
 

* Corresponding author. E-mail: jnazemi@saipacorp.com 

Journal of Industrial Engineering International������  Islamic Azad University, South Tehran Branch 

March 2006, Vol. 2, No. 1, 1 - 18 

 

����������	��
��
�������������������	������
����

�����
�
����
	��
����
�

M. Modarres 

Professor, Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran 

J. Nazemi* 

Assistant Professor, Islamic Azad University, Science and Research Branch, Tehran, Iran 

          Abstract 

This paper focuses on formulating capacity-price trade off problem in Yield Management for manufactur-

ing industry by drawing motivation from the remarkable success of Yield Management (YM) implementation 

in airlines. In the current practice, there is no alternative and procedure for the manufacturer, as well as cus-

tomers to take advantage of using the unfulfilled capacity in discounted offers. The authors present a frame-

work for customer segmentation and lead-time demand management to change standard production and ca-

pacity planning problem to Yield Management problem. For a planning period of T, the authors formulate the 

model with the objective of optimizing both price and capacity utilization factors, simultaneously. They de-

velop an innovative two-stage dynamic programming model to help practitioners to using the benefit of a dy-

namic model with reasonable computational effort. To formulate the problem in a general framework, the au-

thors devise a demand model with an independent probability function structure. The authors also identify 

some important challenges and devise a set of rules to assist decision makers in manufacturing. The parame-

ters of the model may be supported by sales and typical production planning data base.  

 
Keywords: Revenue management; Yield management; Capacity planning; Pricing; Order booking; Assem-

ble to order; Make to order; Dynamic programming 

 

1. Introduction 

The intense global competition in the 1980s forced 

world-class organizations to offer low cost, high qual-

ity and reliable products with greater design flexibil-

ity. Manufacturers planned to utilize just-in-time and 

other management initiatives to improve manufactur-

ing efficiency and cycle time. Therefore, manufactur-

ing industry has been struggling to remove the obsta-

cles to high machine utilization and maximum pro-

duction output from serial production lines. 

The researchers' approach to improve utilization 

and production output is to apply yield management 

concepts. First, we show that there exists a close link 

between yield management and manufacturing. Then, 

The authors develop a mathematical model to derive 

some rules for increasing capacity utilization of the 

system. In this approach, the researchers focus on 

capacity planning instead of traditional production 

planning.  

The researchers' proposed model takes into account 

the demand behavior of the market and combines it 

with production policies and the historical sales pat-

tern as well as consideration of having certain flexi-

bility in the product and process. The scope of model 

is the focus on interrelationship of the market seg-

mentation, market channels and customer decision-

making rule to optimize the revenue based on price-

capacity tradeoff for different customers and the 

manufacturer. 

The general model of the researchers' approach to 

cover YM discipline in the new area of non-service 

application is depicted in Figure 1. The paper pro-

ceeds as follows: Section 2 provides the concepts of 

manufacturing Yield Management. In Section 3, the 

authors develop a mathematical model to represent 

the problem. A two-stage dynamic programming ap-

proach is introduced in Section 4. 
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Figure 1.  model framework for manufacturing Yield management. 

   In Section 5, the authors introduce further devel-

opment of model and managerial implication on 

model. Numerical illustrations are presented in Sec-

tion 6 followed by conclusion and further research 

areas in Section 7.   

2. Literature review 

Even though YM has been widely used in service 

industry, it needs to be redefined for decision making 

in manufacturing section.  Therefore, the researchers 

review the literature regarding the market trend and 

general aspect of revenue management first. For a 

general literature review in revenue (or yield) man-

agement one can refer to Mcgill and Van Ryzin [39]. 

The papers address the Yield Management business 

strategy designed to help them optimize their reve-

nue. Broadly defined, Yield/Revenue Management is 

to sell the right inventory, to the right customer, at the 

right time and price. Bitran and Caldentey [9] have 

made a similar general review on revenue manage-

ment from price modeling point of view. 

Accurate forecasting is extremely important for a 

model because of its direct impact on revenues. Early 

work in this area investigated the Poisson, Gamma 

and Negative Binomial models for the final demand 

[5]. There are many researches such as Montgomery 

[41] and Rajopadhye [49] available on forecasting 

data in business application including regression 

techniques, time series models and box and Jenkins 

models. Many researchers modeled the booking re-

quests as stochastic arrival process to determine the 

total demand distributions especially for airline in-

dustry [1,29,62,65]. Several variations for estimating 

cancellations, no-shows etc. were investigated and 

later researches showed that the normal distribution is 

usually a good continuous approximation for the ag-

gregate demand [6]. To conduct more realistic mod-

els of the variance of the final demand, other proc-

esses such as the stuttering Poisson [52] and the batch 

Poisson process have been proposed. The forecasting 

literature is broadly touched by different business 

points of view but as the authors’ model is independ-

ent from every stochastic demand, the authors will 

not focus on this subject.  

The seat-inventory control problem is determining 

how to allocate seats/capacity across multiple fare 

classes. The earliest seat-inventory control models 

focused on single product offers, starting from Lit-

tlewood’s rule for two-fare classes [8]. Much work 

was done on testing the assumptions under which 

Littlewood’s rule is optimal and on empirical testing 

of its performance [38,51]. Belobaba [6] extended 

Littlewood’s rule to multiple fare classes and pro-

posed the Expected Marginal Seat Revenue (EMSR) 

rule, which is not optimal in general apart from the 

two-fare case but is very easy to implement and usu-

ally gives good results for common demand distribu-

tions [11,12,20,66]. Work has been done on exten-

sions of EMSR to produce better approximations of 

optimal booking policies [39]. Work on this subject is 

too extensive to cite here (see McGill and Van Ryzin 

[39] for a collection of references). The work which 

is most related to the authors’ work is related to dy-

namic programming approach. However, dynamic 

programming is widely used on a different but similar 

area in inventory management; the authors haven’t 

found many works on this subject in Yield Manage-

ment literature.  

