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Abstract The present investigation deals with the bulk

arrival M/G/1 retrial queue with impatient customers and

modified vacation policy. The incoming customers join the

virtual pool of customers called orbit if they find the server

being busy, on vacation or in broken down state otherwise

the service of the customer at the head of the batch is

started by the server. The service is provided in k essential

phases to all the customers by the single server which may

breakdown while rendering service to the customers. The

broken down server is sent to a repair facility wherein

the repair is performed in d compulsory phases. As soon as

the orbit becomes empty, the server goes for vacation and

takes at most J vacations until at least one customer is

noticed. The incoming customers are impatient and may

renege on seeing a long queue of the customers for the

service. The probability generating functions and queue

length for the number of customers in the orbit and queue

have been obtained using supplementary variable tech-

nique. Various system characteristics viz. average number

of customers in the queue and the orbit, long run proba-

bilities of the system states, etc. are obtained. Furthermore,

numerical simulation has been carried out to study the

sensitivity of various parameters on the system perfor-

mance measures by taking an illustration.

Keywords Retrial queue � Modified vacation policy �
Batch input � Supplementary variable � Reneging �
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Introduction

In many queueing scenarios, it may happen sometimes that

a customer/job that did not receive service at the first

attempt from the server tries again and again to avail the

required service. These type of situations give rise to

special type of queues known as retrial queues. Such

queues are characterized by the phenomenon that a cus-

tomer if deprived of service is forced to join the virtual

pool of customers called orbit from where he tries again

and again for the service. The customers retrying for the

service are known as retrial customers. The retrial queues

are visible in all day-to-day congestion situations from

supermarkets to ATM, from hospitals to admission coun-

ters, etc. wherein the customer tries again from the retrial

orbit for the service. The detailed account of the retrial

queues along with their applications can be found in the

books by Falin and Templeton (1997) and Artalejo and

Corral (2008). The elaborate surveys on retrial queues can

be found in the articles by Yang and Templeton (1987),

Artalejo (1999a, b), Artalejo and Falin (2002) and Artalejo

(2010) and many more.

The modeling and analysis of queueing models, espe-

cially retrial queueing models, have attracted the queue

theorists since past many years. The retrial queueing

models enriched with various concepts like vacation, dis-

couragement, bulk, etc. had been studied in numerous ways

by a number of researchers. The study of bulk queues with

retrying customers is always in demand as it is directly

related to the study of telecommunication, manufacturing

and computer systems. In telecommunication system, the

fraction of the signal/message at the head of the queue is

transmitted to receive service and rest other customers/

messages are kept in buffer/retrial orbit so as to wait for the

server to get service. A bulk arrival retrial M/G/1 queue has
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been analyzed by Kahraman and Gosavi (2011). Choudh-

ury and Ke (2012) studied a batch arrival retrial queue with

delaying repair and Bernoulli vacation schedule.

A number of retrial queueing models have also been

analyzed by researchers keeping in mind the vacation

policy of the server. It is quite realistic that a server may go

for vacation of any kind when no customers are present in

the system and may come back when some customers are

present in the system or as per his vacation policy. The

various concepts related to queueing systems with server

vacations can be found in articles by Doshi (1986) and

Takagi (1991). Chang and Ke (2009) considered a batch

retrial model where the server can take at most J vacations;

the customer can go for a series of continuous J vacations if

no customers/jobs are available in the orbit. Ke and Chang

(2009) investigated modified vacation policy for M/G/1

retrial queue and obtained various performance measures.

Ke et al. (2011) discussed performance measures and

randomized optimization for an unreliable server vacation

system. Recently, Dimitriou (2012) studied a mixed pri-

ority retrial queueing model with multiple vacations and

negative customers.

The pattern of servicing also plays a significant role in

the modeling of retrial queues. In past investigations, var-

ious kinds of services like single service, optional services,

multioptional services and phase services have been stud-

ied. Choudhury et al. (2010) discussed steady-state

behavior of Mx/G/1 retrial queueing system with two

phases of service. Choudhury and Tadj (2011) studied the

optimal control of bulk arrival M/G/1 unreliable server

with two phases of service and Bernoulli vacation sche-

dule. The servicing in phases clearly relates to many

realistic day-to-day situations. The admission in any

institute requires a number of formalities and filling of a

number of forms. This process is completed in various

compulsory phases from getting the form to the submission

of completed application form. In between, it goes through

the affidavit, medical fitness certificates, previous educa-

tional qualifications proof, completion of admit card, fees

deposition, etc. All these are compulsory phases and

admission cannot be completed if any of these compulsory

steps is skipped. Jain and Agarwal (2010) analyzed a batch

arrival queueing system with N-policy and Bernoulli

vacation schedule wherein the customer undergoes

l-essential stage service procedure to avail the service.

In real life situations, the repair of broken down server is

also an important factor. In real practice, the unreliable

server may breakdown or stops working during any phase

of service and needs to be repaired. Similar to service,

repair can also be completed either in single phase or in a

series of compulsory or optional phases depending upon

the severity of the breakdown. Atencia et al. (2006) studied

M/G/1 retrial queue with active breakdowns and Bernoulli

schedule. Choudhury and Ke (2012) investigated a batch

arrival retrial queue under Bernoulli vacation schedule for

unreliable server and delaying repair.

