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Abstract
Certain inventory items are living organisms, for example livestock, and are therefore capable of growing during the replenish-
ment cycle. These items often serve as various saleable food items downstream in supply chains. The purpose of this paper is to 
develop a lot sizing model for growing items if the supplier of the items offers incremental quantity discounts. A mathematical 
model is derived to determine the optimal inventory policy which minimises the total inventory cost in both the owned and 
rented facilities. A solution procedure for solving the model is developed and illustrated through a numerical example. Sensitivity 
analysis is performed to demonstrate the response of the order quantity and total costs to some key input parameters. Incremen-
tal quantity discounts result in reduced purchasing costs; however, ordering very large quantities has downsides as well. The 
biggest downsides include the increased holding costs, the risks of running out of storage capacity and item deterioration since 
the cycle time increases if larger quantities are purchased. Owing to the importance of growing items in the food supply chains, 
the model presented in this article can be used by procurement and inventory mangers when making purchasing decisions.

Keywords Inventory management · Economic order quantity · Growing items · Lot sizing · Incremental quantity discounts

Introduction

Background

Inventory management is concerned with ensuring that the right 
quantity of goods is available at the right time (i.e. when cus-
tomers demand the goods). The two major decisions in inven-
tory management are the quantity and timing of the orders. 
These decisions were first addressed by Harris (1913). Harris 
proposed the model popularly referred to as the economic order 
quantity (EOQ) which seeks to balance the fixed cost of order-
ing items against the variable cost of keeping stock, thereby 
determining the best quantity to order per procurement cycle.

While the basic EOQ model has found some practical 
applications, it makes a number of assumptions which do not 
reflect most real-life inventory systems. In order to model 
more realistic systems, various researchers have revised the 

classic EOQ model by relaxing the model assumptions in 
some ways (Holmbom and Segerstedt 2014). In an attempt to 
create a new variant of the EOQ model, this paper proposes 
an inventory system where the items being ordered grow 
during the course of the inventory replenishment cycle, and 
the vendor offers incremental quantity discount.

Literature review

Growing items

Rezaei (2014) was the first researcher known to have incor-
porated item growth into inventory theory by developing an 
EOQ model for growing items. Rezaei (2014)’s proposed 
inventory system had two distinct periods, namely growth and 
consumption periods. During the growth period, the ordered 
live items are fed and raised until they reach an acceptable 
weight for sale. The items are then slaughtered and put on sale 
during the consumption period. The increase in weight expe-
rienced by growing items during the growth period is what 
differentiates them from conventional items, whose weights 
do not change if they are not consumed or more items are 
added to the system. In the context of this study, growth is 
quantified only through an increase in weight.
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Zhang et al. (2016) formulated an inventory model for 
growing items in a carbon-constrained environment. Their 
model used the same basic assumptions, including the growth 
and feeding functions, as Rezaei (2014)’s model, and they 
extended that model by assuming that the company under 
study operates in a country where carbon taxes are legislated. 
The carbon tax is based on the amount of emissions released 
into the atmosphere as a result of the company’s inventory 
holding, ordering and transportation activities.

Building on Rezaei (2014)’s work, Nobil et al. (2018) 
studied an inventory system for growing items where short-
ages are allowed and fully backordered. The model presented 
by Nobil et al. (2018) differed from Rezaei (2014)’s model in 
two ways. Firstly, in the former, shortages are allowed and 
fully backordered, and secondly, the growth function of the 
items was approximated by a linear function in former model 
as opposed to using Richards (1959)’s growth curve as was 
the case in the latter.

Sebatjane and Adetunji (2018) extended Rezaei (2014)’s 
model by incorporating item quality. Their model was for-
mulated under the assumption that a certain proportion of 
the ordered growing items is of inferior quality. In addition, 
this model investigated three different growth functions, 
namely logistic, linear and split linear.

Incremental quantity discounts

EOQ models with quantity discounts were first proposed by 
Hadley and Whitin (1963). Quantity discounts are usually 
offered by suppliers as a means of encouraging buyers to 
purchase larger volumes. In inventory theory, suppliers usu-
ally offer one of two types of quantity discounts. These are 
all-units quantity discounts, which result in reduced purchas-
ing cost for the entire order if the quantity ordered is above 
a particular quantity called the break point; and incremental 
quantity discounts where the reduced purchasing cost only 
applies to items bought above the break point.

Lal and Staelin (1984) studied an integrated vendor–buyer 
inventory system taking into account incremental quantity 
discounts and pricing policies. The aim of their model was to 
determine the buyer’s order quantity and the optimal price the 
vendor should charge in order to minimise total system costs.

Most inventory models which consider incremental 
quantity discounts assume that demand is deterministic. 
This is seldom true in most real-life inventory systems. 
This prompted Abad (1988) to develop inventory models 
with incremental quantity discounts under two non-constant 
demand patterns, namely constant-price elasticity and linear 
demand functions.