Pricing is as an important part of the Yield Man-

agement practice. Work on this can be found in 

[25,26], where dynamic pricing problems are treated 

to determine optimal pricing policies. Little has been 

published on joint capacity allocation/pricing and 

market segmentation. The main focus of this paper is 

on the joint capacity pricing issues, where the effect 

of remaining seats on pricing should be addressed. 

Some other work may be found in [10].  

As Guerrero [28] and Whybark and Wijngaard [64] 

argue, operational coordination between marketing 

and production functions is becoming an increasingly 

important issue. Policy explored at the tactical level 

to ensure effective management of demand and ca-

pacity [56], which is a critical issue especially when 

the goals of both marketing and production functions 

are concurrently considered [19]. 
In both manufacturing and service operations man-

agement literature, researchers have addressed the 

issue of allocating scarce resources to competing 

classes of demand. Several researchers dealing with 
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the MTS manufacturing environment have written 

about the issue of allocating scarce inventory among 

competing classes of customers [16,17]. In the ser-

vice operations management area, researchers have 

dealt with the issue of allocating scarce fixed capacity 

among competing classes of demand in the context of 

airlines [13,33,55], hotels [50] or rental car agencies 

[15]. The work done in this area is referred to as a 

perishable asset revenue management (PARM) 

[29,61].  

However, prior work on applying the PARM con-

cept for short-run capacity management has been lim-

ited in MTO manufacturing environment [7]. The 

critical link between production and marketing func-

tions is investigated by Barut et al. [3], Guerrero [28], 

Whybark and Wijngaard [64] and Sridharan [56]. 

There are tremendous literatures on related subject, 

but the most related papers, even though in concept, 

are Harris and Pinder [29] and Chun [16].   

For the demand estimation, a brief review on retail 

demand is reviewed by Yao et al. [67]. Whitin [63] is 

the reference work that combines pricing with inven-

tory decisions. Mills [40] refines Whitin's. Karlin and 

Carr [31] present another demand model, the multi-

plicative form demand. Under this model the actual 

demand is given as the multiplication of the mean 

demand and the stochastic factor. Subsequent works 

on the additive model include Ernest [23], Young 

[68], Lau and Lau [35] and Petruzzi and Dada [47]. 

The works on the multiplicative model include 

Nevins [43], Zabel [69], Young [68] and Petruzzi and 

Dada [47]. There are economics papers on demand-

price relationship as well but those papers related to 

our model is Federgruen and Heching [24] and 

Petruzzi and Dada [46]. Petruzzi and Dada [46] pro-

posed a stochastic price dependent demand. 

The interrelationship between price, capacity and 

demand have very little literature. There is also a 

class of models that link quoted lead time, price and 

mean demand through a deterministic demand func-

tion. Dobson and Yano [22] formulate an integer-

programming problem which can be used to compute 

the best choices of product offering, prices, and 

MTS/MTO decisions simultaneously.  

Even though a lot of work on optimal pricing can 

be found in literature, there are very few researches 

on the relationship between the price and available 

capacity in manufacturing area, the model proposed 

by Harris and Pinder [29] has the advantage of con-

sidering price versus a capacity choice.   

In the next section, the mathematical findings and 

disadvantage of available models to solve the price-

capacity tradeoff formulation proposed by authors, 

will be reviewed. The new model will be explained in 

Section 4.  

3. Yield management in manufacturing 

Yield management (YM), or what is now called 

revenue management, employed within the airline 

industry involves a tiered pricing strategy with early 

discount pricing for price-sensitive customers. The 

traditional YM goal is to define a decision rule for 

determining discounted versus full fare quantity, such 

that revenue/profit is maximized. This decision rule 

can be expressed as a simple function of the percent-

age difference in the fares (i.e. prices), and carefully 

defined probabilities associated with whether a poten-

tial buyer is likely to be a cost sensitive customer (i.e. 

CSC) or a Time Sensitive Customer (i.e. TSC) at par-

ticular points in time.  

The dynamics of demand in YM modeling is a ma-

jor issue that makes information gathering and formu-

lation of the demand patterns more attractive in many 

researches. From this point of view, the YM problem 

may be divided in to three main subjects as: 

1-Sales patterns and market channels impact 

2-Demand patterns by market segment  

3- Effects of price changes on customer decisions  

In manufacturing systems, the capacity definition 

varies according to the type of industry as well as the 

line of products. However, in general the capacity is a 

function of time usage of facility and equipment  

(or man-hour in manual technology industry). The 

capacity is measured in terms of production volume 

per hour, day, month or year. In particular, in auto-

industry the capacity is usually determined by the 

departments which are considered as the bottlenecked 

ones, such as body shop, paint shop and final  

assembly.  

The designed capacity at each period if not con-

sumed within the period is fixed and perishable. This 

is due to the high relationship between the availabil-

ity of capacity in main manufacturing plant and 

spread supply chain. As the value chain is working in 

close cooperation to produce the final products. Each 

order may use the available capacity at any instant of 

time but preemption is not allowed. The main issue is 

how to selectively accept incoming orders so as to 

achieve a stated objective such as maximizing overall 

profit without being tardy on any accepted order and 

to manage seasonal demand to increase the utilization 

of the capacity in a robust and steady production 

plan. 
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One of the distinct differences of industry revenue 

management from its application to airlines is the 

degree to which price changes. Industry revenue 

management (RM) system also has discrete price 

classes for the different types of delivery orders. We 

define RH as the normal/highest price for the time 

sensitive customers (TSC), i.e. those who want to 

receive their goods as soon as their order is regis-

tered. On the other hand, RL is the discounted price 

for cost sensitive customers (CSC) who accept to re-

ceive the order later, at an agreed date which is suit-

able for the manufacturer in a reasonable duration, 

but in return is to pay a lower price.  

