }7 then skip to X and re-
turn to rule 1, otherwise, go to rule 2.

Justification. Clearly, for any Y € S such that:
X2Y2X = (f(X)2 f,(Y)2 f,(X))
& (=f,(X)2=f,(¥) == f,(X)) 8)
= f2 (X)) LX)2 [,(0) - f,()
> f,(X) - f,(X).

Therefore, no better solution will be found between
X and X so we can safely skip to X.
Rule 2. If 3i5 g;;(X)—g;»(X) >b; then skip to X
and go to rule 1, otherwise, go to rule 3.
Justification. Clearly
g1(N =8 (1) 2 g1 (N =g (X) 2 g1 (X)=gn(X) >y
for any Y € S such that X 2Y > X . Therefore, no

new vector between X and X will be found such that
this i” constraint will be satisfied, and we can safely

skip to X.

Table 1. All integer points of model (2).

- A ~

X X X X
Does not
212 | @Lh | 000 | "2
(2,1,1) (2,1,0) (2,1,0) (2,0,2)
(2,1,0) (2,0,2) (2,1,0) (2,0,2)
(2,0,2) (2,0,1) (2,0,0) 1,1,2)
(2,0,1) (2,0,0) (2,0,0) (1,1,2)
(2,0,0) 14,1,2) (2,0,0) 1,1,2)
Does not
(LL2) | (LLD | 000 | =2
(L,1,1) (1,1,0) (1,1,0) (1,0,2)
(1,1,0) (1,0,2) (1,1,0) (1,0,2)
(1,0,2) (1,0,H (1,0,0) 0,1,2)
(1,0,1) (1,0,0) (1,0,0) 0,1,2)
(1,0,0) 0,1,2) (1,0,0) 0,1,2)
Does not
0,1,2) 0,1,1) (0,0,0) exist
0,1,1) (0,1,0) (0,1,0) (0,0,2)
0,1,0) (0,0,2) (0,1,0) (0,0,2)
Does not
(0,0,2) (0,0,1) (0,0,0) exist
Does not
(0,0,1) (0,0,0) (0,0,0) exist
(0.0.0) Does. not (0.0.0) Dogs not
exist exist

Rule 3. If
fx)=HX)= fo(X)> [&Vi, g1 (X)—gpp(X) <D,
letX =X,f=f(X).SkiptoX and gotorule I.

Justification. Clearly if the conditions hold then the

current X is a better feasible solution. Also, X)
might be a better feasible solution. Notice that when-
ever we say continue the enumeration with

X or X but there is no such vector, it means that the
enumeration is complete and we should stop the cal-
culations.

4.2.1 Numerical examples

Example 1. Let’s solve model (2) that its 18 points

are given in the Table 1. First we transform it into the
format of model (1) as:

Max f(x) =5x," —2x, +3x;
=5x" +3x; = 2x, = f,(X) = f,(X)
Subject to:
8 X)=g,,(X)—gn(X)=2x,+x, —x; <2,
8,(X)=x,+x, +x;3 <3, 9)
x; =0,L2,

x, =01, x3=0.L2.,

We now apply our algorithm on this problem and
get X (1,0,2) with f(X)=11as a global optimal in-
teger solution.

Example 2. Let solve model (3). Fist we transform it
into the format of model (1). Let

Max f(_x) = (5(x1 + X3)3 + 20.1(x2+x3) + 20‘1(x5+x6))
- (3X1X2X3 + 4X42 + 2x7x8) = fl(X) — f2 (X)
Subject to:

811(X) =8x; +3x; +2x5 + x4,
81(X)=2x, + x4 +x; +xg, (10)
8, (X) =x12 +x32 -|-)c52 +x72,

2 2

44 M. S. Sabbagh and M. Roshanjooy

831 (X) =g5(X),

81, (X)=0.

Then, this model is in the form of model (1).
If we apply the algorithm on this problem

we get X =1(28,0,29,0,0,26,0,26) with

f(X)=925978.5271 as a global optimal integer

solution in 23.84 seconds.
Let us use GAMS\BARON software (GAMS IDE
2.0.32.15) to solve this problem in two modes:

. As an NLP problem to get
X" =(28.919,0,28.919,0,0,25.935,0,25.934)

with f(X) =967410.3127..

