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Abstract 

This paper proposes a hybrid method to find cumulative distribution function (CDF) of completion time of 
GERT-type networks (GTN) which have no loop and have only exclusive-or nodes. Proposed method is cre-
ated by combining an analytical transformation with Gaussian quadrature formula. Also the combined crude 
Monte Carlo simulation and combined conditional Monte Carlo simulation are developed as alternative 
methods of solution procedure. Then, through a comparative study made for different solution procedures, 
the superiority of hybrid method is indicated. Computing time and accuracy are considered as fundamental 
factors for comparison purposes. 
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1. Introduction 

Graphical evaluation and review technique is a 
strong tool for the analysis of the industrial engineer-
ing problems. Taylor and Davis [10] have explored 
the use of GERT-type networks (GTN) analysis as a 
tool for planning and determining the expected time 
and cost of system implementation. Interrante and 
Biegel [4] have described a modified GERT network 
which has been developed for automatically acquir-
ing temporal knowledge to be used in an intelligent 
simulation training system. Dowson [2] has intro-
duced a dynamic sampling technique for the simula-
tion of probabilistic and generalized activity net-
works. Zimmermann [13], using GERT network 
precedence constraints, has examined time complex-
ity of single-and identical parallel-machine schedul-
ing. In this study, the duration and precedence con-
straints of  activities are assumed to be stochastic. 

Acquisition of GTN completion time can provide 
useful data. Analytical methods for this matter have 
been introduced in [6, 7, 8, 11, 12]. Furthermore 
Whitehouse [11] has introduced simulation methods. 
Kurihara and Nishiuchi [5] have proposed efficient 
Monte Carlo simulation method to estimate GTN 

characteristics such as project time, cost, etc. Shi-
banov [9] has developed an algorithm to fulfill 
equivalent simplifying transformations of the struc-
ture of GTN. 

This paper discusses GTN which have no loop and 
have exclusive-or nodes. The network has one start 
node and numerous end nodes. Activity durations are 
assumed to be continuous random variables or con-
stants. 

This paper also develops a hybrid (analytical-
numerical) method created by combining an analyti-
cal transformation with integration through Gaussian 
quadrature formula. This procedure behavior is more 
exact in respective existing simulation methods and 
even when these methods combine with the proposed 
analytical transformation of this paper. In addition, 
the different solution procedures are capable to find 
the occurrence probability of end nodes of networks 
in every arbitrary given time.  

The paper has the following structure: 
Section 2 introduces notations. Section 3 trans-

forms the above-mentioned GTN to a GERT network 
with parallel paths. Sections 4 and 5 combine crude 
Monte Carlo simulation and conditional Monte Carlo 
simulation with analytical transformation of section 
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3. Section 6 presents a hybrid method. Section 7 
gives an example to illustrate the capabilities of    
hybrid method in comparison with combined crude 
Monte Carlo simulation and combined conditional 
Monte Carlo simulation. Finally section 8 is devoted 
to the concluding remarks and recommendations for 
future studies. 
 
 
2. Notations 

 
The following notations have been used in this   

paper:  
 
N : Number of activities (arcs) 
M : Number of end nodes 
Q : Number of simulation runs 
ni : Number of paths which start from start node and 

terminate in i-th end node 
Sij : Activity set of j-th path which terminates in i-th 

end   node 
kP : Accomplishment probability of k-th activity, 

given that start node of this activity has occurred 
Pij : Occurrence probability of j-th path which termi-

nates in i-th end node 
Pi(t) : Occurrence probability of i-th end node in t 

)t(P̂i : Estimation (approximation) of )(tPi  
Pi : Occurrence probability of i-th end node when  

+∞→t  
kt  : Duration random variable of k-th activity 

)(q
kt : Duration of k-th activity in q-th simulation run 

ijT : Completion time of j-th path which terminates in 
i-th end node 

)(q
ijT : Completion time of j-th path which terminates 

in i-th end node in q-th simulation run 

ijL : Counter of )(q
ijT which smaller than or equal to t 

)(tF rt : CDF of r-th activity duration 

)()( tF q
tr : )(tF rt in q-th simulation run 

)(tFij : CDF of j-th path which terminates in i-th end    
             node 

)()( tF q
ij : )(tFij in q-th simulation run 

)(ˆ tFij : Estimation (approximation) of )(tFij  

ijL′ : Saver of sum of ),,()( rkSkttF ijk
q

ij ≠∈  

)(tFi : CDF of occurrence time of i-th end node,  
            given that this node has occurred 

)(ˆ tFi : Estimation (approximation) of )(tFi  

)(tf
rt

: Probability density function of r-th activity  
             duration 

)()( tf q
t r

: )()( tf q
tr

in q-th simulation run 
 

 
 
