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Abstract
Ceramic is one of the highly competitive products in Thailand. Many Thai ceramic companies are attempting to know the

customer needs and perceptions for making favorite products. To know customer needs is the target of designers and to

develop a product that must satisfy customers. This research is applied Kansei Engineering (KE) and Data Mining (DM)

into the customer driven product design process. KE can translate customer emotions into the product attributes. This

method determines the relationships between customer feelings or Kansei words and the design attributes. Decision tree

J48 and Class association rule which implemented through Waikato Environment for Knowledge Analysis (WEKA)

software are used to generate a predictive model and to find the appropriate rules. In this experiment, the emotion scores

were rated by 37 participants for training data and 16 participants for test data. 6 Kansei words were selected, namely,

attractive, ease of drinking, ease of handing, quality, modern and durable. 10 mugs were selected as product samples. The

results of this study indicate that the proposed models and rules can interpret the design product elements affecting the

customer emotions. Finally, this study provides useful understanding for the application DM in KE and can be applied to a

variety of design cases.
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Introduction

Nowadays, the product design and development has

become more complexity and fast changes (Yang et al.

1999). Every company competing in market has to focus on

this issue, and they have improved their products to

enhance consumer satisfaction. A product with aesthetic

design that matches with customer preference was chosen

especially when product alternatives are similar in terms of

functions and price (Tang et al. 2013). According to pro-

duct design and development, Kansei Engineering (KE)

has been used to fulfill subjective needs and preferences of

customers. KE methodology aims to translate human psy-

chology, such as feelings and emotions, into appropriate

product design attributes, such as size, shape and other

engineering characteristics (Nagamachi 2001). This

method has ability to test the different feeling and shows

their relation with characteristics of real productions

requirements (Huang et al. 2012). It has been successfully

applied in various design domains, such as running shoes

(Shieh and Yeh 2013), chocolate snacks (Schütte 2013),

E-commerce sunglasses (Chuan et al. 2013), beverage

bottle (Luo et al. 2012) and booth show (Huang et al.

2011). However, because a product is composed of many

elements, it requires separated KE study conducted on each

component. Consequently, it takes long time and extreme

costs (Pitaktiratham et al. 2012). Data mining is one of the

‘‘Knowledge Discovery in Databases’’ processes. DM can

be used to explore numerus volumes of data to discover the

hidden patterns and the interactions of highly complex

dataset (Zayed et al. 2013). This technique has been used

widely in the areas of science and engineering and it has

been called as a modern analysis methodology (Natek and

Zwilling 2013); e.g. an intelligent system for complex

process monitoring (Rezki et al. 2016), a maintenance
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policy (Faghihinia and Mollaverdi 2012) and future

behavior of stock price (Mehmanpazir and Asadi 2017).

The concept of DM has been applied in KE such as truck

cab design (Yang et al. 2008), sofa (Pitaktiratham et al.

2012) and mobile phone (Jiao et al. 2003). In this study, we

proposed the integration of KE and DM in order to find the

relationships between the emotions and the product attri-

butes. Ceramic is one of most consumer perception product

that plays a vital role in design development. Many Thai

ceramic companies are attempting to know the customer

needs and perceptions for making favorite products, but

lacking of formal methodology. The purpose of this study

is to determine user feelings related to the features of

ceramic design in the Thai manufacturing by KE and DM

as a primary study. The findings from this research would

increase customer satisfaction and help product designers.

Theoretical background

Kansei engineering

KE is known as ‘‘translating technology a consumer’s

feeling and image for a product into design elements’’

(Nagamachi 1995). KE is performed by Kansei and the

engineering field to evaluate human sensibility and produce

the product that customers need and satisfy (Nagamachi

2007). The aim of KE is method to develop new product

design according to consumer feeling or emotion. KE

System is used to analyze the product attributes that

influence on the customer emotion as shown in Fig. 1.