Discouragement of the customers while waiting for the

service has also grabbed the attention of various

researchers working in the field of queueing theory. It may

happen sometimes that the customers waiting for the ser-

vice in the queue/orbit get impatient and decide to quit the

queue without availing the service. Using supplementary

variable technique, Arrar et al. (2012) investigated

asymptotic behaviour of M/G/1 retrial queues with batch

arrivals and impatience phenomenon. Bhagat and Jain

(2013) investigated unreliable Mx/G/1 retrial queue with

multioptional services and impatience to obtain the queue

length of the system and other performance indices.

The maximum entropy approach (MEP) was introduced

by Shannon in (1948) to study the problems of information

theory as the measurement of uncertainty. This principle is

also applicable to select the appropriate probability distri-

butions for the queueing situation. Wang et al. (2002) used

the maximum entropy principle to examine the M/G/1

queueing system in different frameworks. Wang et al.

(2007) carried out the maximum entropy analysis of Mx/M/

1 queueing system with multiple vacations. A comparative

study between the exact analytical results and approximate

results obtained using maximum entropy method has been

done by Wang and Huang (2009). Maximum entropy

principle has also been used for discrete time unreliable

server queue with working vacation by Jain et al. (2012).

In this investigation, a bulk arrival retrial vacation queue

with unreliable server has been studied. Both service of the

customers and repair of broken down server are done in a

series of fixed compulsory phases in succession. In many

cases, the server takes some time to start the repair so as to

make some preliminary settings, known as setup time.

Moreover, the concept of modified vacation has been

incorporated along with the discouragement behaviour of

the customers. The present analysis seems to be novel and

fascinating as compared to earlier existing retrial models

because of so many features incorporated at the same time.

The present work has been organized in the following

manner. Section ‘‘Model description’’ describes the requi-

site assumptions to formulate the model. The governing

equations along with the boundary conditions and gener-

ating functions of the queue size distribution are obtained

in Sect. ‘‘Queue size distribution’’. The performances

measures are derived in Sect. ‘‘Performance indices’’.

Section ‘‘Maximum entropy analysis’’ presents maximum

entropy principle to faciliate approximate results for

waiting time of the retrial model. Section ‘‘Numerical

simulation’’ is devoted to the sensitivity analysis which is

carried out by taking numerical illustration. The cost

function has been formulated in Sect. ‘‘Cost analysis’’.
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Finally, the conclusions have been drawn in Sect. ‘‘Con-

cluding remarks’’.

Model description

Consider a bulk arrival M/G/1 retrial queue model with

unreliable server and vacation policy. The basic assump-

tions underlying the model are as follows.

Arrival process

The customers arrive in batches in the system following the

Poisson distribution with state-dependent arrival rate kI

depending on server’s status; ‘I’ takes value 1, 2, 3, 4 and 5

when the server is in retrial state, busy state, setup state,

repair state and in vacation state, respectively. Let X be the

random variable denoting the batch size defined by

Pr {X = m} = cm; m C 1 such that
P1

m¼1 cm ¼ 1.

Retrial process

The incoming customers are served if they find the server

idle; otherwise, they are forced to join the virtual pool of

the customers called orbit from where they try again for the

service. The customers waiting in the retrial orbit are

known as retrial customers and they retry with retrial rate c.

The cdf, pdf and LST of pdf for the retrial process are

denoted by A(t), a(t) and ~aðsÞ, respectively.

Service process

If an incoming batch of the customers finds the server in

idle state, then a customer at the head of the batch joins the

server to get served. All the customers are served in k

essential phases with service rate li (1 B i B k) for a

customer availing ith phase of service. The service time

distribution is assumed to be general distributed. The cdf,

pdf and LST of pdf for the service time are denoted by

Bi(t), bi(t) and ~biðsÞ; respectively.

Breakdown and repair process

The server under consideration is unreliable which can

breakdown during any course of service. The unreliable

server breakdowns exponentially with rate ai (1 B i B k).

The broken down server is sent for repair immediately so

as to become as good as before failure. The repair process

is completed in d essential phases while the server is bro-

ken down during any ith (1 B i B k) phase of service. The

repair rate of jth phase of repair is bij (1 B i B k),

(1 B j B d) for server broken down during any ith phase of

service. The cdf, pdf and LST of pdf for the repair time are

denoted by Gi,j(t) and gi,j(t) and ~gi;jðsÞ, respectively.

Set up before repair

Before starting the repair process of broken down server,

some set up time is required to make some preliminary

settings, i.e. there is delay-in-repair with setup rate ni

(1 B i B k). The setup process is also general distributed

with cdf, pdf and LST of pdf for the set up process denoted

by Ni(t), gi(t) and ~giðsÞ, respectively.

Vacation policy

If no more customers are present in the system, then the

server takes at most J vacations repeatedly with rate hl

(1 B l B J) for lth vacation and returns back if at least one

job is found in the orbit after returning from the vacation.

This process repeats again if no more jobs are available in

the system, i.e. the server may reactivate at the end of lth

(1 B l B J) vacation if any customer/job is available in the

system. But the server remains dormant in the system if no

job is present in the system at the end of Jth vacation. The

vacation time is assumed to be general distributed with cdf,

pdf and LST of pdf for the set up time denoted by Ul(t),

ul(t) and ~ulðsÞ, respectively.