The other difference between airline and manufac-

turing industry is the variable cost of producing a new 

product (i.e. passenger service in airline). In airline 

models the cost for serving a new customer is consid-

erably low that can be neglected but in manufacturing 

sector the cost of materials is high and specially in 

car industry it goes up to 70-75% of the cost of vehi-

cle. Fortunately, the capital intensity of most manu-

facturing plants as well as car industry, in special, 

makes such a capacity modeling useful. For the pur-

pose of the model, let us define A as the variable cost 

of an average good being produced in manufacturing 

plant. 

3.1. Demand function 

The forecasted demand is the input to systems in 

revenue management. The range of forecasting meth-

ods applicable in RM vary from a simple times series 

and exponential smoothing models to complicated 

Bayesian forecasting techniques. The choice of the 

forecasting method varies from industry to industry, 

for different segments of the customers and different 

sets of variables.  

Mathematically, demand is a function of price. In 

literature, elasticity is a tool that is used to describe 

the relationship between two variables. It is defined as 

the percentage change in a dependent variable 

“caused” by a percentage change in an independent 

variable. The price elasticity of demand may be calcu-

lated at a specific price and quantity. This is called the 

point price elasticity and differs at different prices.  

The price elasticity of demand can be formulated as: 

 

 b
Q

R

dR

dQ
−= ,  

 

where R is the market price or manufacturer revenue 

and Q is the demand. Integrating both sides, results 

in )ln(.)ln( RbKQ −=  where K is a constant of in-

tegration. Thus, this expression may be written 

as
b

RAQ
−= . . Combining a price-demand function 

with the stochastic customer behavior resembles the 

actual demand function, which will be discussed in 

Section 4. 

4. Capacity-price trade off model 

In this section, the authors develop a model to de-

termine the capacity and price or trade off between 

them. There are T time intervals,  0 .t T≤ ≤  By pe-

riod t, it means the number of remaining periods is 

equal to t. Thus, reservation starts at period T, while 

the last period is denoted by t=T. At the beginning, 

the capacity of delivery of C is available and the ob-

jective is to determine the assigned capacity for each 

period, in order to maximize the total revenue. 

The demand is stochastic and a function of price. In 

fact, demand follows a general function of 
b

tt RXD
−=  where R is the price, b is the elasticity 

of demand and 
, ( 1,... )

t
X t T=  are independent iden-

tically distributed random variables. The definition of 

demand comes from the concept that there are two 

elements of uncertainty and price.  

As mentioned before, there are two customer 

classes, time sensitive customers (TSC) and cost sen-

sitive customers (CSC). TSC segment is obviously 

just one class while there are several cost sensitive 

customers, depending on the time of booking order. In 

each time interval, the capacity is offered to one class 

of customers only. Consider the following notation: 

:T   Number of periods (or number of classes).  

:C  Total capacity available at the beginning, i.e. at    

.t T=  

:
t

C  Planned capacity of period (class) t, .,...,1 Tt =  

ˆ
t

C : Remaining capacity available at the beginning of 

period , 1,..., .t t T=  

:TK Fixed cost of capacity.  

:K  Capital cost of one unit of capacity.   

:
h

R  Price at the highest level  (normal price).  

:
t

R  Price for class , 1,..., ,t t T= where 

1 2 1.....
T T h

R R R R R−≤ ≤ ≤ ≤ =  . 

:A   Variable cost of production. 
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 :
t

D       Stochastic demand for class t, t = 1,…,T and  

b

t tD X R
−=  

.    

 :b         Elasticity parameter of demand. 

:
t

X     Stochastic demand element as a probability 

function. 

( ):
t

F D Cumulative distribution function of stochas-

tic demand element for class , 1,..., .t t T=  

 :
t

Φ      Total revenue for classes , 1,..., .t t T=  

4.1 Revenue trade off for two classes 

Let the available capacity be ˆ
t

C at the beginning of 

period , 1,..., ,t t T=  and the allocated capacity for 

this period is ,
t

C where clearly, ˆ .
t t

C C≤  Then, reve-

nue for class t will be calculated as follows: 

 

 ttt KC)]D(E)[AR( −−  ,            (1) 

 

where 

))(1()()(
0

ttt

C

tt CdFCDdFDDE
t

−+= � .            (2) 

The optimal capacity for each class may be found 

through partial derivative of revenue Equation (1) 

with respect to 
t

D  and then equating to zero. 

 

Then we have: 

 

KCFARt =−− ))(1)(( .            (3) 

 

Consider a special case of two-class optimization 

revenue management for a MTO policy. A general 

equality is found with a constant of K (cost of capital 

per unit capacity) as below: 

 

))(1)(())(1)(( 2211 CFARKCFAR −−==−− or 

 

))(1(

))(1(

)(

)(

1

2

2

1

CF

CF
K

AR

AR

−

−
==

−

−
 .            (4)                                            

 

It can be understood from Equation (4) that the 

contribution from lost sales is equal to the cost of ca-

pacity. Also, the optimal ratio of RL to RH is equal to 

the ratio of lost sales probability of RH to RL in the 

simple YM problem. 

4.2 Dynamic programming approach 

Now a dynamic programming approach is devel-

oped to solve the model. To do that, each period (or 

each customer class) is considered as a stage of dy-

namic programming model and the remaining capac-

ity at the beginning of the period ( ˆ
t

C ) as the state of 

the system.  Let ˆ( )
t t

CΦ represent the maximum of 

the expected total revenue of the periods t till the end, 

provided the remaining capacity is ˆ
t

C . Then, for pe-

riod , 1,..., ,t t T= the following recursive function 

can be developed. 