Consequently, the features of products can be designed

regarding to the emotion and feeling. KE has been applied

in various industries in supporting designers to understand

consumer. KE is obtained through experiments on cus-

tomer emotions and feelings affected the physical product

and finding the interaction between the psychological

feeling and the product element.

Data mining

DM can use to explore, analyze and discover the structure

and rules from tremendous volumes of data (Berry and

Linoff 1997). Data mining is generally used for prediction

and description. There are many data mining tools such as

classification, clustering, association rule mining, attribute

selection and visual interactive page (Kaya et al. 2014).

The J48 algorithm

The J48 decision tree is one of classified tools by creating a

decision tree using the attribute values. J48 algorithm is a

modified version of C4.5 and ID3 algorithm implemented

through Waikato Environment for Knowledge Analysis

(WEKA) software works with discrete and continuous

variables and generates the trees (University of Waikato

2015). Decision trees summarize the relationship between

attributes and the class of an object in a branching tree

structure. The tree consists of decision nodes, chance nodes

and end nodes. At each node in the decision tree, the

estimation criteria are used to select relevant input vari-

ables for prediction (Wikipedia 2015a).

Association rule mining

Association rules mining is ‘‘a data mining method to find

the interesting association or correlation among a large set

of data items’’ (Jiao et al. 2003). It is used to identify the

significant rules in databases using the support and confi-

dence measurements. The support and confidence are used

to select interesting rules (Wikipedia 2015b). The support

reveals how of frequently the items appear in the database.

The confidence reveals the number of times the true

statements. Apriori algorithm is the best-known algorithm

and widely used in association algorithm. Class association

rule (CAR) is one of tools in association rule mining with

the specified classes (Lia et al. 2002). CAR was used

instead of general association rules in this study.

Confusion matrix

A confusion matrix is a table with each column represents

the instances in a predicted class, while each row repre-

sents the instances in an actual class (Wikipedia 2015c).

Each cell in the table represents the number of true posi-

tives (TP), false negatives (FN), false positives (FP) and

true negatives (TN) as shown in Table 1. From the con-

fusion matrix the accuracy was calculated as follows.

Kansei or 
psychological 

feeling 

Kansei 
Engineering 

System 

Product design 
elements 

Fig. 1 A diagram of a process of Kansei engineering system

(Nagamachi 2007)

Table 1 Confusion matrix
Actual class Predict class

Yes No

Yes TP FN

No FP TN
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Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
: ð1Þ

Methodology

This study applied KE and Data mining based on model

procedure as presented by Schütte and Eklund (2005). The

procedures of this study represented in Fig. 2. This pro-

cedure is presented as follows.

Choice of domain

A mug was selected as the product domain. The sample

size of the study was 37 participants for training set (67%

of all the data) and 16 participants for test set (33% of all

the data). The ratio 70-30 is often used in data mining for

split of the data set (Analysis Services 2017). The partic-

ipants were Thai people who used the mug for a long time.

Span the semantic space

Kansei words were collected from advertisements, internet

videos, magazines, literature reviews. In the initial stage, a

total of around 170 different words describing could be

extracted. Some of unclear words were omitted in the

screening step. After discussions with the professionals and

experts in product design from Rajamangala University of

Technology Lanna (Thailand), 6 words highly relevant

were finally determined, namely, attractive, ease of drink-

ing, ease of handing, quality, modern and durable.

Span the space of properties

We conducted an interview with 3 ceramic manufacturing

experts to obtain complete description of the mug appear-

ance. The external feature of mug can be deconstructed as

6 design attributes or items, namely, body, handle, foot, lip,

color and pattern. For spanning the space of properties, 6

different aspects with 24 different properties in total, which

are enough to represent the whole mug designs, were

identified as shown in Table 2. Finally, a total of 10 mug

sample images which would cover the whole design space

were selected as the product image questionnaires as

shown in Fig. 3. Table 3 shows the product properties of

the mug samples. For example, Mug 1 has cylinder body,

loop handle, non-foot, non-lip, pain color and non-pattern.