Reneging

If a primary customer arrives earlier as compared to retrial

customer, then either retrial customer quits the system

forever with probability (1 - r) or it may cancel its attempt

for service and returns back to its initial position with

probability r.

Queue size distribution

To analyze the retrial queueing system, we need to con-

struct the mathematical equations for the system state

probabilities. The retrial process, service process, vacation

policy and repair process are assumed to be general dis-

tributed; therefore, the model under consideration is non-

markovian. In order to formulate the equations for the

present non-markovian system, the supplementary variable

technique has been employed by introducing the supple-

mentary variables ‘w’ for elapsed retrial time, ‘x’ for

elapsed service time as well as for the elapsed vacation

time and ‘y’ for the elapsed repair time and elapsed setup

time. Also at time t, n(t) denotes the elapsed service and

vacation time whereas r(t) denotes the elapsed repair and

set up time of the customers.

Let N(t) represent the number of customers in the system

and U1(t), U2(t) and U3(t) denote the phase of the service, phase

of repair and state of vacation, respectively at any time t.

The state of the server at any time t is given by
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IðtÞ¼

1: When the server is in idle state:

2: When the server is busy in providing

service to the customers:

3: When the server is broken down and under

setup before repair:

4: When the server is broken down and under repair:

5: When the server is in vacation state:

8
>>>>>>>>>>><

>>>>>>>>>>>:

In the steady state, the joint distributions of the server

state and queue size are defined as

Dn ¼ lim
t!1

Pr IðtÞ ¼ 1; NðtÞ ¼ nf g; n� 0

Pi;nðxÞ ¼ lim
t!1

Pr IðtÞ ¼ 2; x� nðtÞ� x þ dx;f

NðtÞ ¼ n; U1ðtÞ ¼ ig; n� 0 ; ð1� i� kÞ

Si;nðx; yÞ ¼ lim
t!1

Pr IðtÞ ¼ 3; nðtÞ ¼ x; y� rðtÞ� y þ dy;f

NðtÞ ¼ n; U1ðtÞ ¼ i;U2ðtÞ ¼ jg; n� 0 ;

ð1� i� kÞ; ð1� j� dÞ

Ri;j;nðx; yÞ ¼ lim
t!1

Pr IðtÞ ¼ 4; nðtÞ ¼ x; y� rðtÞ� y þ dy;f

NðtÞ ¼ n; U1ðtÞ ¼ i; U2ðtÞ ¼ jg;
n� 0 ; ð1� i� kÞ; ð1� j� dÞ

Vl;nðxÞ ¼ lim
t!1

Pr IðtÞ ¼ 5; x� nðtÞ� x þ dx;f

NðtÞ ¼ n; U1ðtÞ ¼ i; U2ðtÞ ¼ j;U3ðtÞ ¼ lg;
n� 0 ; ð1� i� kÞ; ð1� j� dÞ; ð1� l� JÞ

Mathematical formulation

Before framing the governing equations for the model, we

give the proposition stating the stability condition for the

model as follows:

Proposition The necessary and sufficient condition for

the system to be stable is

rð1 � ~aðk1ÞÞ þ Y 0\1;

where

Y 0 ¼
Yk

q¼1

bð1Þ
q H0

qð1Þ;H0
iðzÞ ¼ �k2C0ð1Þ � aiM

0
ið1Þ&M0

iðzÞ

¼ gð1Þi ð�k3C0ð1ÞÞ þ
Yj

r¼1

g
ð1Þ
i;r ð�k4C0ð1ÞÞ

Proof In order to deal with the steady-state behaviour of

the system, we need to establish the stability condition for

the model. Wang et al. (2001) presented the proof for the

establishment of stability condition for M/G/1 model.

Following the same approach, we have derived the stability

condition for our model.

Now, we formulate the set of equations along with the

boundary conditions governing the model by introducing

the supplementary variables technique as follows:

Governing equations

k1D0 ¼
Z1

0

VJ;0ðxÞ hJðxÞdx ð1Þ

d

dw
þ k1 þ cðwÞ

� �

DnðwÞ ¼ 0; n� 1 ð2Þ

d

dx
þ k2 þ ai þ liðxÞ

� �

Pi;nðxÞ ¼ k2

Xn

m¼1

cmPi;n�mðxÞ

þ
Z1

0

Ri;j;nðx; yÞbi;jðyÞdy; ð1� i� kÞ; ð1� j� dÞ ð3Þ

o

oy
þ niðyÞ þ k3

� �

Si;nðx; yÞ ¼ k3

Xn

m¼1

cmSi;n�mðx; yÞ;

ð1� i� kÞ; n� 0 ð4Þ

o

oy
þ k4 þ bi;jðyÞ

� �

Ri;j;nðx; yÞ ¼ k4

Xn

m¼1

cmRi;j;n�mðx; yÞ;

ð1� i� kÞ; ð1� j� dÞ; n� 0 ð5Þ

d

dx
þ k5 þ hlðxÞ

� �

Vl;0ðxÞ ¼ 0; ð1� l� JÞ ð6Þ

d

dx
þ k5 þ hlðxÞ

� �

Vl;nðxÞ ¼ k5

Xn

m¼1

cmVl;n�mðxÞ;

