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Abstract Cooperative and gradual covering are two new

methods for developing covering location models. In this

paper, a cooperative maximal covering location–allocation

model is developed (CMCLAP). In addition, both coop-

erative and gradual covering concepts are applied to the

maximal covering location simultaneously (CGMCLP).

Then, we develop an integrated form of a cooperative

gradual maximal covering location problem, which is

called a general CGMCLP. By setting the model parame-

ters, the proposed general model can easily be transformed

into other existing models, facilitating general compar-

isons. The proposed models are developed without allo-

cation for physical signals and with allocation for non-

physical signals in discrete location space. Comparison of

the previously introduced gradual maximal covering loca-

tion problem (GMCLP) and cooperative maximal covering

location problem (CMCLP) models with our proposed

CGMCLP model in similar data sets shows that the pro-

posed model can cover more demands and acts more effi-

ciently. Sensitivity analyses are performed to show the

effect of related parameters and the model’s validity.

Simulated annealing (SA) and a tabu search (TS) are pro-

posed as solution algorithms for the developed models for

large-sized instances. The results show that the proposed

algorithms are efficient solution approaches, considering

solution quality and running time.

Keywords Location–allocation � Maximal covering �
Cooperative covering � Gradual covering � Metaheuristics

Introduction

The maximal covering location problem (MCLP) aims to

select the location of a fixed number of facilities to max-

imize covered nodes. A covered node has at least one

facility within a predetermined distance or time, called the

‘covering radius’. Known as covering models, these are

very popular among researchers because of their applica-

tions in real-world problems. There are many studies that

have incorporated extensions of the covering location

problem (see Berman et al. 2009; Zade et al. 2014; Javadi

and Shahrabi 2014).

In MCLP models, coverage occurs in areas within the

covering radius. Two important assumptions of the MCLP

are ‘binary coverage’ and ‘individual coverage’. Gradual

covering and cooperative covering are two new develop-

ments in covering location models that generalize binary

coverage and individual coverage, respectively. In recent

years, some researchers have focused on these types of

problems (see Berman et al. 2013; Averbakh et al. 2014;

Bashiri et al. 2014; Drezner and Drezner 2014; Peker and

Kara 2015; Bagherinejad et al. 2016).

In previous studies, models have been developed sepa-

rately for the gradual covering location problem and the

cooperative covering location problem. However, it seems

that cooperative concepts can be applied concurrently with

gradual covering. Comparison of Figs. 1 and 2 clarifies the

difference between cooperative covering and cooperative

gradual covering.

A simple depiction of cooperative covering is shown in

Fig. 1. The received signal strength within the dark color
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areas is sufficient for covering and every node in these

areas is fully covered (e.g., nodes n1 and n2). The nodes in

other areas are not covered at all. Hence, node n3 receives

some signals; however, because the received signal

strength does not reach the threshold required for covering,

this node is not covered at all, just like node n4, which

receives no signals.

Figure 2 shows a simple depiction of cooperative

gradual covering. The coverage level within the dark color

areas is perfect; that is, all demands in these areas will be

satisfied (e.g., nodes n1 and n2). Nodes, such as n3, which

are located in the light color areas, are partially covered;

nodes, such as n4, which are in colorless areas, are not

covered at all.

We focus on merging gradual covering with cooperative

covering in the maximal covering location problem with

discrete location space. The authors call it the cooperative

gradual maximal covering location problem (CGMCLP).

This problem has lots of real-world applications such as

cooperative covering problems. Location of light towers,

warning sirens, and cell phone towers and also design of

emergency response systems are some examples of such

applications (see Berman et al. 2010). As an example, the

authors focus on two real-world applications which are

wave transmitters for servicing to demand nodes in an area

and distribution centers that receive goods from some

warehouses to describe the proposed problem more clearly.

Wave transmitters can cooperate to cover a demand

node to send/receive a signal. Suppose that two facilities in

Fig. 2 are wave transmitters. Node n2 can be partially

covered to send/receive signals by each transmitter, while

it can receive more coverage by weak signals provided by

the second transmitter. As another example, consider dis-

tribution centers that receive goods from some warehouses.

Due to the limitation of warehouses inventories, a distri-

bution center can be supported by one or more warehouses

fully or partially using cooperative and gradual coverage

simultaneously. In the field of cooperative covering, a

discrete CMCLP model was developed by Berman et al.

(2011). However, they did not consider allocation in their

model.

In the case of physical signals, the allocation decision

cannot be determined in the design stage, so it is done

during the servicing stage. However, allocation may be

important in non-physical signal applications. Inappropri-

ate or ineffective allocation results in higher transportation

costs. Therefore, the authors add an allocation variable to

the CMCLP and CGMCLP models for non-physical

signals.

Moreover, in this paper, it is shown that the CGMCLP

model is a general form of previous models. Generalizing

several models in one model is an approach that has been

adopted by different researchers to develop different sub-

jects (see Kazemzadeh et al. 2008; Vidal et al. 2014; Vidal

et al. 2014). This prompted us to offer a general model that

can be converted to other models. This general model with

proper setting of parameters has all the characteristics of

subset models and also facilitates running multiple models

to study their specifications and compare their results. This

paper provides a general model called the general

CGMCLP model; it can be transformed into the classical

MCLP, CMCLP, and CGMCLP models by related

parameters setting.