Synthesis

Data collection process

Firstly, the questionnaire is constructed by using the 5

score Likert scale which ranged from 5 that means strongly

agree, 4 means agree, 3 means undecided, 2 means dis-

agree and 1 means strongly disagree. Constructed ques-

tionnaires were used to perform a survey. The participants

were given a brief introduction about how to fill in the

survey and described about the meaning of Kansei words.

They were asked questions: How do you feel about the

sample ‘‘x’’ for Kansei word ‘‘x’’? The product samples

images were ordered randomly.

Synthesis

WEKA freeware developed by the University of Waikato

was conducted to analysis the DM Technology. We also

used the decision trees technique J48 and CAR as best

suited for data analysis. Using the tenfold cross validation

method in WEKA, the data was analyzed by each of the

models, and the best one was chosen. Each model was

evaluated on a training set. The accuracy is calculated for

J48, whereas the support and confidence are used for CAR.

Test of validity

To validate the relationships between Kansei words and

product properties, a separate data was used on the test set.

The available data will divide into two sets: a training set

and a testing set. Training set is the one that is used for the

training of the algorithm. These are 370 for each kansei

word, which are the questionnaire results for 10 sample

mugs by 37 participants. A test set is only used to test the

performance of a trained model. The test data are 160 for

Choice of Domain: 
Thai ceramic: Mug 

Synthesis: 
Training set (J48, CAR)  

Span the Semantic Space: 
 Kansei words 

Span the Space of Properties: 
Product properties and 

selected product samples 

Test of Validity: 
Test set (J48, CAR)  

Model Building: 
Data mining; J48, CAR 

Fig. 2 Research methodology
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each kansei word, which are the questionnaire results for

10 sample mugs by 16 participants. The evaluation mea-

sures were evaluated again.

Model building

The data acquired from the synthesis step are presented in a

relational model. Models are proposed that relate between

each of Kansei words and product attributes. The most

important factor among product attributes was determined

as the decision tree by J48 algorithm. Normally, the deci-

sion tree is graphically revealed with hierarchical structures

that include a root node, branches, and leaf nodes. Each

Kansei word is set as the decision attribute and the product

properties (items and categories) are set as conditional

attributes. In the analysis by J48, the most important factors

were determined by the leaf nodes that are the high degree

of emotions (from agree to strongly agree level). CAR was

used to understand the relationships between product

attributes and emotions from the strongest to the weakest

relationship for each of Kansei word. The most important

Fig. 3 Mug samples selected for evaluation. Top row from left: Mug

1–5. Bottom row from left: Mug 6–10

Table 2 Product properties identified

Item Category
1.Body 1.Cylinder 2.Inward 

Curve
3.Barrel 4.Cone 5.Curved 

Cone
6.Short 7.Square

2.Handle 1.Loop 2. Square 3.Geometric 4.Number
7

5. Number
3

3.Foot 1.Non Foot 2.Foot 3.Slot Foot

4.Lip 1.Non Lip 2.Lip

5.Color 1.Plain 2. Bright 3. Dark 
6. Pattern 1.Non 

Pattern
2.Cartoon 3. Image 4.Alphabet
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rules also determined by the high degree of emotions (from

agree to strongly agree level). Product designers can design

product attributes related to the customer emotions which

are retrieved from these results. For example, the combi-

nation of product attributes that modeled for the emotions

or Kansei word of attractive.