Guder et al. (1994) relaxed two assumptions in the basic 
EOQ model with incremental quantity discounts to create a 
new model. As opposed to the basic model which considers 
only one type of item, their model considered multiple items. 

Secondly, they assumed that there is a capacity limit on the 
number of items that can be ordered.

When discounts are taken into account during the model-
ling of inventory systems, they are considered to be offered 
only on the basis of purchasing quantity discounts. This 
changed when Tersine et al. (1995) developed an inventory 
model which considered both quantity and freight volume dis-
counts. They studied an inventory system which considers a 
company which is offered incremental and all-units discounts 
based on the quantity of stock ordered. Furthermore, the com-
pany’s logistics provider offers freight discounts based on the 
amount of stock transported from the supplier to the company.

Rubin and Benton (2003) studied an integrated ven-
dor–buyer inventory system with multiple items, incremen-
tal quantity discounts and full backordering of shortages. 
In addition, constraints on the available storage space and 
budget were also taken into account.

Haksever and Moussourakis (2008) formulated a multi-
item inventory model with incremental quantity discounts 
taking into account a number of constraints, including maxi-
mum purchasing cost of each item, maximum number of 
items of each type that can be ordered and maximum num-
ber of items that can be purchased in each price break. The 
model also investigated whether a common cycle time for 
all the different types of items could reduce the total costs.

Hosseini et  al. (2013) presented a joint pricing and 
ordering inventory model under stochastic lead times. The 
authors used genetic algorithm to determine the optimal 
order quantity and pricing. An extension of this model 
which considered arbitrage and marketing plans was solved 
by Ghasemy-Yaghin et al. (2015) using credibility-based 
fuzzy optimisation.

Lee et al. (2013) studied an integrated vendor–buyer inven-
tory system considering both all-units and incremental quantity 
discounts. This model was different from vendor–buyer inven-
tory model with quantity discounts because it also took into 
account supplier selection. The model was aimed at evaluating 
a number of suppliers who offer different quantity discounts to 
the buyer, and the EOQ is based on the supplier who offers the 
best deal (i.e. results in the lowest total system costs).

Zhang et al. (2014) incorporated advance payments to the 
literature. They formulated an EOQ model under the assump-
tion that the buyer pays for the stock before it is delivered. 
This situation might occur in cases where the supplier is pow-
erful. In addition to modelling the case of full advance pay-
ment, the authors also investigated partial advanced payment 
(i.e. a portion of the payment can be paid at a later date).

Taleizadeh et al. (2015) developed an inventory model 
with incremental quantity discounts under two different 
shortage conditions. In the first case, shortages are consid-
ered to be fully backordered (i.e. all the customers are will-
ing to wait for the backordered stock to arrive), and in the 
second case (partial backordering), it was assumed that some 
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of the customer are not willing to wait for the backordered 
stock and in this case a lost sales cost is taken into account.

Tamjidzad and Mirohammadi (2015) incorporated sto-
chastic demand and budget constraints to the basic inventory 
model with incremental quantity discounts. It was assumed 
that the demand rate follows a Poisson distribution and that 
the budget allocated to the purchasing stock is limited.

Bohner and Minner (2017) formulated a vendor–buyer 
inventory model with supplier selection. It was assumed that 
the buyer has a number of potential supplier offering various 
types of discounts, including all-units and incremental, for 
purchasing larger volumes of stock with different purchas-
ing cost structures. Furthermore, all the suppliers had an 
associated failure risk (i.e. likelihood of not delivering order 
as promised) and multiple inventory items were considered.

Mohammadivojdan and Geunes (2018) studied the news-
vendor problem (i.e. single period inventory model) with 
multiple vendors and various types of discounts. The model 
assumed that the vendors offered incremental and all-units 
discounts for purchasing the items and carload discounts for 
transporting the items to the buyer. In addition, the capacity 
of each of the suppliers was assumed to be limited.

A review of literature on inventory management for grow-
ing items suggests that incremental quantity discounts have 
not been incorporated into the EOQ model for growing items. 

This paper aims to address this gap in the literature by devel-
oping an EOQ model for growing items with incremental 
quantity discounts. A comparison of the proposed inventory 
system and related published works in the literature is pro-
vided in Table 1, which also shows the contributions of this 
paper to inventory management research for growing items.

Study relevance

Price discount models are important in the food chain. This 
is because a number of food items like livestock and fish 
products are greatly influenced by time. It may be neces-
sary to consume the food items within a limited time period 
(usually the shelf life). This is motivated by the inherent 
nature of most food items. In addition, most food items are 
functional products, and for such product categories, profit 
is usually driven by sales volume rather than margins. This 
usually means most food items are, therefore, produced in 
volumes in order to take advantage of economy of scale to 
drive down the unit cost as a result of the fairly large over-
head costs.