The proposed models are NP-hard, so simulated

annealing (SA) and tabu search (TS) algorithms are

developed for solving them in large-size problems. Then,

the results of the CGMCLP model are compared with the

CMCLP and GMCLP models in numerical examples to

show better performance of the CGMCLP model.

Facility

Covered node

Uncovered node

n1

n3

n2

n4

Fig. 1 Cooperative covering location problem

Facility

Fully covered node

Partially covered node

Uncovered node

n1

n3

n2

n4

Fig. 2 Cooperative gradual covering location problem
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Briefly, as stated in the literature review section

(Table 1), previous researchers focused on just one of the

gradual coverage and the cooperative coverage separately

and the combination of these two concepts in one model is

a gap in this research area. This paper addressed merging

gradual coverage and the cooperative coverage in one

general model in discrete location space.

This paper is organized as follows. Section 2 presents a

literature review. In Sects. 3, 4, and 5, the proposed models

are developed and illustrated in numerical examples. The

developed SA and TS algorithms are analyzed in Sect. 6.

Finally, this paper is concluded in the last section.

Literature review

Since Church and ReVelle (1974) introduced the maximal

covering location problem, the covering concept has

attracted substantial attention from researchers, who have

developed it with different assumptions. Schilling et al.

(1993) reviewed the literature on covering problems in

facility location. Farahani et al. (2012) reviewed studies on

the covering problem done from 1993 to 2011.

As a special case of covering, in this paper, it is dis-

cussed the coverage function. In this field, different gen-

eralizations of the traditional coverage function have been

proposed to develop covering location models. Berman

et al. (2010) presented a review of generalizations of three

implicit assumptions of covering models: (1) binary cov-

erage; (2) individual coverage; and (3) fixed covering

radius. Gradual covering, cooperative covering, and vari-

able radius are methods which have been proposed to relax

these three, respectively. In this paper, the authors focus on

the first two methods.

Gradual covering

The first aforementioned assumption (binary coverage)

implies that each node is fully covered if it has at least one

facility within the covering radius; otherwise, its coverage

level is zero. However, this assumption is unrealistic for

real-world applications. Gradual covering is more reason-

able in some cases, since the coverage level decreases from

100% to zero according to its distance from the facility; the

maximization of total coverage is the main objective.

Verter and Lapierre (2002) considered application of

gradual covering in the location of preventive health care

facilities. Drezner et al. (2004) have also described a

number of potential applications in this field.

Berman and Krass (2002) considered gradual covering

with a step-coverage function in a network and developed

heuristic approaches to solving it. They called their model

GMCLP and indicated that it is NP-hard, because it is a

generalization of another NP-hard problem (MCLP). Ber-

man et al. (2003) considered a network and discrete models

with a coverage decay function that is a general non-in-

creasing function. Drezner et al. (2004) presented a planar

version with a non-decreasing linear coverage function and

formulated the objective function to minimize total non-

coverage. Karasakal and Karasakal (2004) investigated a

discrete gradual covering model and defined the partial

coverage. Berman et al. (2009) developed an ordered

gradual covering location problem (OGCLP) model that

generalizes the p-center, p-median, p-covering, and gradual

covering models.

Drezner et al. (2010) considered a planar version of a

gradual covering problem with a probabilistic covering

function in which covering radii are random variables with

uniform distribution. Berman et al. (2011) developed a

probabilistic gradual covering model for a network in

which demand weights are independent discrete random

variables. Berman and Wang (2011) considered this model

with unknown probability distributions for demand

weights.

Drezner et al. (2014) proposed a gradual covering

problem in discrete space. They assumed that the coverage

function has a normal distribution. Their model attempts to

maximize the minimum cover of the demand points and

allows multiple facilities to be at the same location (co-

location) for this purpose.

Table 1 Overview of research on coverage functions as extensions of maximal covering problems

Generalization Space

Discrete Network Planar

Gradual Berman et al. (2003) and Karasakal and Karasakal (2004) Berman and Krass (2002), Berman et al. (2003)

and Drezner and Drezner (2014)

Drezner

et al.

(2004)

Cooperative Berman et al. (2011) without allocation (CMCLP), this

research (Sect. 2) with allocation (CMCLAP)

Averbakh et al. (2014) Berman

et al.

(2010)

Cooperative

and gradual

This research (Sect. 3) with and without allocation

(CGMCLP, CGMCLAP)

– –
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Recently, Bashiri et al. (2014) proposed a gradual cov-

ering problem with a stochastic coverage radius that may

have different types of distribution functions. Peker and

Kara (2015) developed a P-Hub maximal covering problem

with a gradual coverage function.

Cooperative covering

The second mentioned assumption of the classical covering

models (individual coverage) implies that every node can

be covered by only one facility. Berman et al. (2010)

proposed a cooperative covering location model to relax

this assumption. Cooperative covering eliminates this

constraint and every node can be covered by one or more

facilities. For some specific applications, Berman et al.