3. Transformation of GERT networks  
 

In GTN which have no loop and have only exclu-
sive-or nodes we can write: 
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When +∞→t , the limit of above equality would 
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For shorter time (when t is remarkably smaller than 
∞+ ) we have: 
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can transform the above-mentioned GTN to the 

GERT networks with ∑∑
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j-th path which terminates in i-th end node consists of 
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activities which belong to ijS . So if we can com-
pute )(tFij , )(tFi can be defined. To compute )(tFij , 
we must define the CDF of sum of activity durations 
which belong to ijS ( ∑

∈

=
ijSk

ktt ). This task can be done 

by numerous methods. These methods have been  
introduced in the next sections. 

 
 
4. Combined crude Monte Carlo simulation 
 

If we generate the random value for each kt , we 
can compute the completion time of all paths using: 
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An estimation of )(tFij ( )(ˆ tFij ) is obtained by divid-

ing the number of )(q
ijT  which is smaller than or equal 

to t over Q. Then )(ˆ tFi and )(ˆ tPi can be ascertained. 
The following algorithm is proposed for the above-

mentioned computations: 
 

Step 1: 1=q  
Step 2: For j-th path which terminates in i-th end    

node set .0=ijL  

Step 3: Generate random values )()(
2

)(
1 ,...,, q

N
qq ttt , then  

    compute )(q
ijT for injMi ,...,2,1,,...,2,1 == . 

Step 4: If tT q
ij ≤)( , then 1+← ijij LL . 

Step 5: Set 1+← qq . If Qq ≤ , go to step 3; otherwise 
go to step 6.  

Step 6: First compute 
Q
L

tF ij
ij =

∧
)( , then compute the 

following estimations: 
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Step 7: Stop. 
 

 

5. Combined conditional Monte Carlo simulation 
 

Conditional Monte Carlo simulation has been pro-
posed by Burt and Garman [1] for stochastic network 
analysis. Based on ∑

∈

=
ijSk

kij tT we can write: 

 
)()( ∑

∈
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ijSk

kij ttPtTP  

 
If ijSr ∈ , then 
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Using the conditional probability 
 

)rk,Sk,tttt(P)rk,Sk,ttT(P ijk
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Sk
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Right hand side of the above equality represents 

the conditional CDF of r-th activity and left hand side 
of the above equality represents the conditional CDF 
of completion time of j-th path which terminates in   
i-th end node. So we can write: 

 
)rk,Sk,ttt(F)rk,Sk,tt(F ijk
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Sk
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ij
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The following algorithm is proposed for combined 
conditional Monte Carlo simulation implementation: 

 
Step 1: 1=q  
Step 2: For j-th path which terminates in i-th end 

node set 0=′ijL . 

Step 3: Generate random values )()(
2

)(
1 ,...,, q

N
qq ttt  

Step 4: Compute: 
 

∑
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Sk
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r
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Then  ),,()( rkSkttFLL ijk

q
ijijij ≠∈+′←′ . 

 
Step 5: Set 1+← qq . If Qq ≤ , go to step 3; other-

wise go to step 6.  
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Step 6: Compute 
Q
L

tF ij
ij

′
=

∧
)( . Also compute )(ˆ tFi and 

)(ˆ tPi using  formulae (1) and (2). 
Step 7: Stop. 

 
 

 6. A hybrid (analytical-numerical) method 
 

In the previous section, it has been shown that: 
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To avoid simulation error, we can compute 
)(tFij exactly by the following relation. 
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Except for special cases, the above analytical com-

putation is not so much easy job. So, now application 
of Gaussian quadrature formula that generalized for 
stochastic networks by Fatemi Ghomi and Hashemin 
[3] is being proposed. In utilization of proposed nu-
merical method, the determination of integral’s 
bounds is not an easy task. We have: 
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Then integration intervals for all integrals will be 

]},{[ ttMin k  for rkSk ij ≠∈ , . So we can write 
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Where }{},...,,...,1{ rSlk ij −= . By computing )(tFij  

for )(,,...,2,1,,...,2,1 tFnjMi ii==  and )(tPi can be ap-
proximated accurately using formulae (1) and (2). 

7. Example 
 

On a production line a part is manufactured at the 
beginning of the line. The manufacturing operation is 
assumed to take 4 hours. Before the finishing touches 
are put on the part, it is inspected, with 25% of parts 
failing the inspection and requiring rework. 