This is enough motivation for vendors within this chain 
to provide quantity discounts in many instances so that the 
food items are moved away from them to the next level of 

Table 1  Gap analysis of related works in the literature

References Major inventory system characteristics Additional characteristics

Conventional 
items

Growing items Incremental quantity 
discounts

Harris (1913) ✓

Hadley and Whitin (1963) ✓ ✓

Lal and Staelin (1984) ✓ ✓ Vendor–buyer system
Abad (1988) ✓ ✓ Non-constant demand
Guder et al. (1994) ✓ ✓ Multiple items
Tersine et al. (1995) ✓ ✓ Freight volume discounts
Rubin and Benton (2003) ✓ ✓ Limited budget and storage
Haksever and Moussourakis (2008) ✓ ✓ Multi-item system
Hosseini et al. (2013) ✓ ✓ Pricing policy
Lee et al. (2013) ✓ ✓ Supplier selection
Rezaei (2014) ✓

Holmbom and Segerstedt (2014) ✓ Lot scheduling
Zhang et al. (2014) ✓ Advance payment
Taleizadeh et al. (2015) ✓ ✓ Shortages
Ghasemy-Yaghin et al. (2015) ✓ ✓ Pricing policy
Tamjidzad and Mirohammadi (2015) ✓ ✓ Poisson demand
Zhang et al. (2016) ✓ Carbon tax
Bohner and Minner (2017) ✓ ✓ Supplier selection
Mohammadivojdan and Geunes (2018) ✓ ✓ Probabilistic demand
Nobil et al. (2018) ✓ Shortages
Sebatjane and Adetunji (2018) ✓ Imperfect quality
This paper ✓ ✓
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the supply chain as quickly as possible in order to avoid loses 
due to spoilage and deterioration.

It has, however, been observed that there seems to have 
been no study that has considered the implication of marginal 
discount on the lot sizing policy of growing items. This is 
probably because growing items models in inventory manage-
ment is a relatively young area and researchers are just begin-
ning to study it. Also, it is important to focus on incremental 
discount because all quantity discount is more straightforward 
with standard algorithm, and hence, more commonly studied 
than the marginal discount pricing models.

This study seeks to fill this gap as such lot sizing model 
may be important for the procurement manager in charge of 
decisions in the supply chain of fresh food items especially 
because quantity discount is not uncommon in this area.

Organisation

The rest of this paper is organised as follows. Section 2 pro-
vides a brief description of the proposed inventory system as 
well as the notations and assumptions used when formulat-
ing the mathematical model. The mathematical formulation 
of the problem is given in Sect. 3. A numerical example is 
presented in Sect. 4 to illustrate the proposed solution proce-
dure and to provide managerial insights through a sensitivity 
analysis. The paper is then concluded in Sect. 5.

Problem definition, assumptions 
and notations

Problem definition

The proposed inventory system considers a situation where 
a company orders a certain number of items which are capa-
ble of growing during the course of the inventory planning 

cycle, for example livestock. The supplier of the newborn 
items offers the purchasing company incremental quantity 
discounts over fixed price breaks. Under the incremental 
quantity discounts pricing structure, the discounted purchas-
ing costs only apply to the incremental quantity. Figure 1 
represents the typical behaviour of an inventory system 
for growing items. In order for growth to occur, the com-
pany needs to feed the items. Every replenishment cycle 
can be divided into two periods, namely the growth and the 
consumption periods. During the growth period (shown as 
period t in Fig. 1), ordered newborn items are fed and raised 
until they grow to a certain target weight. Once the weight of 
items reaches the target weight, the growth period ends and 
the items are slaughtered. During the consumption period 
(shown as period T in Fig. 1), the slaughtered items are kept 
in stock and sold to market. The company incurs feeding 
cost during the growth period, and it incurs holding costs for 
keeping the slaughtered items in stock. All the inventoried 
items are consumed within the cycle time, T, at which point 
the items in the next inventory cycle would have completed 
their growth phase (i.e. the items in the next cycle will have 
grown to the target weight and are ready for sale). The com-
pany wants to determine the optimal number of newborn 
items to order at the beginning of the growth cycle in order 
to minimise total inventory costs (i.e. the sum of the pur-
chasing, setup, feeding and holding costs).

The company needs to determine the optimal number of 
live newborn items to order at the beginning of a growing 
cycle and the frequency of placing orders which minimises 
the total cost (i.e. the sum of the setup, purchasing, feed-
ing and holding costs). The proposed inventory system is 
studied as a cost minimisation problem, with the total cost 
being the objective function, and the cycle time (and the 
order quantity) as the decision variable(s)—since both are 
jointly determined.

Fig. 1  Behaviour of an inven-
tory system for growing items
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Assumptions

The following assumptions are made when formulating the 
mathematical model:

– The ordered items are capable of growing prior to being 
slaughtered.

– A single type of item is considered.
– Feeding costs are incurred for feeding and growing the 

items during the growth period. These costs are propor-
tional to the weight gained by the items.

– Holding costs are incurred for the duration of the con-
sumption period.

– The supplier of the live newborn items offers incremental 
quantity discounts.

– Demand is a deterministic constant.