(2010) presented a new coverage definition by a signal

strength concept; a node can be covered when the signals,

it receives exceed a predefined threshold. It is clear that the

gradual covering concept can be considered in cooperative

covering as well.

Berman et al. (2010) classified signals into two cate-

gories: physical and non-physical. In location analysis of

wave transmitters as a case of physical signals, each node

may receive signals from several wave transmitters. In such

cases, use of cooperative covering can lead to increases in

resource productivity due to the contribution of facilities in

covering the nodes. Berman et al. (2010) also described a

number of potential applications in the real world for

cooperative covering models. They formulated a coopera-

tive set covering problem (CSCP) and CMCLP and solved

them in the plane. They also developed heuristic algo-

rithms for the problems.

Maximal covering location, set covering, and p-center

problems with cooperative covering in discrete and network

space were considered by Berman et al. (2011). A coopera-

tive covering location problem with a linear and piecewise

linear signal decay function on networks was analyzed by

Averbakh et al. (2014). Berman et al. (2013) considered this

problem on networks with a general decay function.

Jabalameli et al. (2011) developed a special form of the

MCLP model on networks in which methods of gradual

coverage, cooperative coverage, and covering with variable

radius are applied simultaneously.

Another form of the maximal covering model is the

hierarchical MCLP (HMCLP), in which different types of

facilities provide different servicing levels. A cooperative

hierarchical maximal covering location problem with

referral (CHMCLP(R)) in discrete location space was

developed by Bagherinejad et al. (2016).

Although cooperative covering with the above-de-

scribed properties was proposed by Berman et al. (2010),

different cooperative models, such as multiple covering by

Daskin and Stern (1981), backup coverage by Hogan and

ReVelle (1986), a maximal availability location problem

(MALP) by ReVelle and Hogan (1989), and a queuing

MALP by Marianov and ReVelle (1996) had been pre-

sented before the Berman et al. (2010) model. In addition,

after Berman et al. (2010), Seifbarghy et al. (2011) pro-

posed a model for locating a number of multiserver facil-

ities in which each customer can be served by several

facilities, according to a probabilistic distribution. These

studies, along with Drezner et al. (2014), are not based on

cooperative coverage, even though they allow coverage by

more than one facility.

In this paper, a discrete version of the CGMCLP (co-

operative gradual MCLP) is proposed. The authors also

formulate CMCLAP and CGMCLAP models in which an

allocation variable has been added. A brief summary of

related previous research is shown in Table 1.

Formulation of the CMCLAP model

In this section, a formulation for a cooperative maximal

covering location–allocation problem is developed. Ber-

man et al. (2011) proposed a CMCLP model in discrete and

network space. This model, with some changes in notation,

is as follows:

Max
X

i2I
rixi

 !
ð1Þ

s.t.

Txi �
X

j2J
/ dij
� �

yj 8i 2 I ð2Þ

X

j2J
yj ¼ p ð3Þ

xi 2 0; 1f g 8i 2 I ð4Þ
yj 2 0; 1f g 8j 2 J ð5Þ

where I: set of nodes; (i[I), J: index set of potential facility

locations; (j[J), ri: demand at node i (or weight of node i),

p: number of facilities which are located, dij: distance

between nodes i and j, / dij
� �

: received signal strength by

node i from facility at j. This function is assumed to be a

non-negative, non-increasing, and left continuous (see

Berman et al. 2010), T: signal threshold (T[ 0),

yj :
1 if a facility is located at j;
0 otherwise;

�

xi :
1 if node i is covered;
0 otherwise:

�

Objective function (1) maximizes the covered demands.

The right side of constraint (2) is the summation of signal
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strengths received by node i from all facilities. If this

summation is less than the coverage threshold, then node

i cannot be covered; otherwise, it will be counted as a

covered node. Constraint (3) ensures that p facilities are

located. Constraints (4) and (5) impose binary restrictions

on the decision variables.

In the case of non-physical signals, cooperative cover-

age can be considered. Consider a distribution center

location problem. It is appropriate to apply cooperative

covering in this application, because each distribution

center should receive part of its demand that is less than the

warehouse inventory from a warehouse, and the remaining

demand should be covered by another warehouse. It is clear

that in this situation, transportation cost is very important,

so the allocation decision should be determined.

In the case of physical signals, the allocation decision is

not important, and the CMCLP model is appropriate.

However, it should be defined in non-physical signal

applications. The cooperative maximal covering location–

allocation problem (CMCLAP) for applications of non-

physical signals is formulated as follows:

Max w1

X

i2I
rixi � w2

X

i2I

X

j2J
cijvij

 !
ð6Þ

s.t.

Txi �
X

j2J
/ dij
� �

vij 8i 2 I ð7Þ

vij � aijyj 8i 2 I; j 2 J ð8Þ
X

j2J
yj ¼ p ð9Þ

xi 2 0; 1f g 8i 2 I ð10Þ
yj 2 0; 1f g 8j 2 J ð11Þ

vij 2 0; 1f g 8i 2 I; 8j 2 J ð12Þ

where

vij :
1 if node i is allocated to facility which has been located at j,

0 otherwise,

�

aij :
1 if node i is within the covering radius of j;
0 otherwise:

�

cij: allocation cost of node i to facility j, which can be

calculated by a predefined function of distance, demand,

routing properties, etc., w1, w2: the weights (percentage) of

covering term and allocation costs, respectively, deter-

mined by a decision maker; w1 ? w2 = 1.