The inspection time (including waiting for inspec-
tion) is assumed to be distributed according to the 
exponential distribution, with a mean of 1 hour. Re-
working takes 3 hours, and 30% of the parts re-
worked fail the next inspection. The inspection of the 

reworked items is assumed to take 
4
3 hour. Parts 

which fail this inspection, are scrapped. If the part 
passes either of the above inspections, it is sent to the 
final finishing operation, whose time is distributed 
according to the exponential distribution with a mean 
of 1 hour in 40% of the time and 

2
1 hour in 60% of 

time. A final inspection, which takes 1 hour, rejects 
5% of the parts; these are scrapped. 

The manufacturer intends to know what are the 
probabilities of having non-defective and scrapped 
parts and the corresponding cumulative distribution 
function of the times will take for receipt of non-
defective and scrapped parts. The GERT network for 
the above production line is illustrated in Fig. 1. 

The example is designed in such a way that the ex-
act analytical solution can be found. The aim has 
been the establishment of possibility for a straight-
forward comparison between the actual solution and 
the solution gained from the other methods. The 
transformed GERT network is shown in Fig. 2. 

We should first compute ijP for   ,,...,2,1 Mi =  
  inj ,...,2,1= . 
 

075.0)3.0)(1)(25.0)(1(642111 === PPPPP  
 

0035.0)5.0)(4.0)(7.0)(1)(25.0)(1(107542112 === PPPPPPP  
 

015.0)05.0)(4.0)(75.0)(1(1073113 === PPPPP  
 

00525.0)05.0)(6.0)(7.0)(1)(25.0)(1(108542114 === PPPPPPP
 

0225.0)05.0)(6.0)(75.0)(1(1083115 === PPPPP  
 

0665.0)95.0)(4.0)(7.0)(1)(25.0)(1(97542121 === PPPPPPP  
 

09975.0)95.0)(6.0)(7.0)(1)(25.0)(1(98542122 === PPPPPPP  
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285.0)95.0)(4.0)(75.0)(1(973123 === PPPPP  
 

4275.0)95.0)(6.0)(75.0)(1(983124 === PPPPP  
 

)(tFij and then )(tFi , )(tPi can be obtained exactly 

by analytical method. )t(F̂ij and then )(ˆ tFi , )(ˆ tPi can be 
obtained by:  

 
 
 
 
 
 
 

I) Combined crude Monte Carlo simulation, 
II) Combined conditional Mote Carlo simulation, 
III) Hybrid method.  

1

( ) 1
M

i
i
t

lim P t
=
→+∞

=∑ is evident. For smaller t 

1
( ) 1,

M

i
i

P t
=

<∑ and the probability of none of end nodes 

to occur in t is )t(P1
M

1i
i∑

=

− .In other word for each 

product probability of being on production line is 

)t(P1
M

1i
i∑

=

− in t. )(ˆ tFi and )(ˆ tPi are computed for 53 

values of t through the above methods. Obtained 
results for some values of t are shown in tables 1 
through 8.  

 

Table 1. Analytical method results  
for end node 1. 

t )t(P1 )t(F1 

5 0 0 

6 0.01295409 0.1068378 

7 .02573192 0.2122221 

8 .04891807 0.403448 

9 .08917144 0.7354345 

10 0.1076029 0.8874465 

11 .115723 .9544163 

12 .1190537  .9818865 

13 .1203853  .992868 

14 .1209114  .9972074 

15 .121118 .9989111 

16 .1211987 .9995768 

17 .1212301 .999836 

18 .1212423 .9999366 
  

Table 2. Analytical method results 
for end node 2. 

t )t(P2 )t(F2 

5 0 0 

6 0.2461276 0.2800883 

7 .4889066 0.556366 

8 .6142344 .6989865 

9 0.6775267 0.7710118 

10 .7696486 .8758448 

11 .8289897 .9433738 

12 .8573475 .9756444 

13 .8697973 .989812 

14 .8750677 .9958096 

15 .8772534 .9982969 

16 .8781474 .9993142 

17 .8785092 .9997259 

18 .8786544 .9998912 

 
 

 

Table 3. Combined crude Monte Carlo simulation results  
for end node 1. 

 t )t(P̂1 )t(F̂1 

5 0 0 

6 .012981 .1070598 

7 .0257835 .2126474 

8 .0486465 .4012083 

9 0.08900435  .7340565 

10 .1075707 .887181 

11 .1158533 .9554911 

12 .1192017 .9831064 

13 .1203997 .9929872 

14 .120904 .9971464 

15 .1210846 .9986359 

16 .1211615 .9992697 

17 .1211952 .9995476 

18 .1212184 .9997394 
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Table 4. Combined crude Monte Carlo simulation results  
for end node 2. 