. As an INLP problem to get
X =(28,0,28,0,0,25,0,25) with

F(X)=878092.6213 .

These results show that our integer solution is far
better than the integer solution returned by
GAMS\BARON commercial software.

4.3. Linear speedup: Taking advantage of the linear
constraints

The algorithm of Section 4.2 starts with X =U
and moves forward toward X = L until all the points
in the cube are enumerated either directly or indi-
rectly (implicitly). As was mentioned earlier the more
points we are allowed to skip over in the cube the
more efficient the algorithm becomes. The presence
of linear constraints in the model can enable us to
skip over more points with far fewer computations.
To elaborate consider a typical linear constraint,

n n
g(X)= Zajxj < b, and define d = Zajxj -b.
Jj=1 Jj=1
If d >0 then the constraint is not satisfied at the
current X and we move toward the largest vector
after X , in the lexicographical ordering, that satisfies
it, thus implicitly enumerating all the infeasible
points in between these 2 points. The algorithm that
we give is an exact algorithm not a heuristic one. It is
based on the fact that: if a constraint is not satisfied at
the current X , then to get the largest vector after
X , either in lexicographical order or numeric order,

we should change the vector X | starting from its
rightmost component i.e., x, and observe the follow-

ing rules:

. If a,is negative, then increasing x, will de-
crease d, while its reduction will increase d.
which is counter productive.

. If a,is zero then changing x, will not affect
d. To insure we get the largest vector after X,
in the lexicographical ordering, let x, be

equal to its upper bound.

e If a, is positive, then increasing x, will in-
crease d, while its reduction will decrease it.
When decreasing x,, , make sure its lower

bound is not violated and you deduct the
minimum integer amount required. If deduct-
ing the minimum integer amount required
means decreasing the left side of the con-
straint more than d units, then starting from
the component to the right of the current one,
if possible, try to add the shortage amount.

To see the importance of it, consider the following
constraint:

8
g(X)zZajxj =8x; —2x, +3x; —x, +2x5 + X4
j=1
— X7 —xg <23, xX; = 0,..,9, j=1..8.(11)

If we start with X =U and use the algorithm of
Section 4.2, after applying rules 2 and 3 totals of 144
times we get X=@ 9 1 9 0 1 9 9) as

the largest vector in lexicographical ordering that sat-
isfies the above constraint.

Starting at X =U , we can get the same X , more
efficiently, by doing the followings:

J Computed = g(U)—23=58and start with xg.

* Sinceagis negative let keep xg =9 and start
with x .
* Sincea,is negative let keep x; =9and start

with x

e Since ag is positive, let x;, =0 and
d =58 -9 =49 and start with x5 .

A generalized implicit algorithm for a class of ... 45

° Since a5 is

d =49 —-2x9 =31 and start withx, .

positive, let x5 =0 and

o Since a, is negative, let keep x, =9 and

start with x5 .

e Since a; is positive, let x; =0 and

d =31-3%9 = 4and start with x, .
* Since a,is negative, let keep x, =9 and start
with x; .

o Since a; is positive, let

d=4-8x1=-4.

x, =8 and

. Since d = —4, this means we have decreased
the left side of the constraint 4 units more

than the minimum of 58. Thus start with x,

and, if possible, try to add 4 units. Let
d=—(-4)=4.

o Since a, is negative, start with x5 .

ay =3, let x;=|4/3|=1 and
d =4 —3x1=1and start with x,,.

o Since

. Since a, is negative, start with x5 .
. Since a5 =2 but |_1/ ZJ =0, start with x,.

. Since ag =1, let x6=|_d/1J=1 and
d =1—-1x1=0and stop.

Thus, we started with X =U and ended
withX=@8 9 1 9 0 1 9 9). As a result,
we skipped about 10,809,800 infeasible points that
are between those points.

The operations are as follows. Let’s denote all the
linear constraints of the model by AX <b in which
Ais a k xn matrix. Check the first linear constraints
at the current X : If it is satisfied go to the next con-

straint, otherwise find the largest vector after X , in
the lexicographical ordering, that satisfies it. Let

that X , to be the new current X and continue until

all the linear constraints are satisfied at the current X .

4.3.1. Numerical examples.

Example 1. Let’s solve model (2) that was solved in
4.2.1. The model has two linear constraints. So we

start with X =U and we get X =(1,0,2) with
f(X) =11 as a global optimal integer solution.