 

}ˆ)()}ˆ()({)ˆ( 11 ttttt
R

tt CKACRDEMaxC +−Φ+=Φ −− ,(5) 

 

where 

 

ttt DCC −=−
ˆˆ

1 .                       (6) 

 

Since ˆ( )
t

A K C+  is a constant value, we discard it 

from this point on. On the other hand, by substituting 

t
D  with 

b

t
X R

−
 in (5) and defining 

ˆ ˆ( ) ( )
t t t t

C A K Cφ = Φ + +  results in: 

 

)}ˆ()({)ˆ( 1

b

ttttt

b

tt
R

tt RXCRRXEMaxC
t

−
−

− −Φ+=φ .  (7) 

Lemma 1. Solving the recursive Equations of (7) is 

equal to obtaining the set of Ttzt ,...,1,* = , that op-

timizes the following set of equations:�
�

m

m

ttt
t

z

XzErXzEz
zr

])[(][
)(

*

1 −+−−
= − ,        (8) 

where 
b

1
1m −=  and 

* *ˆ ˆ( ) m

t t t t t
z

r Max r C r C= =  and 

0 ( ) 0.r z =  

 

Furthermore, the optimal revenue function is as fol-

lows: 

m

tttt CrC )ˆ()ˆ( *=φ .             (9)

      

Proof. The proof is by induction and we follow an 

approach introduced by Monahan, et al. [3]. Let's de-

fine a new variable , 1,..., ,
t

z t T=  as below: 
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b

t

t

t
R

C
z

−
=

ˆ
,                           (10) 

 

then,  

 

)(ˆˆ

t

tt

t

b

ttt
z

Xz
CRXC

−
=− −  ,                (11) 

  

and  

 

t

t

ttt
tt

b

tttt R
z

XzEz
CRRXCEC )

][
(ˆ])ˆ[ˆ(

−−
=−− − .   (12) 

 

The recursive Equation of (7) may be rewritten as 

follows: 

 

.))](ˆ(

))ˆ(ˆ[()ˆ(

1

b

tttt

t

b

tttt
R

tt

RXC

RRXCECMaxC

−
−

−

−+

−−=

φ

φ
          (13)   

  

We first prove (9) holds for t=1. Then, by consid-

ering 0 ( ) 0r z = and (11) as well as substituting 
t

R   

from (1), the recursive equation for the last period is 

as follows: 

 

.})
ˆ

])([{(

}))ˆ(ˆ{()ˆ(

1

1111111

m

R

b

R

Z

C
XzEZMax

RRXCECMaxC

−−=

−−=Φ −

 

 

Since  1

[ ]
( ) t

m

z E z X
r z

z

− −
=  from (8), then:   

 

1 1 1 1
ˆ ˆ( ) max{ ( )( ) }m

z
C r z Cφ = . 

 

Let (9) holds for (t-1), i.e. 
*

1 1 1 1
ˆ ˆ( ) ( ) ,

m

t t t t
C r Cφ + − + −=  

then by considering (11), (12) and (8), the recursive 

Equation of (7) may be rewritten as follows: 

 
*ˆ ˆ ˆ( ) max{ ( )( ) } ( ) .m m

t t t t t t
z

C r z C r Cφ = =  

4.3. Determining 
*

t
z  

The algorithm to solve the dynamic programming 

model actually consists of a two-step approach.  

In the first stage, 
*, 1,...... ,

t
z t T=  are calculated by 

optimizing the set of Equations (8). The important 

point about obtaining the optimal value for
*

tz  is that 

the set of Equations (8) are independent of capacity, 

ˆ .
t

C We first calculate 
*

1z  and then 
* * *

1 1, ,........, .
T

z z z  

In the second stage the optimal price or capacity is 

determined. Below, we explain the relation between 

the price and capacity. 

4.4. Relation between capacity and price 

After calculating the set of 
*, 1,...... ,

t
z t T=  as de-

scribed above, one can determine either optimal price 

or capacity, if the other one is given. 

If the capacity is already established, the optimal 

prices for different classes are determined by the fol-

lowing relation, which is derived from (10):  

m

t

t

t
C

z
R

−= 1

*

* )
ˆ

( .               (14) 

On the other hand, the objective can be establishing 

a capacity at the beginning. From (5), (7) and (9) the 

recursive equation for period , 1,..., ,t t T= is as fol-

lows: 

 

TKCKACrC t

m

tttt ++−=Φ ˆ)(ˆ)ˆ( *
.      

 

Since the capacity is established for the first time, 

we consider a fixed cost of TK. Then, the optimum 

capacity for predefined demand characteristics is ob-

tained by taking the derivative of ˆ( )
T T

CΦ with re-

spect to ˆ
T

C  (by our notation ˆ
T

C C= ) must equal  

zero. In that case: 

bT

A

mr
C )(

*
* =  .                                            (15) 

In case the capacity has to be established with unit 

revenue maximization, then the problem changes to 

the following mathematical model.  

 

)(
*

C

TK
A

C

Cr
Max

m

T

unit +−=Φ , 

and 

mT

TK

rm
C −

−
=

1
*

* )
)1(

( .   

An optimal capacity allocation is the essential part 

of revenue management.  
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4.5. Dynamic capacity-price solution algorithm 

From theoretical point of view a dynamic pricing 

problem deals with environments where demand is 

random and supply is fixed and determined.  In con-

trary, a revenue management problem solves the 

problems while demand is random and the price is 

fixed and determined. To this point, we have intro-

duced a general formula for capacity-price tradeoff 

for each class (i.e. Ttzt ...,,1,* = ) which acts as a 

linkage between two disciplines. Now we introduce 

an extended relationship between demand and price, 

which makes it possible to find the optimal capacity 

and prices for all classes, simultaneously.  

Referring Equation (2), Revenue for each class 

(call it each period) may be written as: 

 

� � +′−+=
∞i

i

q

t

q

tttttt CAKDdFCDdFDR
0

)(])()([θ , (16) 

 

where    

 

tθ :  Revenue for class t , t=1, ……, T. 