Objective function (6) maximizes the covered demands

with minimum total allocation costs. The right side of

constraint (7) is equal to the summation of signals strengths

received by node i from all allocated facilities. If it is more

than or equal to threshold, then the node will be counted as

a covered node. It is worth mentioning that in this problem,

the threshold can be considered as the node demand.

Constraint (8) ensures that node i can be allocated to

facility j only if node i is within the facility j coverage area.

The number of located facilities should be p by constraint

(9). Constraints (10)–(12) impose binary restrictions on the

decision variables. Both the CMCLP and CMCLAP are

integer linear programming models.

Formulation of the CGMCLP model

In this section, gradual and cooperative covering con-

cepts are applied to the MCLP simultaneously. As pre-

viously noted, cooperative coverage alone ignores some

demand points due to shortages of sufficient signals. The

authors propose cooperative gradual covering as a better

solution.

We define cooperative gradual covering as follows:

every node as cooperative covering can be covered by one

or more facilities and as gradual covering can be covered

fully or partially. In this problem, the objective is maxi-

mization of covered demands.

The first model (CGMCLP) can be applied for cases of

physical signals without allocation decision. The second

model (CGMCLAP) can be applied for cases of non-

physical signals, and the allocation decision should be

defined in the model.

The coverage function can be defined as the gradual

covering model (see Berman et al. 2003; Karasakal and

Karasakal 2004):

/ dij
� �

¼
1 dij �R1

f dij
� �

R1\dij �Rk; 0\f dij
� �

\1
� �

0 dij [Rk

8
<

:

ð13Þ

where R1 and Rk are the minimum and maximum covering

radii. The total coverage level of each node i can be given

by

Ui ¼
X

j2J
/ dij
� �

yj 8i 2 I: ð14Þ

According to above, the CGMCLP model can be pre-

sented as follows:

Max
X

i2I
Min rixiUi; rif g

 !
ð15Þ

s.t.

xi �
X

j2J
aijyj 8i 2 I ð16Þ
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X

j2J
yj ¼ p ð17Þ

xi 2 0; 1f g 8i 2 I ð18Þ
yj 2 0; 1f g 8j 2 J: ð19Þ

Objective function (15) maximizes the covered

demands. If xiUi is equal to or greater than 1, total

demands at node i (ri) will be satisfied. Otherwise, a part

of node i demand means rixiUi will be covered. Equa-

tion (15) can also be written as minimization of uncov-

ered demands; Min
P

i2I Max ri � rixiUi; 0f g
� �

. Constraint

(16) ensures that node i can be partially or fully covered

only if it is within the maximum covering radius of at

least one facility. Constraints (17)–(19) are similar to

constraints (3)–(5).

The CGMCLAP considering allocation decisions can be

formulated as follows:

Max w1

X

i2I
Min

X

j2J
rixij/ dij

� �
; ri

( )
� w2

X

i2I

X

j2J
cijxij

 !

ð20Þ

s.t.

xij � aijyj 8i 2 I; j 2 J ð21Þ
X

j2J
yj ¼ p ð22Þ

yj 2 0; 1f g 8j 2 J ð23Þ

xij 2 0; 1f g 8i 2 I; j 2 J: ð24Þ

Objective function (20) maximizes the covered demands

with a minimum total allocation cost. Other constraints are

the same as previous models. Both the CGMCLP and

CGMCLAP are integer non-linear programming models. It

should be noted that non-linear models have real

applications such as cell formation and single and multiple

allocation maximal hub covering problems (see Zade et al.

2014; Shirazi et al. 2014).

Comparing the proposed models with previously

developed models shows that both the CMCLP and

CGMCLP models are appropriate general forms of the

MCLP. A comparison between the classical MCLP and the

proposed models is shown in Table 2. Table 3 shows that

the proposed CGMCLP is a general form of the GMCLP

and it can be transformed into previous models by choosing

the proper values of parameters.

By generalizing the formulation of several models in

one model, features of all models can be integrated into a

single model. This general model can help researchers and

other practitioners who use one model instead of multiple

models when they want to compare the results of several

models.

To take advantages which mentioned above, a new

integrated general covering model called a general

CGMCLP is developed. This model can be transformed

into the classical MCLP, and also into CMCLP and

CGMCLP. This general CGMCLP model without alloca-

tion decision is formulated as follows:

Max
X

i2I
Min rixi

X

j2J
/ dij
� �

þ b
� �q

yj; ri

( ) !
ð25Þ

s.t.