Notations

The notations employed in the formulation of the mathemat-
ical model are given in Table 2.

Model formulation

Mathematical model

When a new growing cycle begins, a company purchases 
Y newborn items, each weighing w0 , which are capable of 
growing during the replenishment cycle. The total weight 
of the inventory at this point, Q0 , is determined by multiply-
ing the weight of each of the items by the number of items 
ordered (i.e. Q0 = Yw0 ). The company feeds the items and 
they grow to a target weight of w1 . This marks the end of the 
growth period, and at this point the items are slaughtered. 
The total weight of the inventory at the time of slaughter is 
Q1 = Yw1 . The behaviour of the inventory system over time 
is depicted in Fig. 1. As a way of encouraging larger order 
sizes, the company’s supplier offers incremental quantity 
discounts. The discount cost structure is

where Y represents the number of newborn items purchased 
and y1 , y2,...,ym represent the order quantities at which the 
unit purchasing cost changes (i.e. the price breaks).

Growth and consumption occur over the periods t and 
T, respectively, and hence, the company incurs feeding and 
holding over those respective time periods. The demand rate, 
D, and the weight of the inventory level at the beginning of 

pj =

⎧⎪⎨⎪⎩

p1 y1 = 0 ≤ Y < y2
p2 y2 ≤ Y < y3
⋮ ⋮

pm ym ≤ Y

,

the consumption period, Q1 = Yw1 , are used to determine 
the cycle time as

Item growth follows a pattern which can be represented 
by four stages. In the first stage, which occurs when a new 
growth cycle begins, the items experience slower growth. 
The second stage is characterised by faster growth, while in 
the third stage, growth is slower as the items approach matu-
rity. In the final stage, the items are fully matured and they 
have reached peak weight and they do not experience consid-
erable weight gains. This pattern of growth, common in most 
growing items and depicted by Fig. 1, can be represented by 
the logistic function (Hossein-Zadeh and Golshani 2016). 
The logistic growth function relates the weight of items with 
time. It has three parameters, denoted by � , � and � , which 
represent the asymptotic weight of the items, the integration 
constant and the exponential growth rate, respectively. The 
weight of the items as a function of time is given by

The items are slaughtered when their weight reaches the 
target weight (i.e. w1 ) following the conclusion of the growth 
period t. From Eq. (2), the duration of the growth period (i.e. 
the slaughter age) is determined as

(1)T =
Yw1

D
.

(2)wt =
�

1 + �e−�t
.

(3)t = −

ln

[
1

�

(
�

w1

− 1

)]

�
.

Table 2  Notations used in the formulation of the mathematical model

Symbol Description

Y Number of ordered newborn items per cycle
w
0

Approximated weight of each newborn item
w
1

Approximated weight of each grown item at the time 
of slaughtering

Qt Total weight of inventory at time t
� Asymptotic weight of the items
� Integration constant
� Exponential growth rate of the items
pj Purchasing cost per weight unit at the jth break point
m Number of break points
yj Lower bound for the order quantity for price j
h Holding cost per weight unit per unit time
K Setup cost per cycle
D Demand in weight units per unit time
c Feeding cost per weight unit per unit time
t Growing period
T Cycle length
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Purchasing cost per unit time

Define y1 = 0, y2,… , yj, yj+1,… , ym as the order quantities at 
which the purchase cost per weight unit changes and there are 
m such changes, called price breaks. When a supplier offers 
incremental quantity discounts, the purchasing cost per weight 
unit, pj , is the same for all Y values in [yj, yj+1) . The purchasing 
cost per weight unit decreases from one price break to the next 
(i.e. p1 > p2 > ⋯ > pj > pj+1 > ⋯ > pm).

Let Y be in the jth price break (i.e. yj ≤ Y < yj+1 ). The pur-
chasing cost per cycle for Y items, each weighing w0 , in this 
price break is given by

Define Rj as the sum of the terms in Eq. (4) which are inde-
pendent of Y, and thus

Equation (4) can be rewritten as

Dividing Eq. (6) by the cycle time, as given in Eq. (1), yields 
an expression for the average unit purchasing cost per unit 
time, denoted by PCU, as

Food procurement cost per unit time

The feeding cost per cycle is computed as the product of the 
number of items to be fed, the feeding cost per weight unit and 
the area under the growth/feeding period as given in Fig. 1. Thus,

Substituting Eq. (2) into Eq. (8) yields

Dividing Eq. (9) by the cycle time, as given in Eq. (1), yields 
an expression for the feeding cost per unit time, FCU, given by

Setup cost per unit time

Every time the company places an order for live newborn 
items, it incurs a cost of K for setting up the growth and feed-
ing facilities. The setup cost per cycle is thus

(4)
PC = p1(y2 − y1)w0 + p2(y3 − y2)w0 +⋯

+ pj−1(yj − yj−1)w0 + pj(Y − yj)w0.