K ′ : The capital cost of unit capacity. 

iq  : Planned capacity of class (i.e. tC ), used as nota-

tion for  the variable with content of tC . 

Introducing demand function as
b

tt RXD
−= , sub-

stitution in Equation (16) and replacing )( AK +′  

with K, we will have the following general tradeoff 

function for each period: 

 

� � −+=
∞i

i

q

t

q

ttttt KCDdFCDdFDR
0

])()([θ .        �����

 

Since tKC  is a constant value, we will discard it 

from this point forward. Now, let )( tt Cθ  represent 

the total expected revenue of period t until the re-

maining with a known capacity of Ct. Then for pe-

riod Ttt ,...,1, = , the following recursive equation 

may be developed:   

 

� �
∞

−≤

+

�

=

+=

i

T

ii

ii
q

tttt

CCq

tt DdFCDdFDRC Max )]()([{)(

1

θ  

           )}ˆ(1 ttt CC −+ −θ .                                   (18) 

Proposition 1. Let
b

tt RXD
−= and let the revenue – 

lost sales trade off formulated as Equation (18) and a 

continuous-probability distribution function for de-

mand the optimal capacity allocated for each period 

will be found through a dynamic capacity reallocation 

with the following relationship: 
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Proof. the proof follows by the induction of demand 

function in Equation (18). Assuming that demand 

function has a probability density function of )(xf X , 

The equation will transform to the following relation-

ship: 
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This is due to probability theory, since D=X.R
-b

 

Then )()( xRDPxXP
b−<=< . Taking the deriva-

tive of both sides with respect to x gives: 
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It has been shown that the optimal relation between 

capacity availability and price (z values) may be 

found through dynamic programming (Equation 13). 

Then by considering (21) and tz  values and substitu-

tion in (20) results into a new recursive relationship 

with one variable ( i.e. capacity) as stated in Equation 

(19). 

Solving recursive equations as described in (19), 

the optimum capacity and relative prices planned for 

each class will be calculated.  

Figure 2, summarizes the solution procedure for 

dynamic pricing and capacity allocation we have de-

veloped. 
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Figure 2. Flow chart for management YM mathematical model. 

 

The approach starts with company and market as-

sumptions and combines in a capacity-price trade off 

solution method. General algorithm processes are 

shown in middle and related parameters and variables 

in right. 

5. Extended framework for optimal solution 

So far, the authors have developed a general rela-

tionship between optimal capacity for multi-class 

customers and related price offer while maximizing 

revenue for the total problem. In this section, the au-

thors will discuss some managerial and computa-

tional implications of the model due to changes in 

demand and price policy settings.  

What is the effect of a fixed multiplier on demand 

function on the optimal solution? 

If the prices over time can be modeled as 

1−= tt RR α .What would be the relationship between 

capacities allocated and price changes multiplier on 

an optimal scenario?  

As the risk of demand which means the probability 

of discontinuing demand increases, what happens to 

the optimal solution? 

5.1. Pricing against uniform demand shift  

There are cases where the demand behavior on cer-

tain series of time is similar in nature but the differ-

ence is the amplitude of demand. The following 

proposition is proved to reduce calculation effort.  

 

Proposition 2. If demand changes according to a 

multiplier (i.e. new tt nXX =  or 
b

tt RnXD
−= ), 

then optimal capacity will change in proportion to 

multiplier under the condition of fix prices.  

 

Proof. From Monahan (2004), it is proved that for a 

nXnewX tt = , there is a relationship of 

tt ZnZnew ˆ)ˆ( = .  Then from probability theory, we 

have: 
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By derivation from both sides and (21) , we have : 
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Let’s consider
b

tt RnXD
−=  and (22) and substi-

tute in Equation 19, then Equation (19) will change as 

follows: 
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)}ˆ(1 ttt CC −+ −θ .                                             (23) 

               

Now, let us assume that a proportional change in ca-

pacity elements will happen or tt ncnewc = and by 

substitution, we have: 
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   Let us define new variables as tt Zn ˆˆ =ζ  and   

tt nC=γ  and tt Cn ˆˆ =γ substitute in (24) , then:  
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Comparing (25) with (19) will prove that: 

 

   ttt CnCnew γ== ˆ)ˆ( .  

 

The above-mentioned relationship shows that in 

optimal adjustment of capacity, on conditions of de-

mand changes by a multiplier of n, the prices will not 

change if the total capacity multiplied by a coefficient 

of n. 

5.2. Pricing against lead-time 

As the customer willingness to advance purchase of 

capacity is related to increasing risk of usage for the 

customer, the demand forecast may be modeled as if 

cumulative hazard rate for demand increases in ac-

cordance to lead-time. There exists a reverse relation-

ship between optimal prices and lead-time. A usual 

practice complies with the mathematical model for 

demand behavior.  

 

Proposition 3. For cases where the cumulative haz-

ard rate for demand classes has the general increasing 

trend of 1−Λ≥Λ tt hh  over time, prices on optimal 

assignment increases over time or  1−≥ tt RR . 

 

Proof. Consider thhhh Λ≤Λ≤Λ≤Λ .....321  as the 

cumulative hazard rate for demand function over 

time. From definition of cumulative hazard rate, the 

following equations may be concluded: 
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Also from definition of CDF function, it can be 

shown that: 
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Combining assumption of the proposition, and 

Equation (26) we have: 
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Applying Equation (4) will lead to the following 

equation: 
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Considering (27) and (28) then:  

 

1−≥∴ tt RR  . 

 

In practice, there are situations where the short-

coming of capacity causes to make delay for delivery 

or in other words cause the lead-time longer than ex-

pected. For these situations, the customers usually 

expect for discount on longer lead times. The follow-

ing proposition shows how to deal with such envi-

ronments through redefinition of price elasticity. 