t )t(P̂2 )t(F̂2 

5 0 0 

6 .246639 .2806703 

7 .4898865 .5574811 

8 .6119235 .6963568 

9 .6779076 .7714454 

10 .7687533 .8748259 

11 .8295077 .9439632 

12 .8575014 .9758195 

13 .8691493 .9890746 

14 .874741 .9954377 

15 .8770324 .9980454 
16 .8779225 .9990583 
17 .8782778 .9994627 
18 .8784346 .9996411 

 

 

 

 

Table 5. Combined conditional Monte Carlo simulation results  
for end node 1. 

t )t(P̂1 )t(F̂1 

5 0 0 

6 .01292163 .1065701 

7 .02567927 .2117878 

8 .04889193 .4032324 

9 .08919495 .7356284 

10 .1075624 .8871123 

11 .1157274 .9544529 

12 .1190379 .9817562 

13 .1203787 .9928139 

14 .1209184 .9972649 

15 .1211158 0.998893 

16 .1211981 .9995716 

17 .1212312 .9998449 

18 .1212434 .9999459 

Table 6. Combined conditional Monte Carlo simulation results  
for end node 2. 

t )t(P̂2 )t(F̂2 

5 0 0 

6 .2461815 .2801496 

7 .4912224 .5590013 

8 .6148416 .6996775 

9 .6773212 .770778 

10 .7696468 .8758427 

11 .828837 .9432 

12 .8575835 .9759129 

13 .8697481 .9897559 

14 .8751877 .9959461 

15 .8772799 .998327 

16 .8781955 .9993689 

17 .8784835 .9996967 

18 .8786638 .9999018 
 

 

 

 

Table 7. Hybrid (analytical-numerical) method results  
for end node 1. 

t )t(P̂1 )t(F̂1 

5 0 0 

6 .01 295518 .1068469  

7 .02573596 .2122553 

8 .04892457 .4035016 

9 .08917 915 .7354981 

10 .1076112 .8875148 

11 .1157315 .954487 

12 .1190621 .9819555 

13 .120393 .9929323 

14 .1209184 .9972652 

15 .1211241 .9989617 

16 .121204 .9996207 

17 .1212347 .9998735 

18 .1212461 .9999681 
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Table 8. Hybrid (analytical-numerical) method results 
 for end node 2. 

t )t(P̂2 )t(F̂2 

5 0 0 

6 .2461485 .2801121 

7 .4889833 .5564532 

8 .614358 .6991271 

9 .6776732 .7711785 

10 .7698062 .8760241 

11 .8291526 .9435591 

12 .8575065 .9758253 

13 .8699453 .9899804 

14 .8752006 .9959608 

15 .8773703 .9984299 

16 .8782485 .9994293 

17 .8785957 .9998243 

18 .878727 .9999738 

 
 
8. Conclusions 
 
a) Table 9 presents computing time and mean abso-

lute error for different proposed methods. 

b) Hybrid method presents more accurate solutions in 
shorter time. For more complex networks, dimen-
sion of integrals and computing time will increase. 
Simulation time will be longer for more complex 
networks too. 

c) Combined conditional Monte Carlo simulation is 
more accurate than combined crude Monte Carlo 
simulation, but computing time of combined condi-
tional Monte Carlo simulation is longer. 

d) With increase in the value of t, the integration in-
terval will be wider and consequently the integra-
tion error increases. With the division of integra-
tion intervals into the smaller intervals and the 
computation of integral for each small sub-
intervals, the accuracy of solutions can be in-
creased. In the proposed example, although this 
operation has not been performed, the solutions 
gained by Gaussian quadrature formula have been 
more accurate than the solutions of simulation 
methods. 

e) The similar research can be done on the GERT 
networks with loop. 

f) The similar research can be performed on the 
GERT networks with inclusive-or and AND nodes. 

g) This paper assumed that the random variables of 
activities are of additive type. The similar research 
can be done under the assumption of multiplicative 
type for random variables of activities. 

h) The creation of a power tool has been one of the 
aims of this research, so that it can help us in the 
next stages of research where the required re-
sources to accomplish activities are limited. 

 
 
 
 
 
 

Table 9. Computing time and mean absolute error of different proposed methods. 

 

 

Comparison criteria  

Methods 

Computing time 
(Second) 

Mean absolute error of 
computation for )t(Pi  

Mean absolute error of 
computation for )t(Fi  

Hybrid (analytical-numerical) 0~  0001174559.0  000174559.0  

Combined crude Monte Carlo 
simulation  470703.2  000614849.0  001133693.0  

Combined conditional Monte 
Carlo simulation 179688.9  0003926627.0  0005972685.0  
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Figure 1. The GERT network of typical example. 
 

Figure 2. Transformed GERT network of typical example. 
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