T 0xi �
X

j2J
a0ijyj 8i 2 I ð26Þ

X

j2J
yj ¼ p ð27Þ

xi 2 0; 1f g 8i 2 I ð28Þ
yj 2 0; 1f g 8j 2 J: ð29Þ

Table 2 Comparison of MCLP model with CMCLP and CGMCLP models

MCLP CMCLP CGMCLP

Definitions Conditions for transforming to the MCLP Conditions for transforming to the MCLP

aij ¼
1 if dij �R

0 otherwise

�

R: Covering radius in the MCLP

T = 1

and / dij
� �

¼ 1 if dij �R

0 otherwise

�
Ui ¼ 1

and

aij ¼
1 if dij �R

0 otherwise

�

Max
P
i2I

rixi

� �

s.t.

xi �
P
j2J

aijyj 8i 2 I

P
j2J

yj ¼ p

xi; yj 2 0; 1f g 8i 2 I; 8j 2 J

Max
P
i2I

rixi

� �

s.t.

Txi �
P
j2J

/ dij
� �

yj 8i 2 I

P
j2J

yj ¼ p

xi; yj 2 0; 1f g 8i 2 I; 8j 2 J

Max
P
i2I

Min rixiUi; rif g
� �

s.t.

xi �
P
j2J

aijyj 8i 2 I

P
j2J

yj ¼ p

xi; yj 2 0; 1f g 8i 2 I; 8j 2 J
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The general CGMCLP with allocation decision is for-

mulated as follows:

Max w1

X

i2I
Min rixi

X

j2J
/ dij
� �

þ b
� �q

vij; ri

( )
�w2

X

i2I

X

j2J
cijvij

 !

ð30Þ

s.t.

T 0xi �
X

j2J
a0ijvij 8i 2 I ð31Þ

vij � aijyj 8i 2 I; j 2 J ð32Þ
X

j2J
yj ¼ p ð33Þ

xi 2 0; 1f g 8i 2 I ð34Þ
yj 2 0; 1f g 8j 2 J ð35Þ

vij 2 0; 1f g 8i 2 I; 8j 2 J: ð36Þ

Objective function (25) is the total covered demands and

objective function (30) is the total covered demands with a

minimum total allocation cost in the general form. It is

clear that the objective functions and constraints in these

two models can be converted into previously mentioned

models by changing the relevant parameters. The role of

parameters in the transformation of the general form to

models MCLP, CMCLP and CGMCLP is shown in

Table 4.

If the parameters in the general CGMCLP model are set

as q = 0, b = epsilon, T 0 = T and a0ij =

1 if dij �R1

f dij
� �

if R1\dij �Rk ¼ / dij
� �

0 if dij [Rk

8
<

: ; then, this model

transforms into the CMCLP, as stated in Table 4. It should

be noted by considering the mentioned settings Eqs. (25)

and (26) transform into Eqs. (1) and (2), respectively.

Moreover, Eqs. (27)–(29) in the general CGMCLP are the

Table 3 Comparison of

GMCLP and CGMCLP models
GMCLP CGMCLP

Definitions Conditions for transforming to the GMCLP

aij ¼
1 if dij �Rk

0 otherwise

�

R1: minimum covering radius

Rk: maximum covering radius

/ dij
� �

¼
1 if dij �R1

f dij
� �

if R1\dij �Rk

0 if dij [Rk

8
<

:

Ci ¼ Max
j2J

/ dij
� �

yj
� �

8i 2 I

Ui ¼ Max
j2J

/ dij
� �

yj
� �

8i 2 I

Max
P
i2I

Cirixi

� �

s.t.

xi �
P
j2J

aijyj 8i 2 I

P
j2J

yj ¼ p

xi; yj 2 0; 1f g 8i 2 I;8j 2 J

Max
P
i2I

Min rixiUi; rif g
� �

s.t.

xi �
P
j2J

aijyj 8i 2 I

P
j2J

yj ¼ p

xi; yj 2 0; 1f g 8i 2 I; 8j 2 J

Table 4 Conditions for transforming the general CGMCLP (and CGMCLAP) into other covering models

Parameter MCLP CMCLP CGMCLP

q 0 0 1 1

b Epsilon Epsilon 0 0

T 0 1 T 1 Epsilon

a0ij 1 if dij �Rk

0 otherwise

�
1 if dij �R1

f dij
� �

if R1\dij �Rk

0 if dij [Rk

8
<

:

1 if dij �Rk

0 otherwise

�
1 if dij �R1

f dij
� �

if R1\dij �Rk

0 if dij [Rk

8
<

:
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same as Eqs. (3)–(5) in the CMCLP. Other models have the

same structure as mentioned.

Illustrative numerical example

Now, two CMCLAP and CGMCLAP models are consid-

ered in a simple numerical example. Suppose 4 facilities

should be located among 15 potential demand nodes. The

properties of the nodes are shown in Table 5.

Each facility can be located at each node (J ( I). It is

assumed that each allocation cost is equal to c = 10. Since

covering demands is more important than allocation cost, w1

and w2 are set to w1 = 0.999 and w2 = 0.001. The signal

function / dij
� �

for CMCLAP (and the coverage function for

CGMCLAP) is defined as the percent of node i demands

covered by facility j in distance dij. This function is given by

/ dij
� �

¼

1 dij � 100

0:6 100\dij � 150

0:4 150\dij � 200

0 otherwise:

8
>><

>>:

It is assumed that the distance type is Euclidean and

each node is covered if it receives all of its demands

(T = 1).