ð1� l� JÞ; n� 1 ð7Þ

Boundary conditions

Dnð0Þ ¼
Xl

s¼1

Z1

0

Vl;nðxÞhlðxÞdx þ
Z1

0

Pk;nðxÞlk
ðxÞdx ð8Þ

Pi;nð0Þ ¼
Z1

0

Pi�1;nðxÞli�1ðxÞdx; ð1� i� kÞ; n� 1 ð9Þ

Si;nðx; 0Þ ¼ aiPi;nðxÞ; ð1� i� kÞ; n� 1 ð10Þ

Ri;1;nðx; 0Þ ¼
Z1

0

Si;nðx; yÞniðyÞdy ; ð1� i� kÞ; n� 1 ð11Þ

Ri;j;nðx; 0Þ ¼
Z1

0

Ri;j;n�1ðx; yÞbi;j�1 dy ; ð1� j� dÞ;

ð1� i� kÞ; n� 1 ð12Þ
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P0;0ð0Þ¼
Z1

0

D1ðwÞcðwÞdwþð1� rÞk1

Z1

0

D1ðwÞdwþk1D0

ð13Þ

P1;nð0Þ ¼
Z1

0

Dnþ1ðwÞcðwÞdw þ ð1 � rÞk1

Z1

0

Dnþ1ðwÞdw

þ rk1

Z1

0

DnðwÞdw; n� 1

ð14Þ

V1;0ð0Þ ¼

Z 1

0

P1;0ðxÞl1ðxÞdx n ¼ 0

0 n� 1

8
<

:
ð15Þ

Vl;0ð0Þ ¼

Z 1

0

Vl�1;0ðxÞhl�1ðxÞdx n ¼ 0 l ¼ 2; 3; ::; J

0 n� 1 l ¼ 2; 3; ::; J

8
<

:

ð16Þ

Also, the normalizing condition is given as follows:

D0 þ
X1

n¼1

Z1

0

DnðwÞdwþ
Xk

i¼1

X1

n¼0

Zk

0

Pi;nðxÞdx

þ
X1

n¼0

Xk

i¼0

Xd

j¼1

Z1

0

Z1

0

Ri;j;nðx;yÞdxdy

þ
Xk

i¼1

X1

n¼0

Z1

0

Z1

0

Si;nðx;yÞdxdyþ
XJ

l¼1

X1

n¼0

Z1

0

Vl;nðxÞdx ¼ 1

ð17Þ

Probability generating functions

We use probability generating functions (pgf) corresponding

to different states of the server to solve the set of differential

difference equations so as to obtain the steady-state solution of

the retrial queueing model. We define the probability gener-

ating functions corresponding to the various states as

Dðw; zÞ ¼
X1

n¼1

DnðwÞzn; Piðx; zÞ ¼
X1

n¼0

Pi;nðxÞzn;Ri;jðx; y; zÞ

¼
X1

n¼0

Ri;j;nðx; yÞzn ð1� i� kÞ and ð1� j� dÞ

Vlðx; zÞ ¼
X1

n¼0

Vl;nðxÞzn; Siðx; y; zÞ ¼
X1

n¼0

Si;nðx; yÞzn;

CðzÞ ¼
X1

n¼1

Cnzn; zj j � 1; ð1� l� JÞ

The corresponding hazard rates are, respectively, given

by

cðwÞ ¼ aðwÞ
1 � AðwÞ ; liðxÞ ¼

biðxÞ
1 � BiðxÞ

bi;jðyÞ ¼
gi;jðxÞ

1 � Gi;jðxÞ

niðyÞ ¼
giðyÞ

1 � NiðyÞ
; hlðxÞ ¼

ulðxÞ
1 � UlðxÞ

;

ð1� i� kÞ; ð1� j� dÞ; ð1� l� JÞ

Now, we establish some theorems to present queue size

distributions as follows:

Theorem 1 The partial generating functions for the

server being in idle state, in busy state, under repair state

while broken down, during set up state, in lth vacation

(1 B l B J) at random epoch respectively, are

Dðw; zÞ ¼ Dð0; zÞ exp �k1wf g�AðwÞ ð18Þ

Piðx; zÞ ¼ P1ð0; zÞ
Yi�1

q¼1

~bqðHqðzÞÞ expf�HiðzÞxg�BiðxÞ ð19Þ

Ri;jðx;y;zÞ

¼aiP1ð0;zÞ
Yi�1

q¼1

~bqðHqðzÞÞexpf�HiðzÞxg�BiðxÞ~gið�k3ð �CðzÞÞÞ

�
Yj�1

r¼1

~gið�k4ð �CðzÞÞÞexpf�k4ð �CðzÞÞygBiðxÞ �Gi;jðyÞ ð20Þ

Siðx; y; zÞ ¼ aiP1ð0; zÞ
Yi�1

q¼1

~bqðHqðzÞÞ expf�HiðzÞxg

�BiðxÞ expf�k3ð �CðzÞÞyg �NiðyÞ ð21Þ

Vlðx; zÞ ¼ Vlð0; zÞ expf�k5ð �CðzÞÞxg �UlðxÞ; ð22Þ

where

Vlð0; zÞ ¼ k1D0

~uðk5Þ½ � J�lþ1
; for l ¼ 1; 2; ::; J ð23Þ

Dð0; z) =
k1D0 z

½~ulðk5ð �CðzÞÞ�1Þ�½1�ð~uðk5ÞÞJ �
k5½1�~uðk5Þ�ð~uðk5ÞÞJ

� �
þ ~bkðHkðzÞÞ

Qk�1
q¼1

~bqðHqðzÞÞ
h i

� 1
� �h i

z � ~bkðHkðzÞÞ
Qk�1

q¼1
~bqðHqðzÞÞ

h i
1 þ rðz � 1Þð1 � ~aðk1ÞÞ½ �

ð24Þ
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MiðzÞ ¼ ~giðk3ð �CðzÞÞÞ~gi;jðk4ð �CðzÞÞÞ
Yj�1