 

Lemma 2. For cases where lead time effect on de-

mand has to be enforced and demand parameter for 

elasticity has a general formula of 
)(tg

tt RnXD
−=  , 
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price will change through a scale down factor of  

g(t)/b. 

 

Proof. Considering (14 ) and by dividing Z values of 

any class (i.e. period t) to final class (i.e. period T). 

Also, consider that the availability of capacity doesn’t 

change due to not receiving any order during con-

secutive periods (i.e. tT CC ˆˆ = ). Then:  
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Regarding (29) and demand function stated in 

lemma and solving simultaneous equation, we have: 
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Now, let us define a new variable for price at pe-

riod t with following definition:  

 
btg

RR
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where b is a scale factor and g(t) is a function of time 

representing lead time factor. 

Considering (30) and (31) , the demand function 

will change to a new function of 
b

tt RnXD
−′= )( .  

It is obvious that by introduction of new variable 

the problem will changes to its original form and may 

be solved through a dynamic programming approach 

using Equation (19). The result prices of dynamic 

programming model are due to the changes by substi-

tution of R′ with
)(tg

R . 

It is interesting for the reader to note that by intro-

duction of this lemma, lead-time effect on a stable 

market may be investigated through a reverse analy-

sis of actual data with the theoretical relationship.  

5.3. Pricing against capacity utilization and market segments 

Proposition 4. For customers where the opportunity 

cost is more attractive than lead time , there exists an 

upper bound of discount to sell unsatisfied capacity in 

order to minimize revenue reduction which is the 

most beneficial for both buyer and seller.  

 

Proof. Consider demand in period t-1 is less than the 

capacity assigned that means 11 −− ≤ tt CD . Let us de-

fine the demand shortcoming asε , then from (10) 

reduction in price for next coming segment is ex-

pected to be as follows: 
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Therefore, lower bound discount for unfulfilled ca-

pacity is equal to total expected discount for next 

coming class to demand shortcoming of ε  for previ-

ous segment or in mathematical terms as Equation 

(32) as below: 
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Figure 3 shows the behavior of such multiplier 

where discount will increase by the coefficient of 

“shortage to capacity ratio” on a parabolic curve. In 

addition, discount will increase as elasticity of de-

mand increases which is consistent with customer 

behavior. Such a discount calculated as (32) may ap-

ply into agreements with wholesale customers. These 

agreements are a trade off risk for wholesale cus-

tomer to have capacity on lower cost versus of lost 

sales due to non-fulfilled demand for seller.  

0.1 0.2 0.3 0.4 0.5

Demand shortage

10

20

30

40

Discount %

    Figure 3. Price Multiplier and discount behavior.   

5.4. Pricing against product life cycle and company image 

There are policies for management to avoid price 

discounts. Therefore, such policies should be applied 

in manufacturing industry to prevent company image 

distortion. Also, there are certain cases where, there 

 is a recommended policy from management to  
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minimize the number of price changes over classes 

(over time) in order to maintain the stability of com-

pany image.  

 

Lemma 3. If management decides to restrict the rela-

tive prices to consecutive classes over time by a coef-

ficient (i.e. α ) , there exists a relationship between 

coefficients for optimal prices versus optimal capac-

ity allocated which is consistent with elasticity of 

demand (1-m). 

 

Proof. Referring the Equation (12), there is a  rela-

tionship between consecutive optimal variables. Also, 

let’s consider (10) and applying for consecutive Zt’s 

as follows: 
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The above-mentioned relationship (i.e. Equation 

(33)) will help any devised search algorithms to find 

optimal solution. In addition, when management sets 

the policies for consecutive prices, the capacities for 

each class of customers are already setup in an opti-

mal relationship.  

5.5. Optimal solution for price step down scenario 

Now, let us consider that a problem is solved by 

setting 0αα =  according to Equation (24), and result-

ing revenue is 0φ . Changing εαα += 0   will change 

the revenue function as ϕφφ ±= 0 . Then, Solving 

for all α  , we can find optimum price step down co-

efficient. 

 

Lemma 4. There exists a lower and upper boundary 

for α  that bounds α  feasible selection space.   

 

Proof. Solving a dynamic yield-manufacturing prob-

lem using Equation (19), there exist maximum and 

minimum prices over classes. Thus Minimum amount 

for α  would be: 

 

T

TR

R /10 )(≥α .  

 

From proposition 4 and for real life environment 

depicted in proposition 3, then we have  

Ttt RRR ≤≤− .....1  ,  and  therefore 1≤tα   , thus:  

 

1)( /10 ≤≤ αT

TR

R
 .  

 

Now, let us assume -as it is normal in real practice 

that there is a constraint of minimum price (i.e.  L). 

Then from definitions, there exist a boundary for op-

timal price coefficient as below: 

 

1≤α   and  L
T ≥α  1/1 ≤≤	 αT

L . 

 

Combining above relations, we have: 
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Figure 4 shows the feasible solution space before 

and after application of Equation (34). It  is obvious 

that such a relation will decrease the size of problem. 
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Figure 4. Effieciency of search and  feasible solution space.  

5.6. Dealer margin against capacity utilization  

Dealers in a advanced selling approach have a ma-

jor effect to convince customers to wait and take the 

benefit of discounts. Therefore, A policy should be 

selected to take care their interest as well as sellers 

benefit. 
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Proposition 5. For dealers who purchase the capacity 

in advance to meet their customer demand, there ex-

ists a price – sales policy criteria that motivate ad-

vanced selling of unsatisfied capacity in order to 

minimize reduction of revenue for manufacturer and 

to increase revenue of dealer. 

 

Proof. Consider there exist a known hazard rate for 

demand continuity on period t as h(t). From definition 

of statistics the probability of purchasing for custom-

ers with booked advanced order on their assigned 

lead time is equal to survival function of demand or  
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0

)()( .    