This example is solved by the LINGO 8.0 software for

the CMCLAP and the CGMCLAP models. LINGO clas-

sifies these two models as PLIP and PINLP, respectively.

The exact approach to solving these models in the LINGO

software is a branch and bound (B&B) algorithm. The

results for CMCLAP and CGMCLAP are shown in

Tables 6 and 7, respectively. Parentheses in the allocation

row of Table 7 represent partial coverage.

With respect to Table 6, nodes 1, 4, 9, 11, 12, and 13 are

not covered, because they do not receive enough signals from

the located facilities; nodes 7, 14, and 15 are covered coop-

eratively. The signal strengths received in nodes 2, 3, 5, 6,

and 8 are more than predefined threshold T = 1. It is clear

that determined allocations have minimum allocation cost.

In this example, the results of covered demands are 137

and 157.6 for the CMCLAP and CGMCLAP, respectively.

The larger covered demands by CGMCLAP (about 15%)

are due to the gradual concept and structure. This example

Table 5 Coordinates and demands of nodes in the numerical example

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Horizontal coordinate 685 247 874 193 690 750 190 373 837 692 36 150 854 319 713

Vertical coordinate 117 312 185 463 238 301 404 413 492 302 243 55 428 240 107

Demand 12 17 18 5 17 10 20 11 19 18 7 16 8 9 17

Table 6 Example results for CMCLAP model

Location of facilities Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 1 0 0.4 0 0 0.6 0.4 0 0 0 0 0 0.6 0

3 0 0 1 0 0.4 0.4 0 0 0 0 0 0 0 0 0.4

5 0.6 0 0.4 0 1 1 0 0 0 1 0 0 0 0 0.6

8 0 0.4 0 0.4 0 0 0.4 1 0 0 0 0 0 0.4 0

Allocation – 2 3 – 5 5 2, 8 8 – 5 – – – 2, 8 3, 5

Table 7 Example results for CGMCLAP model

Location of facilities Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 1 0 0.4 0 0 0.6 0.4 0 0 0 0 0 0.6 0

5 0.6 0 0.4 0 1 1 0 0 0 1 0 0 0 0 0.6

8 0 0.4 0 0.4 0 0 0.4 1 0 0 0 0 0 0.4 0

9 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

Allocation (5) 2 (5) (2), (8) 5 5 2, 8 8 9 5 – – 9 2, 8 (5)

Total coverage level 0.6 1 0.4 0.8 1 1 1 1 1 1 0 0 1 1 0.6
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is solved by the GMCLP model and covered demand is

153.4.

For more analysis, random problems in different sizes

were generated and solved for five and ten facilities. The

other parameters are assumed to be the same as those

determined in the previous example. Figure 3a, b shows

that the total covered demands by CGMCLP is more than

CMCLP and GMCLP.

Comparison of the covered demands resulting from the

CGMCLP model and models GMCLP and CMCLP in these

two states with generated problems are shown in Fig. 4. It

shows that more demands are covered by the CGMCLP in

comparison with the CMCLP and GMCLP. It also shows that

when the number of facilities is equal to or close to the

number of nodes, the difference of covered demands by two

models will be near zero. This difference increases as the

number of nodes increases, and when the number of nodes is

large enough with respect to the number of facilities, the

behavior of the difference changes, as shown in Fig. 4.

Setting of covering radii in the coverage problem has a

major effect on the performance of the model. If the

covering radii are set very small or close together, the

results of the proposed models are equal to each other and

even equal to the results of the traditional MCLP. In the

above example, if 100, 100, and 100 or 100, 102, and 105

are applied for R1, R2, and R3 instead of 100, 150, and 200,

the CMCLAP and CGMCLAP models perform similar to

the MCLAP (maximal covering location–allocation prob-

lem) with R = 100. The results of comparison between the

three cases with the same radii of 100 and different radii

are shown in Table 8.

For validating the proposed models, a real problem

instance with 15 nodes from the Civil Aeronautics

Board data set is used. The authors generate node

demands randomly and consider all the same parame-

ters as the previous example, except for the radii in the

coverage function, which are set as follows: R1 = 400,

R2 = 600, and R3 = 800. Using a B&B solver in the

LINGO software, the CMCLAP provides a global

optimum coverage equal to 1009.829, while the

CGMCLAP obtains a larger local optimum coverage

equal to 1040.908.

0

400

800

1200

1600

2000

2400

2800

3200

7 15 30 40 50 60 70 80

C
ov

er
ed

 d
em

an
ds

Number of nodes

GMCLP CMCLP CGMCLP

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

15 30 40 50 60 70 80

C
ov

er
ed

 d
em

an
ds

Number of nodes

GMCLP CMCLP CGMCLP(b)(a)Fig. 3 Covered demands by

GMCLP, CMCLP, and

CGMCLP models with two-

state facility numbers p = 5

(a) and p = 10 (b)