r¼1

gi;rðk4ð �CðzÞÞÞ ð26Þ

HiðzÞ ¼ k2ð �CðzÞÞ þ aið1 � MiðzÞÞ½ � ð27Þ

Proof Multiplying Eqs. (2)–(7) by zn and summing over

all values of n and then using generating functions, the

above set of Eqs. (2)–(7) reduces to

d

dw
Dðw; zÞ þ

X1

n¼0

Dðw; zÞ½k1 þ cðwÞ� ¼ 0 ð28Þ

d

dx
Piðx; zÞ þ ½liðxÞ þ k2ð �CðzÞÞ þ ai�Piðx; zÞ

¼
Z1

0

Ri;jðx; y; zÞbi;jðyÞdy ð29Þ

o

oy
Siðx; y; zÞ þ ½k3ð �CðzÞÞ þ niðyÞ�Siðx; y; zÞ ¼ 0 ð30Þ

o

oy
Ri;jðx; y; zÞ þ ½k4ð �CðzÞÞ þ bijðyÞ�Ri;jðx; y; zÞ ¼ 0 ð31Þ

d

dx
Vlðx; zÞ þ ½k5ð �CðzÞÞ þ hlðxÞ�Vlðx; zÞ ¼ 0 ð32Þ

On solving Eq. (28) we get results given in Eq. (18).

On solving Eqs. (30), (31) and (32), we get

Siðx; y; zÞ ¼ Siðx; 0; zÞ expf�k3ð �CðzÞÞyg �NiðyÞ ; ð1� i� kÞ
ð33Þ

Ri;jðx; y; zÞ ¼ Ri;jðx; 0; zÞ expf�k4ð �CðzÞÞyg �Gi;jðyÞ;
ð1� i� kÞ& ð1� j� dÞ ð34Þ

Vlðx; zÞ ¼ Vlð0; zÞ expf�k5ð �CðzÞÞxg �WlðxÞ; ð1� l� JÞ
ð35Þ

On solving (6), we get

Vl;0ðxÞ ¼ Vl;0ð0Þ expfð�k5Þxg �UlðxÞ ð36Þ

Multiplying (7) by zn and summing over all values of

n (C1) and then adding in (1), and using further generating

functions, we get

Dð0; zÞ ¼
XJ

l¼1

Z1

0

Vlðx; zÞhlðxÞdx

þ
Z1

0

Pkðx; zÞlkðxÞdx �
Xl

s¼1

Vl;0ð0Þ � k1D0 ð37Þ

Similarly, multiplying Eqs. (9)–(12) by zn and summing

over all values of n (C1) and then using generating

functions, we get

Pið0; zÞ ¼
Z1

0

Pi�1ðx; zÞli�1ðxÞdx; ð1� i� kÞ ð38Þ

Ri;jðx;0;zÞ¼
Z1

0

Ri;j�1ðx;y;zÞbi;j�1ðyÞdy ð2�j�dÞ; ð1�i�kÞ

ð39Þ

Ri;1ðx;0;zÞ¼
Z1

0

Siðx;y;zÞniðyÞdy; n�1; ð1�i�kÞ ð40Þ

Siðx; 0; zÞ ¼ aiPiðx; zÞ; ð1� i� kÞ ð41Þ

Now, multiplying (14) by zn and summing over all

values of n (C1) and then adding them in (13) and after

using generating functions, we get

P0ð0;zÞ¼
1

z

Z1

0

Dðw;zÞcðwÞdw

þkð1�rþrzÞ
z

Z1

0

Dðw;zÞdwþkD0 ð42Þ

Multiplying (36) by glðxÞ on both sides for l = J and

integrating w.r.t. ‘x’, we have

Z1

0

VJ;0ðxÞhJðxÞdx ¼
Z1

0

VJ;0ð0Þ expðð�k5ÞxÞ �UlðxÞhlðxÞdx

ð43Þ

Using (1) and (43), we get

VJ;0ð0Þ ¼
k1D0

~uðk5Þ
ð44Þ

Using (16) for l = J, we get

Vl;0ð0Þ ¼
k1D0

~uðk5Þ½ �J�lþ1
for l ¼ 1; 2; 3; . . .; J � 1ð Þ ð45Þ

Also,

Vlð0; zÞ ¼ k1D0

~uðk5Þ½ �J�lþ1
for l ¼ 1; 2; 3; . . .; J ð46Þ

P1ð0; zÞ ¼
k1D0 1 þ rðz � 1Þð1 � ~aðkÞÞ½ � ½~ulðk5ð �CðzÞÞ�1Þ�½1�ð~uðk5ÞÞJ �

k5½1�~uðk5Þ�ð~uðk5ÞÞJ

� �
� 1

� �
þ z

h i

z � ~bkðHkðzÞÞ
Qk�1

q¼1
~bqðHqðzÞÞ

h i
1 þ rðz � 1Þð1 � ~aðk1ÞÞ½ �

ð25Þ
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Integrating (36) from 0 to ? and using (45), we obtain