Results and discussion

In this study, J48 classifier technique and CAR are pro-

posed for evaluating the relationships between Kansei

words and product properties. All the models are trained

and tested, the results obtained are recorded. Firstly, we

selected the best decision tree structure for each emotion

Table 3 The product properties of the mug samples

Product

sample

Product properties

Body Handle

Cylinder Inward

Curve

Barrel Cone Curved

Cone

Short Square Loop Square Geometric Number

7

Number

3

Mug1 x x

Mug2 x x

Mug3 x x

Mug4 x x

Mug5 x x

Mug6 x x

Mug7 x x

Mug8 x x

Mug9 x x

Mug10 x x

Product

sample

Product properties

Foot Lip Color Pattern

Non

Foot

Foot Slot

Foot

Non

Lip

Lip Plain

Color

Bright

Color

Dark

Color

Non

Pattern

Cartoon Image Alphabet

Mug1 x x x x

Mug2 x x x x

Mug3 x x x x

Mug4 x x x x

Mug5 x x x x

Mug6 x x x x

Mug7 x x x x

Mug8 x x x x

Mug9 x x x x

Mug10 x x x x

Table 4 Training and test data decision tree with different confidence factors

Model Confidence factor Accuracy (%)

Attractive Ease of drinking Ease of handing Quality Modern Durable

Training data 1 0.25 34.59 31.08 27.84 36.22 30.27 34.59

Training data 2 .04 34.59 28.38 26.76 36.22 29.73 34.95

Training data 3 0.6 35.40 28.65 26.49 36.22 29.73 37.03

Test data 35.00 38.75 36.25 37.27 36.25 40.00
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model as shown in Table 4. The training and test data were

370 and 161 instances, respectively. Training data1 was

selected for predictive model ease of drinking, ease of

handing and modern, whereas training data3 was selected

for model of attractive and durable because theirs accuracy

were the best. The effects of product properties on cus-

tomer emotion were mapped as shown in Figs. 4, 5, 6, 7, 8

and 9. For example, Fig. 4 shows the map indicates that the

product properties such as pattern, body and handle affect

the emotion of attractive results significantly. Table 5

Fig. 4 Decision tree classifier for the emotion of attractive

Fig. 5 Decision tree classifier for the emotion of ease of drinking

Fig. 6 Decision tree classifier for the emotion of ease of handing
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shows the most important category of mug that affecting

the high degree of emotions/Kansei words (from agree to

strongly agree level).

For CAR, the minimum of confidence value and the

support value were determined as 0.1. According to the

high degree of emotion (from agree to strongly agree

level), the most important rules are show in Table 6. For

example, the bright color of mug is the design attribute that

had the most relationship with the emotion of attractive

with the confidence degree of 0.28. The second most

relation was the non-foot mug with the confidence degree

of 0.24. The non-pattern mug was the third most related

this emotion with the confidence of 0.23.

From the results of J48 and CAR, we found the differ-

ence of the predictive model of product property that

affecting the emotions. For example, the most important

properties of mug that affecting the emotion of attractive

by J48 was body, handle and pattern whereas the most

important properties by CAR was foot, lip, color and pat-

tern. The non-pattern appearance was significant both of

models, therefore the designers were able to design this

attribute related to this customer emotion. Similarly, the

Fig. 7 Decision tree classifier for the emotion of modern

Fig. 8 Decision tree classifier for the emotion of quality

Fig. 9 Decision tree classifier for the emotion of durable
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designers should develop the new product design by the

suggested results for the other emotions. However, this

study still in the initial step and there are various decision

variables of Data Mining to be depth study such as algo-

rithms (Support vector machines, Naive Bayes, k-means)

and quality measures (conciseness, coverage, reliability).

In addition, more the study on the psychological effect is

needed.

Conclusions

Even though several popular techniques in product design

and other related research theories are very helpful for

designers in considering customer needs and evaluating

design alternatives, they may not have efficiency and

effectiveness. It might be due to current product design

decisions in most industries still continue to be based on

the experiences of designers. This study is investigated the

product properties affecting the customer emotions by

using KE, classification and association rule which are data

mining methods. Decision tree J48 and CAR which are the

most popular data mining methods are used to generate a

predictive model and to find the appropriate rules. The

results will be important not only for the mug design that

affecting the customer emotions but also for other products

in applying data mining methods in product design and

development.
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Schütte S (2013) Evaluation of the affective coherence of the exterior

and interior of chocolate snacks. Food Qual Prefer 29(1):16–24
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