(5)
Rj =

{
p
1
(y

2
− y

1
)w

0
+ p

2
(y

3
− y

2
)w

0
+⋯ + pj−1(yj − yj−1)w0

, j ≥ 2

0, j = 1

.

(6)PC = Rj + pjw0(Y − yj).

(7)
PCU = D

[
Rj

Yw1

+
pjw0

w1

−
pjw0yj

Yw1

]
.

(8)
FC = cY ∫

t

0

wt dt.

(9)FC = cY
{
�t +

�

�

[
ln
(
1 + �e−�t

)
− ln (1 + �)

]}
.

(10)FCU =
cD�

w1

{
t +

1

�

[
ln
(
1 + �e−�t

)
− ln (1 + �)

]}
.

The setup cost per unit time, SCU, is determined by dividing 
the setup cost by the cycle time as

Holding cost per unit time

The holding cost per cycle, HC, is computed from Fig. 1 
using the area under the consumption period (since the hold-
ing cost is incurred for the slaughtered inventory) and thus

The holding cost per unit time, HCU, is computed by divid-
ing Eq. (13) by Eq. (1), hence

Total cost per unit time

The total cost per unit time, TCU, is computed by summing 
Eqs. (7), (10), (12) and (14) and therefore

Through rearranging the terms, Eq. (15) becomes

Model constraints

Two constraints ensure the feasibility of the proposed inven-
tory system. The first constraint ensures that the items are 
ready for consumption at the required time. The second con-
straint ensures the feasibility of the optimal order quantity, 
meaning that the optimal quantity Yj is acceptable for each 
price break region and must fall between the price breaks yj 
and yj+1.

Constraint 1 In order to ensure that the slaughtered items 
are ready for sale during the consumption phase, the duration 
of the growth phase should be less than or equal to the duration 

(11)SC = K.

(12)SCU =
KD

Yw1

.

(13)HC = h

[
Y2w1

2

2D

]
.

(14)HCU = h

[
Yw1

2

]
.

(15)
TCU =D

[
Rj

Yw1

+
pjw0

w1

−
pjw0yj

Yw1

]
+

KD

Yw1

+ h

[
Yw1

2

]

+
cD�

w1

{
t +

1

�

[
ln
(
1 + �e−�t

)
− ln (1 + �)

]}
.

(16)
TCU =

pjw0D

w1

+
D

Yw1

[
Rj − pjw0yj + K

]
+ h

[
Yw1

2

]

+
cD�

w1

{
t +

1

�

[
ln
(
1 + �e−�t

)
− ln (1 + �)

]}
.
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of the consumption phase. This results in a constraint (on the 
duration of the consumption phase) being formulated as

Through substituting t from Eq. (3), Eq. (17) becomes

Constraint 2 In order to ensure that the order quantity deter-
mined falls within the range of the given price break, a con-
straint on the order quantity is formulated as

Solution

Determination of the decision variables

The optimal order quantity for the proposed inventory system 
is determined by setting the first derivative of the objective 
function to zero. Thus,

The optimal cycle time is computed by substituting Eq. (20) 
into Eq. (1), and the result is

Proof of convexity of the objective function

The second derivative of the objective function, as given in 
Eq. (16), yields

To prove that Eq. (22) is positive definite, it suffices to show 
that Rj − pjw0yj cannot be negative. This would be done 
using the principle of mathematical induction.

From Eq. (6), total purchasing cost for any range 
yj−1 ≤ Y ≤ yj is governed by

where also Rj is defined in Eq. (5). Rj can be rewritten as

Hence, the total purchasing cost, PC, can also be rewritten as

(17)T ≥ t.

(18)T ≥ −

ln

[
1

�

(
�

w1

− 1

)]

�
.

(19)yj ≤ Y < yj+1.

(20)

�TCU

�Y
= −

(
Rj − pjw0yj + K

)
D

Y2w1

+
hw1

2
= 0

⟹ Y =

√
2
(
Rj − pjw0yj + K

)
D

hw1
2

(21)T =

√
2
(
Rj − pjw0yj + K

)
D

hD2
.

(22)
�2TCU

�Y2
=

(
Rj − pjw0yj + K

)
D

Y3w1

≥ 0.

PC = Rj + pjw0(Y − yj),

(23)Rj = Rj−1 + pj−1w0(yj − yj−1).

Equation (24) can be rewritten to look like Eq. (22) as

Equation (25) is the general form of the purchasing cost 
function for j ≥ 2.

Base case is j = 2.
By definition, R1 = 0 and y1 = 0 , hence

Observe also that p1 > p2 , since by definition pj−1 > pj∀j . 
Hence, all terms are zero or positive. Therefore, the non-
negativity holds for the base case.

Let us assume that the case holds for any j, then we show 
that it holds for any j + 1 for which yj ≤ Y ≤ yj+1 is true, then

Equation (27) can be rewritten for the range j + 1 as

which is the desired form. So, the function also holds and 
this proves the nonnegativity of Eq. (22) which is the Hes-
sian function of the total cost function.