Vl;0 ¼ k1D0 1 � ~uðk5Þ½ �
k5 ~uðk5Þ½ �J�lþ1

; ð1� l� JÞ ð47Þ

Also, the probability that no customer arrives in the

system when the server is on vacation is obtained using (47)

V0 ¼ k1D0 1 � ~uðk5Þ½ �
k5 ~uðk5Þ½ �J

Using (40) and (41), we get

Ri;1ðx; 0; zÞ ¼ aiPiðx; zÞ~giðk3ð �CðzÞÞÞ; ð1� i� kÞ ð48Þ

Solving (39) for j = 2, 3, 4,…, we obtain

Ri;jðx; 0; zÞ ¼ aiPiðx; zÞ~giðk3ð �CðzÞÞÞ
Yj�1

r¼1

~gi;rðk4ð �CðzÞÞÞ;

ð1� i� kÞ; ð2� j� dÞ ð49Þ

Therefore, we have

Ri;jðx; y; zÞ ¼ aiPiðx; zÞ~giðk3ð �CðzÞÞÞ
Yj�1

r¼1

~gi;rðk4ð �CðzÞÞÞ

� expð�k4ð �CðzÞÞyÞ �Gi;jðyÞ ð50Þ

Using (50) in (29) and solving (38) recursively for

i = 2, 3, we get (19).

Further, on solving (37) and (42) simultaneously as a

pair of linear equations, we get (24) and (25).

D0 can be determined by using normalizing condition

(17) as

where

v01 ¼
Yk

q¼1

bð1Þ
q H0

qð1Þ; v02 ¼ rð1 � ~aðk1ÞÞ;

v01 ¼
1 � ~uðk5ÞJ
� �

k5 1 � ~uðk5Þ½ � ~uðk5Þ½ �J
u
ð1Þ
l ð�k5C0ð1ÞÞ:

Theorem 2 The marginal probability generating func-

tions at random epochs, when the server is in idle state,

busy with ith (1 B i B k) phase service, under jth

(1 B j B d) phase repair while breakdown, under set up

before repair and under lth (1 B l B J) vacation are given,

respectively, by

DðzÞ ¼ Dð0; zÞð1 � ~aðk1ÞÞ
k1

ð51Þ

PiðzÞ ¼
P1ð0;zÞ

Qi�1
q¼1

~bqðHqðzÞÞ
� �

ð1� ~biðHiðzÞÞ
HiðzÞ

; ð1� i�kÞ

ð52Þ

VlðzÞ ¼
k1D0½~ulðk5ð1 � CðzÞÞÞ�

~ulðk5Þ½ �J�lþ1
; ð1� l� JÞ ð55Þ

Proof The marginal generating functions for the different

states of the server are obtained by using the following results:

DðzÞ ¼
Z1

0

Dðw; zÞdw; PiðzÞ ¼
Z1

0

Piðx; zÞdx; Ri;jðzÞ

¼
Z1

0

Z1

0

Ri;jðx; y; zÞdxdy

Ri;jðzÞ¼
aiP1ð0;zÞ

Qi�1
q¼1

~bqðHqðzÞÞ
� � Qj�1

r¼1 ~gi;rðk4ð �CðzÞÞ
� �

~giðk3ð �CðzÞÞð1� ~biðHiðzÞÞð1� ~gi;jðk4ð �CðzÞÞÞ
HiðzÞðk4ð �CðzÞÞÞ ; ð1�i�kÞ; ð1�j�dÞ

ð53Þ

SiðzÞ ¼
aiP1ð0; zÞ

Qi�1
q¼1

~bqðHqðzÞÞ
� �

ð1 � ~biðHiðzÞÞÞð1 � ~giðk3ð �CðzÞÞÞ
HiðzÞðk3ð �CðzÞÞ ; ð1� i� kÞ ð54Þ

D0 ¼
1 � v02 � v01
� 	

1 � v02 � v01
� 	

~aðk1Þ þ
k1 1þv0

3
�rð1�~aðk1ÞÞð Þ

li
1 þ ai

1
bij
þ 1

ni

� �� �
þ k1 1�~uðk5ÞJ½ �

k5 1�~uðk5Þ½ � ~uðk5Þ½ �J
1
hl

;
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SiðzÞ ¼
Z1

0

Z1

0

Siðx; y; zÞdxdy; VlðzÞ

¼
Z1

0

Vlðx; zÞdx; 1� i� kð Þ; 1� j� dð Þ; ð1� l� JÞ

Theorem 3 The generating function for the number of

customers in the retrial queue is

Proof We can obtain the probability generating function

for the number of customers in the retrial queue using

KðzÞ ¼ D0 þ DðzÞ þ
Xk

i¼1

PiðzÞ þ
Xk

i¼1

Xd

j¼1

Ri;jðzÞ

þ
Xk

i¼1

SiðzÞ þ
XJ

l¼1

VlðzÞ 57Þ

Theorem 4 The generating function for the number of

customers present in the system is

Proof The generating function of the number of cus-

tomers in the system is obtained using the results of mar-

ginal generating functions given by

LðzÞ ¼ D0 þ DðzÞ þ z
Xk

i¼1

PiðzÞ þ z
Xk

i¼1

Xd

j¼1

Ri;jðzÞ

þz
Xk

i¼1

SiðzÞ þ
XJ

l¼1

VlðzÞ ð59Þ

Performance indices

The performance measures to quantify the system charac-

teristics are of vital utility to improve the effectiveness of

any system. Similarly, the applicability of any queueing

model can also be best deciphered by means of its per-

formance indices. Some of the important performance

indices are derived using generating functions in various

categories.