Example 2. Let solve model (3) that its full enumera-
tion requires about one year execution time and using
the algorithm of Section 4.2 requires 23.84 seconds
and taking advantage of its only linear constraints the
execution time becomes 1.57 seconds. Thus the exe-
cution time of this problem is reduced more than 15
times.

5. Computational results

Linear Speedup was coded in Visual C++ and exe-
cuted on a Pentium IV computer with 2.8 GHz proc-
essor and 512 MB of RAM under Windows XP 2002.
The algorithm was tested on three different sets of
benchmark instances that are given in the Appendix:

Set A. The 15 benchmark hard equality constrained
integer knapsack instances generated by Aardal and
Lenstra [1]. Each instance contains between 5 and 10
variables. De Loera et al. [5] have reported that the
commercial solver CPLEX 6.6 could not solve 14 of
these problems in two hours.

We tried to solve some of those problems includ-
ing the first instance that has 5 variables by the com-
mercial solvers CPLEX 10 and LINGO 10 but did not
succeed to get even a feasible solution in two hours.
We have selected these problems because they are
challenging. We refer to Table 2 in Appendix A, for
the data used here. Their form is maximize z = cx

subject to ax=b,x >0, x€ 74 where be Z and

where a € Z¢ with ged (@, ..., a,) = 1. For the
cost vector ¢, we took the first d entries of the vector:

c=(213,-1928,-11111,-2345,9123,-12834,-123, 122331,0,0).

Set B. The 2 largest problems solved by Mohan and
Nguyen [13]. The first instance has 40 variables and
3 constraints and the second instance has 100 vari-
ables and 2 constraints.

Set C. A bridge system [8].

5.1. Results on benchmark instances

Set A. We have transformed this model into the for-
mat of model (1) and reordered the variables such

that a,/c;, 2a,/c, 2...2a, /c, hold for the new
order of the variables. Table 3 shows the results of

46 M. S. Sabbagh and M. Roshanjooy

Linear Speedup on Aardal and Lenstra [1] benchmark
instances for at most 100 CPU seconds on each prob-
lem.

From Table 3 in Appendix A, it is evident that Lin-
ear Speedup achieved the best-known solution in 14
of the 15 test problems, and a solution not very close
to the best known one for the Prob2 instance.

Set B: Problem 1. The best solution reported in the
source for the first problem, after 13.86 seconds, is a

solution with f,_, =1030361.
The result of Linear Speedup on this problem
for 0.0001 second is x; =99, j=1,...,40 with

f =13524309. This is far better than the best solu-
tion reported for this problem.

Set B: Problem 2. The best solution reported in the
source for the second problem, after 45.23 seconds, is

=303062432.
The result of Linear Speedup on this problem for
10 seconds is a solution with f =304147783.This

also is a far better than the best known solution re-
ported for this problem.

a solution with f, .

Set C: A bridge system. We solved this problem
using the algorithm of Section 4.2. The final results

are x =(1,3,43,3)and f =0.999373in 0.0001 of
a second.

6. Conclusion

This paper presents an optimization method that is
very effective for solving some ILP and INLP prob-
lems. The results reported here illustrate the effec-
tiveness and efficiency of the proposed method for
solving some integer programming problems.

In all cases of challenging knapsack problems ex-
cept one, the solution provided by the proposed pro-
cedure is in agreement with the results given in the
reference paper. Where applicable, the results also
agree with the solutions obtained using Sasaki’s
method.

For some INLP problems with linear constraints,
the proposed procedure is far superior to Sasaki et al.
method as far as speed is concerned. In terms of fu-
ture research directions, for some ILP and INLP
problems we may solve its corresponding continuous
problem and then apply the Linear Speedup to search
for a good integer solution in a neighborhood of that
solution. The resulting solution then may be used as
an initial feasible solution in other algorithm.

References

[1] Aardal, K. and Lenstra, A. K., 2002, Hard
Equality Constrained Integer Knapsacks. Pre-
liminary version in W.J. Cook and A.S. Schulz
(eds.), Integer Programming and Combinatorial
Optimization: 9th International IPCO Confer-
ence, Lecture Notes in Computer Science, 2337,
Springer-Verlag, 350-366.