 

Case I. Where the dealer has purchased the capacity 

by himself to take the benefit of sales and take the 

risk himself. 

As the excess capacity due to dispensed orders has 

to be sold on delivery date, therefore following cost 

and benefit relations exist: 

Lost of sales due to q excess capacity:  
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Revenue of sales due to q excess capacity:  
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where 

))(1( tTSQq t −−= : Dispensed capacity orders.   

T-t : The time difference between advance order and 

time of sales.  

W :   Cost of unsold order as a percentage of capacity 

expected revenue(i.e. cost of investment).  

Qt :   Total capacity booked on period t by dealer. 

Thus from cost-benefit tradeoff, and taking the de-

rivative of both sentences to (C+q) and letting it to 

zero , we have: 
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The above relation shows in case of long lead time, 

the probability of high demand (or shortage of capac-

ity) has to be considered so as to convince dealer to 

take care of capacity advance selling scenario.   

This means that the seller has to move more to ad-

vance sales in order to decrease available capacity on 

delivery date to recover dispensed orders or in 

mathematical view: 

 

endhighRC T _&0 →→ . 

 

Case II. Where the dealer has the role of just a dealer 

service and sales agent that take the benefit of margin 

for every sales he has made.  

Let us assume that total risk for dispensing of or-

ders is cumulative hazard rate of demand which is 

equal to: 
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Considering the margin for dealer as M, the total 

lost revenue due to dispensing of orders is: 

 

iQtV *)(*L i Λ=  and )(* tVL
unit

i Λ=  and  

)(* tQq Λ=  where  

Li :    Lost revenue for dealers advanced sales in pe-

riod i with lead time of t. 
unit

iL :  Unit lost revenue for dealers advanced sales in 

period i. 

V:       Dealer margin for sales of one unit of capacity. 

Qi :     Advanced order for period i. 

q :       Risky orders quantity.  

)(tΛ : Cumulative hazard rate for lead time of t. 

As explained before, the following cost and benefit 

relations exist: 

Lost of sales due to q excess capacity:  
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Revenue of sales due to q excess capacity:  
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Then, considering the above tradeoff, we have: 
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The amount paid to dealer for recovery cost of dis-

pensed customer is less than usual promotion cost 

and also the margin gained from excess revenue due 

to increase in availability of capacity.  

Through extension of findings from base Yield 

management theory in manufacturing, has reached to 

a series of conclusion we have proposed. The follow-

ing flow chart shows the general framework for 

manufacturing yield management. The process in-

cludes outcomes of the model for optimal target set-

ting for pricing by manufacturer.  

6. Numerical examples 

From definition, Price elasticity, the percentage 

change in demand per percentage change in price, 

describes the sensitivity of sales volume to price 

changes. Figure 5 is a simplified illustration of price 

elasticity within Iran car industry. This characteristic 

can be observed through general mathematical eco-

nomics that we are not going to discuss it in detail. 

We put such a demand observation and historical data 

in the general demand model. It is clear that the pos-

sibility of using 
b

RKD
−= . as demand function has 

been proved. As it is shown in Figure 5, for Iran car 

industry (as well as all over the world) demand 

changes are due to negative price effect as well as 

proposed demand function ).0)(( 1 ≤−=
∆

∆ −−b
Rb

R

D
 

 

      

              Figure 5.  Price elasticity in Iran auto industry. 

6.1. Illustration I: Demand function estimation  

Consider a demand function with K as a constant 

parameter and solving a simultaneous equation for a 

price and its related demand, we will have the follow-

ing relationship: 
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where b is the elasticity of demand, R is price and D 

refers to demand. Taking in to account market data 

for B
+
 and C segment car and solving simultaneous 

equations of two segments, we will have a demand 

function as shown in Figure 6. 
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               Figure 6. Demand curve in Iran auto industry. 

6.2. Illustration II: Dynamic manufacturing yield plan 

Consider a four period DMYP for a car manufac-

turer with capacity available of 62500 each period 

and demand elasticity b of 1.289. Also, assume that 

the demand probability function for each period is as 

follows: 

 

                  Table 1. Sample problem definition. 

Planning 

period 

Sales period Probability 

function 

Parameters 

T 4 Uniform B=1.2 , a=0 

T-1 3 Uniform  B=.8  , a=0 

T-2 2 Uniform B=.45 , a=0 

T-3 1 Uniform  B=.2 ,  a=0 
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6.3. Solution  

Stage 1. Let’s calculate the Z functions for the four 

periods by introducing the related formula. Results of 

the above calculations are summarized in Table 2. 

 

Stage 2. Calculation of price and capacity related 

quantity and solving a dynamic programming prob-

lem would result in the following capacity allocation. 

It can be easily verified that solving the model  for 

the required capacity through dynamic programming 

approach yields to the following result. The result of 

allocation to four class customers is shown in Table 3. 

It is interesting to check the affect of demand 

changes on the price and allocated capacity to each 

class that is in line with the expectation from the 

model behavior. 

Table 4 shows the effect of demand changes on 

price and capacity for scenarios with uniform demand 

behavior but with a different mean. 

As it is clear from the table, with the increasing 

chance for demand, the prices are higher and capacity 

allocation goes for periods with higher probability of 

demand (scenario I). In addition, the prices for higher 

demand environment (scenario II) are always higher 

than that of other scenarios. Scenario III shows an-

other important phenomenon by allocating more ca-

pacity for advanced sales in order to decrease the cost 

of over demand capacity providing that capacity are 

kept the same in all scenario’s.   

Also it is obvious from the table that changes in 

price are relatively high, where in usual practice such 

changes have to be managed. The important point is 

to apply “lemma 1” in order to manage such devia-

tion. Another solution is to apply lemma 3 to smooth 

the prices. 

 

Table 2. Summary of findings. 
 