KðzÞ ¼ D0 þ
Dð0; zÞð1 � ~aðk1ÞÞ

k1

þ
Xk

i¼1

P1ð0; zÞ
Qi�1

q¼1
~bqðHqðzÞ

� �
ð1 � ~biðHiðzÞÞ

HiðzÞ

þ
Xk

i¼1

Xd

j¼1

aiP1ð0; zÞ
Qi�1

q¼1
~bqðHqðzÞÞ

� � Qj�1
r¼1 ~gi;rðk4ð �CðzÞÞ

� �
~giðk3ð �CðzÞÞð1 � ~biðHiðzÞÞð1 � ~gi;jðk4ð �CðzÞÞÞ

HiðzÞðk4ð �CðzÞÞÞ

þ
Xk

i¼1

aiP1ð0; zÞ
Qi�1

q¼1
~bqðHqðzÞÞ

� �
ð1 � ~biðHiðzÞÞÞð1 � ~giðk3ð �CðzÞÞÞ

HiðzÞðk3ð �CðzÞÞ þ V0½~ulðk5ð �CðzÞÞÞ� ð56Þ

LðzÞ ¼ D0 þ
Dð0; zÞð1� ~aðk1ÞÞ

k1

þ z
Xk

i¼1

P1ð0; zÞ
Qi�1

q¼1
~bqðHqðzÞ

� �
ð1� ~biðHiðzÞÞ

HiðzÞ

þ z
Xk

i¼1

Xd

j¼1

aiP1ð0; zÞ
Qi�1

q¼1
~bqðHqðzÞÞ

� � Qj�1
r¼1 ~gi;rðk4ð1�CðzÞÞ

� �
~giðk3ð1�CðzÞÞð1� ~biðHiðzÞÞð1� ~gi;jðk4ð1�CðzÞÞÞ

HiðzÞðk4ð1�CðzÞÞÞ

þ z
Xk

i¼1

aiP1ð0; zÞ
Qi�1

q¼1
~bqðHqðzÞÞ

� �
ð1� ~biðHiðzÞÞÞð1� ~giðk3ð1�CðzÞÞÞ

HiðzÞðk3ð1�CðzÞÞ þV0½~ulðk5ð1�CðzÞÞÞ� ð58Þ
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Long-run probabilities

We derive analytic expressions for the long-run probabil-

ities of the server states. These results are significant in the

sense that these probabilities completely describe the

behaviour of a system when the system is analyzed after a

long period of time. The long-run probabilities of the ser-

ver being in idle (PI), busy (PB), repair (PR), set up (PS)

and vacation (PV) states, respectively, are given below in

the form of theorem.

Theorem 5 (i) The long-run probability of the server

being in idle state is

PI ¼ ð1 � ~aðk1ÞÞD0

v03 þ v01
� 	

ð1 � v01 � v02Þ


 �

ð60Þ

(ii) The long-run probability of the server being in busy

state is

PB ¼
Xk

i¼1

k1D0

1009
1008


 �

ð61Þ

(iii) The long-run probability of the server being in

repair state is

PR ¼
Xk

i¼1

aik1D0

100012

100011


 �

ð62Þ

(iv) The long-run probability of the server being under

set up state is

PS ¼
Xk

i¼1

aik1D0

ð100013Þ
ð100014Þ

ð63Þ

(v) The long-run probability of the server being under

vacation state is

PV ¼ k1D0

k5 ~uðk5Þ½ �J�lþ1

107
v08


 �

ð64Þ

Proof The expressions for the long-run probabilities are

obtained using

PI ¼ lim
z!1

DðzÞ; PB ¼ lim
z!1

Xk

i¼1

PiðzÞ;PR ¼ lim
z!1

Xk

i¼1

Xd

j¼1

Ri;jðzÞ

PS ¼ lim
z!1

Xk

i¼1

SiðzÞ;PV ¼ lim
z!1

Xl

s¼1

VsðzÞ

Queueing measures

Queue length is the most important and effective perfor-

mance measure for any queueing system as it directly

corresponds to the effectiveness of the system and further

guides the system engineers to design the system as

desired. We proceed to find out the analytic expressions for

the queue length of both system and retrial orbit in the

following theorem:

Theorem 6 The mean queue length of the retrial orbit

(LR) and that of the system (LS) are

LS ¼ LR þ k1D01009
1008

þ
Xk

i¼1

aik1D0100012

100011

þ
Xk

i¼1

aik1D0100013

100014

;

ð65bÞ

where

v1 ¼ 1 þ rðz � 1Þð1 � ~aðk1ÞÞ; v01 ¼ rð1 � ~aðk1ÞÞ

MiðzÞ ¼ ~giðk3ð1 � CðzÞÞÞ~gi;jðk4ð1 � CðzÞÞÞ
Yj�1

r¼1

gi;rðk4ð1 � CðzÞÞÞ

M0
iðzÞ ¼ gð1Þi ð�k3C0ð1ÞÞ þ

Yj

r¼1

g
ð1Þ
i;r ð�k4C0ð1ÞÞ;