[2] Aardal, K., Weismantel, R. and Wolsey, L. A.,
2002, Non-standard approaches to integer pro-
gramming. Discrete Applied Mathematics, 123,
5-74.

[3] Balas, E., 1965, An additive algorithm for solv-
ing linear programs with zero-one variables. Op-
erations Research, 13, 517-545.

[4] Chern, M. and Jon, R., 1986, Reliability optimi-
zation problems with multiple constraints. /[EEE
Trans. Reliability. R-35 4, 431-436.

[5] De Loera, J. A., Haws, D., Hemmecke, R., Hug-
gins, P. and Yoshida, R., 2005, A computational
study of integer programming algorithms based
on Barvinok's rational functions. Discrete Opti-
mization, 2, 135-144.

[6] Gilmore, P. C. and Gomory, R. E., 1966, The
theory and computation of knapsack functions.
Operations Research, 14, 1045-1074.

[7] Gomory, R. E., 1963, An All-Integer Program-
ming Algorithm In Industrial Scheduling, J. F.
Muth and G. L. Thompson, Editors, Prentice-
Hall, Englewood Cliffs, NJ Chapter 13.

[8] Ha, C. and Kao, W., 2006, Reliability redun-
dancy allocation: An improved realization for
non-convex nonlinear programming problems.
European Journal of Operational Research,
171, 24-38.

[9] Kuo, W. and Zuo, M. J., 2002, Optimal Reliabil-
ity Modeling: Principles and Applications. John
Wiley & Sons, Hoboken, NJ.

[10] Land, A. H. and Doig, A. G., 1960, An auto-
matic method of solving discrete programming
problems. Econometrica, 28, 497-520.

[11] Lawler, E. L. and Bell, M. D., 1966, A method
for solving discrete optimization problems. Op-
erations Research, 4, 1098-1112.

[12] Linderoth, J. T. and Savelsbergh, M.W.P., 1999,
A computational study of search strategies for
mixed integer programming, INFORMS Journal
on Computing, 11, 173-187.

[13] Mohan, C. and Nguyen, H. T., 1999, A con-
trolled random search technique incorporating
simulated annealing concept for solving integer
and mixed integer global optimization problems.

A generalized implicit algorithm for a class of ... 47

Computational Optimization and Applications,
14, 103-132.

[14] Nemhauser, G. L. and Wolsey, L. A., 1999, In-
teger and Combinatorial Optimization. second
ed., John Wiley & Sons, New York.

[15] Sabbagh, M. S., 1983, A General Lexicographic
Partial Enumeration Algorithm for the Solution
of Integer Nonlinear Programming Problems.
D.Sc. Dissertation, The George Washington
University, Washington, D.C.

[16] Sabbagh, M. S., 1996, A general lexicographic
partial enumeration algorithm for the solution of
integer nonlinear programming problems with

tion and constraints. Amirkabir Journal of Sci-
ence and Technology, 8(32), 80-85.

[17] Sasaki, M., Kaburaki, S. and Yanagi, S., 1977,
System availability and optimum spare units.
IEEE Trans. Reliability. R-26, 182-188.

[18] Sherali, D. and Driscoll, J., 2003, Evolution and
state-of-the-art in integer programming. Journal
of Computational and Applied Mathematics,
124, 319-340.

[19] Srivastava, V. K. and Fahim, A., 2000, A two-
phase optimization procedure for integer pro-
gramming problems. Computers & Mathematics
with Applications. 12, 1585-1595.

discrete isotone non-decreasing objective func-

Appendix
Set A of test problems:
Table 2. The Benchmark instances generated by Aardal and Lenstra [1].
c 213 -1928 -11111 -2345 9123 -12834 -123 122331 0 0