Planning 

Period 

R Values Z Values Parameters Iteration 

T 1.20168 1.56943 b=12 , a=0 4 

T-1 0.743753 0.912243 b=.8 , a=0 3 

T-2 0.459691 0.390118 b=.45, a=0 2 

T-3 0.147861 0.174749 B=.2 , a=0 1 

 

Table 3. Sample result for the problem. 

 

 T T-1 T-2 T-3 

Capacity ( C ) 27500 20000 10000 5000 

Price ( R ) 13.2 5.6 3.3 1.27 

Table 4. Comparison sheet for different market behavior. 

 

  T T-1 T-2 T-3 

Probability  (0,1.2) (0,1.2) (0,1.2) (0,1.2) 

Z values 2.51951 1.94877 1.42068 1.04849 

r values 1.89104 1.4959 1.06995 .059366 

Capacity(C) 15000 15000 15000 17500 

Scenario 

II 

Price (R )   30. 14.6 8 5.1 

Probability  (0,0.2) (0,0.2) (0,0.2) (0,0.2) 

Z values 1.25292 .324794 .23678 .174749 

r values .881584 .372577 .2666488 .147861 

Capacity(C) 10000 15000 17500 20000 

Scenario 

III 

Price (R )   24.332 4.19 2.17 1.27 

Probability  (0,1.2) (0,.8) (0,.45) (0,.2) 

Z values 1.56943 0.912243 0.390118 0.174749 

r values 1.20168 0.743753 0.459691 0.147861 

Capacity(C) 27500 20000 10000 5000 

Scenario 

I 

(Original) 

Price ( R ) 13.2 5.6 3.3 1.27 

7. Conclusion   

The major concern for all practitioners is how to 

utilize the capacities in favor of all stockholders, in-

cluding customers and shareholders. This concept has 

been forgotten in most planning process.  The re-

searchers argue that in most cases the objective is just 

to optimize the shareholders value in short terms, 

which is just to optimize price or capacity allocation. 

The concept, the researchers have put in practice is to 

lead the market by utilization of resources to get the 

most benefit for the shareholders in the long run 

while keeping the productivity and resource utiliza-

tion as competitive as its rivals through a simultane-

ous price-capacity trade off model. The model pro-

vided can be used in a wide area of products and 

manufacturing systems with assembly to order and 

make to order systems. The approach utilizes a dy-

namic programming algorithm to cope with uncer-

tainties in market as well as the capacity availability 

in favor of utilization and strategic market leadership 

plan.  

The basic concept of our model has implications on 

the management policies from the traditional make to 

stock attitude to make to stock end even further to 

capacity sales. This concept will be brought into prac-

tice with global competition effect on market and in-

creasing customer oriented products where the prod-

ucts have to meet individual requirements. The 

propositions provided in this paper covers the basic 

needs for policy setting for an interrelated discipline 

of marketing and capacity planning which isn’t 



 

 
 

� ��������������������������������������������������������������	��
��
�������������������	������
��������
�
�����������������#��
�

�

 

touched by current marketing theories or planning 

optimization algorithms. 

The solution procedure devised for the problem 

definition suggests a two step dynamic programming 

in which the interface between the steps are inde-

pendent from management decision making proce-

dure. This means that the first step will provide a 

market behavior indication, which can be provided in 

a handbook for practitioners’ usage. This can be a 

further research area to search and categorize the 

most useful demand patterns and its related market 

factors (i.e. Z values).   

Another area of research is the extension of princi-

ple provided to lean enterprises where the value chain 

integration on price – capacity trade-off problems is 

the major issue for further development of the model. 

The authors could address the market behavior in fa-

vor of capacity utilization within a network of supply 

through their proposed approach. Through this ap-

proach, it brings a new concept for rivalry of net-

works instead of front-end manufacturer competition, 

which is the current practice of global market players.  

As argued by Michael porter, supply network has the 

major role for core competency of a market leader. 

Therefore, as there aren’t proper feedback systems to 

revise the demand parameters for a network in such a 

way that could convince the partners even within our 

problem definition, this is perhaps the logical next 

step in further research. 

An approach in which the size of the planning peri-

ods and partners increases during the planning horizon 

may easily be adapted by further research proposed in 

general in this paper. In fact the only implication is 

that the planning horizon must be extended, and rede-

fined. When, for example, we would consider periods 

of a day in the first week of the planning horizon, and 

periods of a week in the subsequent 10 weeks, we 

could redefine the planning horizon 

(t = 0, . . . , 10 weeks) as follows: t = 0, . . . , 6 days, 

t = 7, . . . 16 weeks. An important implication of this 

extension is that the size of the entire model increases, 

and may become harder to solve. Whether this exten-

sion leads to a higher utilization of resources and 

market leadership is subject of further research.  

The authors have shown the effects of a single pa-

rameter changes on capacity planning and pricing 

which help the decision makers to investigate the 

policies. Based on some decision criteria, such as 

costs or profit, aggressive or defensive competition 

policies, the pricing will be affected. Effects of such a 

strategic policy on capacity planning convey new 

ideas on strategic capacity management and pricing 

which is another area of research for bench marking. 

In brief, the authors studied capacity-planning 

problems in a make-to-order manufacturing environ-

ment in this paper. They argued that many manufac-

turing companies that even produce semi-standard 

items will confront with the concept of pull system to 

avoid unreasonable costs of market deviations. There-

fore, such a planning process may be modeled even 

for a daily usage of planners in plants to bring the 

capacity utilization and pricing trade off into practice. 

This situation can be a further research area to gener-

ate a trade off curves for most popular market behav-

iors in a handbook or software tool for middle man-

agers and supervisors.  

The challenging paradigm shift for decision makers 

to apply the model is to adjust dynamically their 

manufacturing system according to market behavior 

that is consistent with model dynamics presented in 

this paper. 
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