Computational algorithm

The solution to the EOQ model for growing items with 
incremental quantity discounts is determined using the fol-
lowing algorithm:

Step 1 Compute Y for each j using Eq. (20). Denote this 
as Yj.
Step 2 Check each Yj ’s feasibility. They are feasible if 
yj ≤ Y < yj+1 . Infeasible Yj ’s are disregarded and only the 
feasible ones proceed to Step 3.
Step 3 For each feasible Y, compute the corresponding T 
using Eq. (21).
Step 4 Check the feasibility of each computed Yj with regard 
to the cycle time. Each Yj is feasible if T ≥ t . Infeasible 
Yj ’s are disregarded and only the feasible ones proceed to 
Step 5.
Step 5 Compute TCU  using Eq. (16) for all the feasible Yj’s. 
The Yj value which results in the lowest TCU  is the EOQ.
Step 6 End.

(24)PC = Rj−1 + pj−1w0(yj − yj−1) + pjw0(Y − yj).

(25)PC =
(
Rj−1 − pj−1w0yj−1

)
+
(
pj−1 − pj

)
w0yj + pjw0Y .

(26)PC = 0 + (p1 − p2)w0y2 + p2w0Y .

(27)

PC = Rj+1 + pj+1w0(Y − yj+1)

= Rj + pjw0(yj+1 − yj) + pj+1w0(Y − yj+1)

= Rj + pjw0yj+1 − pjw0yj + pj+1w0Y − pj+1w0yj + 1

(28)PC = (Rj − pjw0yj) + (pj − pj+1)w0yj+1 + pj+1w0Y ,
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Numerical results

Numerical example

The proposed inventory system is applied to a numerical example 
which considers a company which purchases newborn day-old 
(i.e. newborn) lambs, feeds/grows them until they reach a tar-
geted weight and then puts them on sale. The following param-
eters are utilised to analyse the proposed inventory system:

Demand rate, D = 100,000 kg/year
Setup cost, K = 75,000 ZAR/cycle
Holding cost, h = 10 ZAR/kg/year
Feeding cost, c = 2.5 ZAR/kg/year
Approximated weight of newborn lamb, w0 = 6.8 kg/sheep
Approximated weight of sheep at the time of slaughtering, 
w1 = 35 kg/sheep
Asymptotic weight, � = 41 kg
Integration constant, � = 5
Exponential growth rate, � = 7.3 /year

The purchasing cost structure is given in Table 3.
The proposed solution algorithm is illustrated by apply-

ing it to the numerical example. The procedure is outlined as 
follows:

Step 1 Compute Y for each j using Eq. (20). 

R1 =0

R2 =25(1001 − 0)6.8 = 170170

R3 =34170 + 20(1501 − 1001)6.8 = 238170

R4 =47770 + 0.021(2001 − 1501)6.8 = 289170

Y1 =

√
2(0 − 25 × 6.8 × 0 + 75000)100000

10 × 35
2

= 1106.6

Y2 =

√
2(170170 − 20 × 6.8 × 201 + 75000)100000

10 × 35
2

= 1334.2

Y3 =

√
2(238170 − 15 × 6.8 × 301 + 75000)100000

10 × 35
2

= 1616.6

Y4 =

√
2(289170 − 10 × 6.8 × 401 + 75000)100000

10 × 35
2

= 1929.8

Step 2 Check each Yj ’s feasibility. They are feasible if 
yj ≤ Y < yj+1 . Infeasible Yj ’s are disregarded and only the 
feasible ones proceed to Step 3. 

 Thus Y2 and Y3 are feasible.
Step 3 For each feasible Y, compute the corresponding T 
using Eq. (21). 

Step 4 Check the feasibility of each computed Yj with 
regard to the cycle time. Each Yj is feasible if T ≥ t . Infea-
sible Yj ’s are disregarded and only the feasible ones pro-
ceed to Step 5. 

 Thus Y2 and Y3 are feasible since T2 ≥ t and T3 ≥ t.
Step 5 Compute TCU using Eq. (16) for all the feasible 
Yj’s. The Yj value which results in the lowest TCU is the 
EOQ. 

0 ≤ Y1 = 1106.6 ≮ 1001

1001 ≤ Y2 = 1334.2 < 1501

1501 ≤ Y3 = 1616.6 < 2001

2001 ≰ Y4 = 1929.8

T2 =

√
2(170170 − 20 × 6.8 × 201 + 75000)100000

10 × 100000
2

= 0.4670

T3 =

√
2(238170 − 15 × 6.8 × 301 + 75000)100000

10 × 100000
2

= 0.5658

t = −

ln

[
1

5

(
41

35
− 1

)]

7.3
= 0.4621

TCU2 =
1001 × 6.8 × 100000

35
+

100000

1334.2 × 35

× [170170 − 1001 × 6.8 × 1001 + 75000]

+ 10

[
1334.2 × 35

2

]
+

2.5 × 100000 × 41

35
{0.4621

+
1

7.3

[
ln
(
1 + 5e−7.3×0.4621

)
− ln (1 + 5)