Problem aq a a A as s 4 ag) 40 b

Cuwwl | 12223 | 12224 | 36674 | 61119 | 85569 89,643,482
Cuww2 | 12228 | 36679 | 36682 | 48908 | 61139 73365 89,716,839
Cuww3 | 12137 | 24269 | 36405 | 36407 | 48545 60683 58,925,135
Cuww4 | 13211 | 13212 | 39638 | 52844 | 66060 79268 92482 104,723,596
Cuww5 | 13429 | 26850 | 26855 | 40280 | 40281 53711 53714 6714 45,094,584
Probl | 25067 | 49300 | 49717 | 62124 | 87608 88025 113673 | 119169 33,367,336
Prob2 11948 | 23330 | 30635 | 44197 | 92754 123389 | 136951 | 140745 14,215,207
Prob3 | 39559 | 61679 | 79625 | 99658 | 133404 | 137071 | 159757 | 173977 58,424,800
Prob4 | 48709 | 55893 | 62177 | 65919 | 86271 87692 102881 | 109765 60,575,666
Prob5 | 28637 | 48198 | 80330 | 91980 | 102221 | 135518 | 165564 | 176049 62,442,885
Prob6 | 20601 | 40429 | 40429 | 45415 | 53725 61919 64470 69340 78539 95043 22,382,775
Prob7 18902 | 26720 | 34538 | 34868 | 49201 49531 65167 66800 84069 137179 | 27,267,752
Prob8 17035 | 45529 | 48317 | 48506 | 86120 100178 | 112464 | 115819 | 125128 | 129688 | 21,733,991
Prob9 3719 20289 | 29067 | 60517 | 64354 65633 76969 102024 | 106036 | 119930 | 13,385,100
Prob10 | 45276 | 70778 | 86911 | 92634 | 97839 125941 | 134269 | 141033 | 147279 | 153525 | 106,925,262

48

M. S. Sabbagh and M. Roshanjooy

Table 3. Solution values produced by linear speedup on Aardal and Lenstra [1] benchmark instances.

Problem Optimal Solution Optimal z Our Solution Our z
Cuwwl (7334 0 0 0 0) 1562142 (7334 0 0 0 0) 1562142
Cuww2 (324450000 -4713321 (32445 0 0 0 0) -4713321
Cuww3 (4855 0 0 0 0 0) 1034115 (4855 000 0 0) 1034115
Cuww4 (002642 000 0) -29355262 (002642 000 0) -29355262
Cuww5 (11678 10000 0) -3246082 (1 1678 1 000 0 0) -3246082
Probl (966 50010074 9257735 (966 50010074 9257735
Prob2 (85320400027 3471390 (85210004025 3186487
Prob3 (708020001 173) 21291722 (708 020001 173) 21291722
Prob4 (11130700 0 0 54) 6765166 (111307000 0 54 6765166
Prob5 (1540 12 0 0 0 0 103) 12903963 (1540120000 103) 12903963
Prob6 (10121 010102000 2645069 (10121 010102000 2645069
Prob7 (7821 01 000 186 0 0) 22915859 (782101000 186 0 0) 22915859
Prob8 (1385011003500 3546296 (1385011003500 3546296
Prob9 (311111000127 00) 15507976 @B1 1111000127 00) 15507976
Prob10 (0705 0110040300 47946931 (07050110040300) 47946931

Set B of test problems:

Problem 1 (Problem 17 of source [13]).

Maximize f(X)=215x, +116x, +670x; +924x, +510x5 +600x, +424x, +942x, +43x, +369x,,

+408x;; +52x;, +319x)5 +214x,, +851x;5 +394x,c +88x; +124x,4 +17 x4
+T779%50 +278xy; +258x,, +271x,3 +281x,, +326x,5 +819x,5 +485x,, +454x,4
+297x,59 +53x35 +136x5, +796x3, +114x53 +43x5, +80x35 +268x35 +179x4,

+ 78x3g +105x59 + 281xy,

Subject to:

Ox, +11x, +6x5 +x, +7x5 +9xc +10x; +3x5 +11xy +11x)5 +2x;; + X, +16x;53 +18x, +2x;5
+ X6 + X7 +2x15 +3x19 T 4Xy0 + T Xy 60X, +2X05 + 25, + X5+ 2X06 + Xp7 +8X55 +10x,9 +2X5,

+ x5 +9x3, + X33 +9x5, +2x55 +4x55 +10x5; +8x35 +6x59 + x4y < 25000,

Sx;+3x, +2x5 +Txy +Tx5 +3xc +6x5 +2x5 +15xy +8x)9 +16x), +x;5 +2x5 +2x, + 7 x5
+7x16 +2X7 +2x5 +4x19 +3x5 +2X5; +13x,5, +8x53 +2X54 +3X,5 +4xy +3Xy7 +2X,55 + Xng