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80

Th
e 

di
ffe

re
nc

e 
of

 c
ov

er
ed

 d
em

an
ds

 b
et

w
ee

n 
th

e 

C
G

M
C

LP
 a

nd
 G

M
C

LP

Number of nodes

p=5 p=10

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80Th
e 

di
ffe

re
nc

e 
of

 c
ov

er
ed

 d
em

an
ds

 b
et

w
ee

n 
th

e 

C
G

M
C

LP
 a

nd
 C

M
C

LP
  

Number of nodes

p=5 p=10Fig. 4 Comparison of covered

demands between GMCLP,

CMCLP, and CGMCLP models

J Ind Eng Int (2018) 14:241–253 249

123



Development of simulated annealing and tabu
search algorithms for the CMCLAP
and CGMCLAP models

In this section, simulated annealing (SA) and tabu search

(TS) algorithms are developed for the CMCLAP and

CGMCLAP models. These two metaheuristics have been

used previously to solve problems in many studies, such

as Berman et al. (2011), Jabalameli et al. (2011), Jah-

romi et al. (2012), Bashiri and Karimi (2012), Drezner

et al. (2014), Berman et al. (2009) and Shirazi et al.

(2014), etc.

The simulated annealing (SA) algorithm is a proba-

bilistic metaheuristic with efficient results when the search

space is discrete. The parameters of the SA algorithm are

initial temperature (t1), frozen temperature (t0), cooling

ratio (0\ a\ 1), maximum number of algorithm itera-

tions in each temperature (Nmax), and maximum number of

accepted solutions in each temperature (Mmax). This algo-

rithm starts with a high initial temperature (t1). The tem-

perature is reduced according to a cooling schedule via

multiplying a by current temperature (t). The algorithm is

run several times at each temperature and ends when the

frozen temperature (t0) is reached. In this algorithm, non-

improvement movements are accepted with a certain

probability to avoid trapping in a local optimum.

The implementation steps of this algorithm are sum-

marized as follows:

Step 1 Input data (node coordinates and demands,

number of facilities (p), …)

Step 2 Construct the signal function of / dij
� �

Step 3 Initialize the algorithm parameters

Step 4 Construct an initial random feasible solution

(facility location) using a 1 9 n binary array in

which n is the number of potential facility

locations and the number of ones is equal to

p. For example:

Step 5 Calculate other variables corresponding to

constraints (31) and (32) and then calculate the

objective function value by Eq. (30)

Step 6 Generate a new feasible solution by swapping

operation on location of a random selected

facility and calculate the objective function

value of the new solution

Step 7 Stabilize the new solution as a current solution if

the objective function value has been improved,

otherwise stabilize it with a probability of

expð�Dz
t
Þ

Step 8 If the number of algorithm iterations in the

current temperature is equal to Nmax, or the

number of accepted solutions in the current

temperature is equal to Mmax, go to the next step.

Otherwise, go back to step 6

Step 9 Reduce the temperature

Step 10 Terminate the algorithm when the frozen

temperature is reached.

Setting parameters in metaheuristic algorithms has a

high impact on their performance. The algorithm parame-

ters are tuned using a 10 replicated 34 experimental design.

Table 8 Analysis of different radii of the facility in performance of introduced models

Covering

radii

CMCLAP CGMCLAP MCLAP

Location Allocation Covered demands Location Allocation Covered demands Location Allocation Covered

demands

100, 100,

100

1

4

5

9

1, 15

4, 7

5, 6, 10

9, 13

126 (the same result

of MCLAP)

1

4

5

9

1, 15

4, 7

5, 6, 10

9, 13

126 (the same result

of MCLAP)

1

4

5

9

1, 15

4, 7

5, 6, 10

9, 13

126

100, 102,

105

1

4

5

9

1, 15

4, 7

5, 6, 10

9, 13

126 (the same result

of MCLAP)

1

4

5

9

1, 15

4, 7

5, 6, 10

9, 13

126 (the same result

of MCLAP)

– – –

100, 120,

150

1

5

7

9

1, 15

5, 6, 10

4, 7

9, 13

126 (the same result

of MCLAP)

3

5

7

13

3

5, 6, 10,

(1), (15)

4, 7, (2)

9, 13

136.8 (the same result

of GMCLAP)

– – –

1 2 3 4 … n

yj: 0 1 0 1 … 0
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Figure 5 shows the main effect plot of each SA for the

CMCLP with 200 nodes. According to the main effects

plot, the tuned parameters were set as t1 = 50, t0 = 0.05,

and a = 0.99.

Tabu search (TS) is a local search metaheuristic algo-

rithm with a short-term memory (STM) (tabu list) to avoid

returning to previous solutions. It also has a long-term

memory (LTM) that conducts the search process. In this

algorithm, there are two main parameters of STM, size, and

maximum iterations (Fmax), which is tuned by a 42

experimental design. The tuned setting of STM was set at 5

and Fmax is set at 2,000, according to the main effects plot,

which is shown in Fig. 6. Similar results are achieved for

the CGMCLAP model by both algorithms.

Tables 9 and 10 show covered demands and running

times of the SA and TS algorithms for random generated

problems for the CMCLAP and CGMCLAP, respectively.