]}

= 925332.82

TCU3 =
1501 × 6.8 × 100000

35
+

100000

1616.6 × 35

× [238170 − 1501 × 6.8 × 1501 + 75000]

+ 10

[
1616.6 × 35

2

]
+

2.5 × 100000 × 41

35
{0.4621

+
1

7.3

[
ln
(
1 + 5e−7.3×0.4621

)
− ln (1 + 5)

]}

= 927018.08

Table 3  Purchase cost structure under incremental quantity discounts

Quantity purchased Price per weight 
unit (ZAR/kg)

0–1000 25
1001–1500 20
1501–2000 15
2001+ 10
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Y∗ = Y2 since TCU2 < TCU3.
Step 6 End.

Based on the results of the numerical example, some 
of which are summarised in Table 4, the company should 
place an order for 1335-day-old lambs at the beginning 
of each cycle. This order quantity lies in the 1501–2001 
price break, and therefore, the company will pay 25, 20 
and 15 ZAR per kg for the first 1000, the next 500 and the 
remaining 117, respectively. Based on the targeted slaugh-
ter weight, the items should be grown for 0.4621 years 
(169 days). Orders should be replenished every 0.4670 
years (171 days). Following this optimal inventory policy, 
the company will incur a total cost of 925,332.83 ZAR 
per year.

Figure 2 shows the response of the total cost function 
to different order quantities. There are four curves corre-
sponding to the four price breaks. Each curve is valid for 
a given order quantity interval. The valid interval for each 
curve is represented by a solid line.

Comparison with the basic EOQ for growing items 
(i.e. without incremental quantity discounts)

In order to investigate the cost savings, if any, resulting from 
a supplier offering incremental quantity discounts, the pro-
posed model is compared with the basic EOQ model for 
growing items as proposed by Rezaei (2014). Since Rezaei 
(2014) used a different growth function than the one used in 
this paper, the feeding costs between the two models will be 
different. To counter this, Rezaei (2014)’s model is restated 

using the same growth function as used in this paper. The 
total cost per unit time in the base model (i.e. without incre-
mental quantity discounts) equals

and the EOQ is given by

The parameters used for the numerical example are applied 
to the base model in order to achieve a fair comparison, and 
the results are presented in Table 5.

Although the quantity of newborn items ordered at the 
beginning of a cycle increased by 2.1% as a result of incre-
mental quantity discounts, the total cost decreased by 1.9% . 
The effect of incremental discounts on the holding cost costs 
was negative (i.e. they increased), and it was positive on 

(29)
TCU = pD +

KD

Yw1

+ h

[
Yw1

2

]

+
cD�

w1

{
t +

1

�

[
ln
(
1 + �e−�t

)
− ln (1 + �)

]}
,

(30)Y∗ =

√
2KD

hw1
2
.

Table 4  Summary of the results from the numerical example

Variable Units Quantity

t year 0.4621
T∗ year 0.4670
Y∗ items 1335
TCU

∗ ZAR/year 925,332.83

Fig. 2  Total cost under incremental quantity discounts
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both the setup and the purchasing costs. Overall, having a 
supplier who offers incremental quantity discounts reduced 
the total costs of managing inventory, and therefore, quantity 
discounts are a viable alternative for reducing procurement 
costs.

Sensitivity analysis

Sensitivity analyses are performed on the major input 
parameters in order to investigate their impacts on the deci-
sion variables and to provide managerial insights for improv-
ing inventory management.

Increasing the setup cost increases both the EOQ and the 
total costs, as shown in Table 6. The EOQ shifted into differ-
ent price breaks as a result of the changes to the setup costs. 
Managers can offset the increase in the total cost by pur-
chasing larger quantities (i.e. placing orders less frequently). 
However, this should be done in moderation because if too 
much stock is ordered the holding cost will increase and this 
will lead to an increase in total costs.

Increasing the holding cost increases the total cost and 
reduces the EOQ, as shown in Table 7. The effect of decreas-
ing the holding cost on the EOQ is substantial because the 
EOQ shifts into different price breaks. As a result of the shift 
in price breaks, the total costs decrease because of the lower 

purchasing cost per unit weight in the new price break. This 
shift into a lower price breaks offsets the increased holding 
costs (due to the increase in the EOQ as a result of ordering 
larger quantities).