+10x5) +6x5; +3x3, +4x35 + X3y +8x35 +6x35 +3x3; +4x35 +6x59 +2x,, < 25000,

3x; +4x, +6x5 +2x, +2x5 +3x5 +Tx; +10xg5 +3xy +7x,) + 2%, +16x,, +3x5 +3x,, +9x;5
+8x16 +9x7 +Tx;5 +6x,9 +16x,) +12x,, + X5y +3xy5 +14x,, +Tx55 +13x,6 +6x5; +16x5

+3x59 +2X59 + X3y + 23, +8x33 +3x3, +2X55 + T X35 + X537 + 2x55 +6x59 +5x,4 < 25000,

10<x, <99, i=12,..20, 20<x; <99, i=2122,...,40.

A generalized implicit algorithm for a class of ...

49

Problem 2 (Problem 18 of source [14]).

Maximize f(X)=>50x; +150x, +100x; +92x, +55x5 +12x¢ +11x5 +10xg5 +8x +3x,5 +114x,,

+90x,, +87x;3 +91x;, +581x;5 +16x,c +19x; +22x;5 +21x;9 +32x,, +53x,,

+56X,, +118xy; +1922,, + 52,5 + 2041, +250x,, + 295X, + 82,0 +30x5,

+29x3, +2X3, +9x33 + 94y, +15x35 + 1725 =153, — 2235 + Xg9 +3x5, + 52X,

+75xs55 +18x5, +16x55 +12x55 + 6X57 + T X5 +3X59 +6x4) +12x4, +13x4, +18x4;

+Txgy +3xg5 +19x4 +22x¢7 +3x¢g +12x49 +9x5¢ +18x5; +19x5, +12x75 +8x4,

+5X75 +2x75 +16x77 +17x54 +11x59 +12xg, +9xg; +12xg, +11xg5 +14xg, +16x4s

+4x9g + Xgg +2X;00

Subject to:
100
D" x; <7500,
i=1
50 100

D 10x; + Y x; < 42000,

i=1 i=1

0<x, <99, i=12,..,100.

The result of Linear Speedup on the above problem for 10 seconds is:

x=(99
99
99
99
99
99
99
99
99
99

99
99
99
0

99
99
99
99
99
0

99
99
99
99
0

99
99
99
99
99

99
99
99
99
19
99
99
99
99
0

99
99
99
99
99
99
0

99
99
0

99
99
99
99
0

99
99
0

0

99

0

99
99
0

0

99
99
99
99
99

0
99
99
0
0
99
0
99
99
13

0
9
9

0
0
0
9
9
0
0

9
9

9
9

0

99

99

99

0 With f=7304147783
99

99

99

0

0)

50 M. S. Sabbagh and M. Roshanjooy

Set C: A bridge system (n =5, m = 3)

Consider a set of five subsystems 1, 2, 3, 4 and 5
and suppose that they are connected as shown in
Figure 1. Assume each block represents a stage

(subsystem) that can have either parallel, options, or
2-out-of-n:G structure [8].

RN

<m >

e

Figure 1. A bridge system.

This system is called a bridge system and it con-
sists of five subsystems and three nonlinear and
non-separable constraints. The overall system reli-

ability f (R,) is acquired by the pivotal decomposi-
tion method [9], where R i = R i (x j) and
Qj =1—RJ. forallj=1,...,5.

Since the overall system has a complex structure,
the objective function is also nonlinear and non-
separable. A detailed definition of the problem ap-
pears below:

Maximize f(R,)=Rs(1-0,0;)1-0,0,)

+Os[1-(0-R/R,)(1-R;R,)]

Subject to:

1()exp(x—2l)x2 +20x; +3x2 +8x5 < 200,

X 3 2 Xy
10exp(?) +4exp(x,)+2x3 +6[x; + exp(T)]

X5
+7 exp(j) <310,

2 X3 2

12[x5 +exp(x,)]+ 5x; eXP(T) +3x,x;
+2x32 <520,

(LLLL1) £ x<(6,3,5,6,6), xe Z,

where

R, (x,) =(0.8,0.85,0.9,0.925,0.95,0.975),

R, (x,)=1-(1-0.75)",
x3+1

Ry(x3) =D (1)(0.88)" (0.12) ",
k=2

R,(x,)=1-(1-0.7)",

Ry(xs)=1-(1-0.85)".