The problems were solved by the LINGO software for

better comparison. The runs were conducted on a personal

computer with an Intel I3 CPU with 1.6 GHz processor and

2 GB RAM. Comparison of the results shows that the

developed algorithms have better performance than an

exact solution approach for large-sized problems. For

example, highlighted values in Table 10 show that these

two algorithms could provide good results in a few sec-

onds, while the Lingo software could not reach to global

optimum after a long time. Comparison of average covered

demands by the SA and TS algorithms, which are displayed

in Fig. 7, shows that the results are close together. In

addition, it can be seen that in small examples, both SA and

TS find a global optimum. According to the left chart in

Fig. 7, increasing the number of nodes developed SA

algorithm shows slightly better performance than the TS to

solve the CMCLP. For the CGMCLP model, this result is

reversed, as seen in the right chart of Fig. 7. Tables 9 and

10 show that the TS algorithm, particularly in large-size

problems, is relatively faster than the SA. For instance, the

standard deviation of the covered demands and running
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Table 9 Covered demands and running times of the CMCLAP by developed algorithms

p = 20

Number of nodes LINGO SA (10 runs) TS (10 runs)

Covered demands Time (s) Covered demands Time (s) Covered demands Time (s)

Best Average Worst Average Best Average Worst Average

50 3658 1 3658 3538.4 3276 5.48 3658 3566.2 3453 7.92

60 4074 6 4074 3970.8 3770 6.47 4020 3963.3 3863 10.5

70 3994 47 3994 3956.5 3824 8.87 3932 3863.1 3794 14.2

80 4275 603 4275 4220.6 4103 9.55 4255 4154.7 3980 16.7

90 4786 1202 4774 4672.2 4323 11 4704 4654 4534 11.8

100 5171 3393 5078 4912.5 4271 12.9 5100 4982.4 4879 5.43

125 6310 21,662 5548 5512.2 5457 19.53 5525 5367.6 5214 6.14

150 – – 5884 5733.3 5494 27.15 5904 5675.1 5489 8.05

Bolded and italic values show that the developed SA and TS algorithms have better performance than an exact solution approach considering

solution quality and running time in a large-sized example

J Ind Eng Int (2018) 14:241–253 251

123



time of the SA and TS algorithms have been calculated, for

example, with 150 nodes in Table 9. Standard deviations of

covered demands for the SA and TS algorithms are 112.2

and 115.96, respectively. Standard deviations of running

times of the SA and TS algorithms in the same example are

1.26 and 0.15, respectively.

Conclusions

In this paper, cooperative and gradual covering concepts

were applied to the maximal covering location problem

(MCLP) simultaneously, and a cooperative gradual maxi-

mal covering location problem (CGMCLP) model in dis-

crete location space was proposed. To make the

cooperative models more applicable for non-physical sig-

nals, an allocation variable was added to the CMCLP and

CGMCLP models. New models called CMCLAP and

CGMCLAP were formulated and analyzed as well.

It was shown that the CGMCLP is a general form of

previous models. Then, an integrated general CGMCLP

model as a general form of the MCLP, CMCLP, and

CGMCLP models was developed. This general model can

be converted into the classical models by proper setting of

parameters.

Comparisons of the GMCLP and CMCLP with the

CGMCLP by numerical examples show that the

CGMCLP covers more demands. Since the proposed

models are NP-hard, simulated annealing (SA) and tabu

search (TS) algorithms were developed to solve the pro-

posed models in large-sized instances. Parameters of the

SA and TS algorithms were tuned by experimental

design. Some random numerical examples are solved by

the LINGO software and the algorithms. The efficiency of

the algorithms in terms of solution quality and running

time is shown through comparison of the findings. The

results show that in large problems, the TS algorithm is

about 70% faster than the SA algorithm (see highlighted

values in Tables 9 and 10).

In this paper, the problem was considered in a dis-

crete space and assumed that all facilities deliver similar

service levels. Moreover, node demands are

Table 10 Covered demands and run times of the CGMCLAP by developed algorithms

p = 40

Number of nodes LINGO SA (10 runs) TS (10 runs)

Covered demands Time (s) Covered demands Time (s) Covered demands Time (s)

Best Average Worst Average Best Average Worst Average

50 3915 5 3915 3915 3915 5.03 3915 3915 3915 15.6

60 4680 86 4680 4680 4680 7.41 4680 4680 4680 14.1

70 5453 358 5453 5377.86 5242.2 11.15 5453 5453 5453 11.6

80 6187 639 6187 6081.64 5942.6 12.53 6187 6173.56 6159.4 6.25

Upper bound Best

90 6911.6 6941.4 64,800 6911.6 6838.54 6616.6 14.78 6911.6 6895.56 6872.8 4.55

Bolded and italic values show that both of the developed SA and TS algorithms could provide good result (6911.6) in a few seconds (14.78s by

SA, 4.55s by TS) which is very close to the local optimum (6941.4) provided by the exact solution approach after a long time (64,800s)
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deterministic. A possible direction for future research

would be developing a CGMCLP model in planar space

and network space in which the facilities are allowed to

be located at both the nodes and along the edges.

Another suggestion is developing a general cooperative

gradual hierarchical covering location model that inte-

grates hierarchical covering location problems. Yet,

other approaches would be assumption of stochastic

demands in the proposed models and also using of other

metaheuristic algorithms for solving the proposed

mathematical model.
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