Table  8 shows that the total costs increase with the 
increase in feeding costs, whereas the EOQ is not affected 
by changes in the feeding cost. The feeding is essentially 
the cost of procuring feedstock for the items, and it is very 

Table 5  Comparison between a model with quantity discounts and 
one without

Cost components 
and EOQ

Rezaei (2014) This paper % change

PCU 485,714.29 461,452.88 − 5.0
SCU 193,649.17 160,607.30 − 17.1
FCU 69,783.89 69,783.89 0
HCU 193,649.17 233,488.76 20.6
TCU 942,796.51 925,332.83 − 1.9
EOQ 1107 1335 2.1

Table 6  Changes to Y∗ and TCU∗ due to changes in K 

% change in 
setup cost

EOQ TCU 

Items % change ZAR/year % change

− 50 782 − 41.4 829,359 − 10.4
− 37.5 1149 − 13.9 860,621 − 7.0
− 25 1214 − 9.0 883,288 − 4.5
− 12.5 1276 − 4.4 904,806 − 2.2
0 1335 0 925,333 0
12.5 1663 24.7 943,352 2.0
25 1709 28.1 959,239 3.7
37.5 1753 31.4 974,716 5.3
50 1796 34.6 989,811 7.0

Table 7  Changes to Y∗ and TCU∗ due to changes in h 

% change in 
holding cost

EOQ TCU 

Items % change ZAR/year % change

− 50 2729 104.6 741,670 − 19.8
− 37.5 2441 83.0 798,043 − 13.8
− 25 2284 67.0 849,008 − 8.2
− 12.5 1728 29.5 890,475 − 3.8
0 1335 0 925,333 0
12.5 1258 − 5.7 953,660 3.1
25 1193 − 10.6 980,452 6.0
37.5 1138 − 14.7 1,005,935 8.7
50 904 − 32.3 1,029,840 11.3

Table 8  Changes to Y∗ and TCU∗ due to changes in c 

% change in 
feeding cost

EOQ TCU 

Items % change ZAR/year % change

− 50 1335 0 890,441 − 3.8
− 37.5 1335 0 899,164 − 2.8
− 25 1335 0 907,887 − 1.9
− 12.5 1335 0 916,610 − 0.9
0 1335 0 925,333 0
12.5 1335 0 934,056 0.9
25 1335 0 942,779 1.9
37.5 1335 0 951,502 2.8
50 1335 0 960,225 3.8

Table 9  Changes to Y∗ and TCU∗ due to changes in yj

% change in lower bound 
for order quantity for 
price j

EOQ TCU 

Items % change ZAR/year % change

− 50 1573 17.9 814,617 − 12.0
− 37.5 1669 25.1 848,345 − 8.3
− 25 1760 31.9 880,229 − 4.9
− 12.5 1562 17.1 907,902 − 1.9
0 1335 0 925 333 0
12.5 1360 − 1.9 934,356 1.0
25 1116 − 17.1 942,797 1.9
37.5 1116 − 17.1 942,797 1.9
50 1116 − 17.1 942,797 1.9
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difficult for managers to reduce this cost since it is set by 
the feedstock suppliers. Nonetheless, managers can reduce 
this cost through procuring larger volumes (of the items’ 
feedstock) which normally have discounted pricing.

Increasing the lower bound for the order quantity in each 
price break increases both the EOQ and the total costs, as 
shown in Table 9. The changes to the total costs are mini-
mal most likely because the EOQ remains in the same price 
break. Managers do not have much control over the discount 
quantity structure as it is determined by the supplier, but if 
it happens that the suppliers reduce the lower bounds on 
the order quantities in each price break it is beneficial for 
managers to order less items.

Table  10 shows that increasing the purchasing cost 
decreases the EOQ and increases the total costs. In fact, the 
EOQ shifts into different price breaks, and consequently, the 
effect on the average cost is significant as well. By reducing 
purchasing costs, managers can save significantly on their 
average total costs by ordering larger quantities. While this 
will result in an increase in the holding cost, the savings 
which result from lower purchasing cost more outweigh the 
impact of the increased holding cost.

Conclusion

This paper combined the concepts behind the basic EOQ 
model for growing items and the EOQ model for conventional 
items under incremental quantity discounts in an attempt to 
formulate a new EOQ model. The biggest contribution made 
by this paper to the literature on inventory modelling for 
growing items is the incorporation of incremental quantity 
discounts. This addition to literature is important because 
suppliers often offer discounts for purchasing larger volumes 
of stock. The cost structure, in terms of both the purchasing 
cost in each price break and the lower bounds for the order 
quantities in each price break, was shown to have a signifi-
cant impact on the order quantity and the average total cost of 

managing inventory. This indicates that incremental quantity 
discounts have considerable impact on inventory management 
and this presents operations managers with opportunities to 
reduce costs through better procurement practices. However, 
certain factors need to be considered when purchasing larger 
volumes, namely the available storage space, deterioration and 
the available procurement budget.

The proposed inventory system did not take into account 
issues like deterioration, growing and storage facility capac-
ity and budget constraints. These factors are important when 
purchasing larger quantities because in certain instances, 
management might be forced to lease extra capacity if 
they purchased more items than can be grown and stored 
in their owned facilities. This will certainly increase costs 
and negate the benefit of purchasing larger quantities. The 
model presented in this paper can be extended to include 
capacity limits, budget limits, among other popular EOQ 
extensions. Deterioration becomes increasingly important 
if larger quantities are purchased, extensions which account 
for deterioration during the consumption period are another 
possible area for future research as they represent more real-
istic inventory systems.
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