M00
i ðzÞ ¼ gð2Þi ð�k3C0ð1ÞÞ2 þ gð1Þi ð�k3C00ð1ÞÞ þ gð1Þi ð�k3C0ð1ÞÞ

�
Yj

r¼1

g
ð1Þ
i;r ð�k4C0ð1ÞÞ

þ
Yj

r¼1

g
ð2Þ
i;r ð�k4C0ð1ÞÞ2þ

Yj

r¼1

g
ð1Þ
i;r ð�k4C00ð1ÞÞ;

v5 ¼ HiðzÞ ¼ k2ð1 � CðzÞÞ þ aið1 � MiðzÞÞ; v05 ¼ H0
iðzÞ

¼ �k2C0ð1Þ � aiM
0
ið1Þ; v005 ¼ H00

i ðzÞ ¼ �k2C00ð1Þ � aiM
00
i ð1Þ

LR ¼
D0ð1 � ~aðk1ÞÞð1 � v01 � v02Þ v03 þ v01

� 	
þ v003 þ v001
� 	� 	

þ v004 þ v002
� 	

v03 þ v01
� 	

2ð1 � v01 � v02Þ
2

þ
Xk

i¼1

k1D0 a00b000 � a000b00ð Þ
12ð1 � v01 � v02Þ

2v025

þ
Xk

i¼1

aik1D0ð5eivd000 � 5dive000Þ
624ð1 � v01 � v02Þ

2v025 v026
þ
Xk

i¼1

aik1D0ð5f ivh000 � 5hivf 000Þ
624ð1 � v01 � v02Þ

2v025 v027
þ
XJ

l¼1

k1D0

k5 ~uðk5Þ½ �J�lþ1

v08v
00
9 � v008v

0
9

2v028


 � ð65aÞ
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v4 ¼
Yk�1

q¼1

~bqðHqðzÞÞ~bkðHkðzÞÞ; v04 ¼
Yk

q¼1

bð1Þq H0
qð1Þ;

v004 ¼
Yk

q¼1

bð2Þq H0
qð1Þþ

Yk

q¼1

bð1Þ
q H00

q ð1Þ

11 ¼
Yi�1

q¼1

~bqðHqðzÞÞ; 101 ¼
Yi�1

q¼1

bð1Þq ðH0
qð1ÞÞ; 1001 ¼

Yi�1

q¼1

bð2Þ
q ðH0

qð1ÞÞ

þ
Yi�1

q¼1

bð1Þ
q ðH00

q ð1ÞÞ

12 ¼ 1 � ~biðHiðzÞÞ; 102 ¼ �b
ð1Þ
i H0

ið1Þ; 1002 ¼ �b
ð2Þ
i H00

i ð1Þ
2

� b
ð1Þ
i H00

i ð1Þ
13 ¼ 1 � ~gi;jðk4ð1 � CðzÞÞÞ; 103 ¼ �g

ð1Þ
i;j ð�k4C0ð1ÞÞ;

1003 ¼ �g
ð2Þ
i;j ðk4C0ð1ÞÞ2 � g

ð1Þ
i;j ð�k4C00ð1ÞÞ

v6 ¼ k4ð1 � CðzÞÞ; v06 ¼ �k4C0ð1Þ; v006 ¼ �k4C00ð1Þ

v3 ¼
1 � ~uðk5ÞJ
� �

k5 1 � ~uðk5Þ½ � ~uðk5Þ½ �J
~usðk5ð1 � CðzÞÞÞ½ � ;

v03 ¼
1 � ~uðk5ÞJ
� �

k5 1 � ~uðk5Þ½ � ~uðk5Þ½ �J
~u
ð1Þ
l ð�k5C0ð1ÞÞ

v003 ¼
1 � ~uðk5ÞJ
� �

k5 1 � ~uðk5Þ½ � ~uðk5Þ½ �l
~u
ð2Þ
l ð�k5C0ð1ÞÞ2 þ ~u

ð1Þ
l ð�k5C00ð1ÞÞ

� �

14 ¼ ~giðk3ð1 � CðzÞÞ; 104 ¼ �gð1Þi k3C0ð1Þ;

1004 ¼ gð2Þi �k3C0ð1Þð Þ2�gð1Þi k3C00ð1Þ

15 ¼
Yj�1

r¼1

~gi;r k4ð1 � CðzÞÞð Þ; 105 ¼
Yj�1

r¼1

g
ð1Þ
i;r �k4C0ð1Þð Þ;

1005 ¼
Yj�1

r¼1

g
ð1Þ
i;r �k4C00ð1Þð Þ þ

Yj�1

r¼1

g
ð2Þ
i;r �k4C0ð1Þð Þ2

16 ¼ 1 � ~giðk3ð1 � CðzÞÞÞ; 106 ¼ �gð1Þi ð�k3C0ð1ÞÞ;
1006 ¼ �gð1Þi ð�k3C00ð1ÞÞ � gð2Þi ðk3C0ð1ÞÞ2

v7 ¼ k3ð1 � CðzÞÞ; v07 ¼ �k3C0ð1Þ; v007 ¼ �k3C00ð1Þ

17 ¼ 1 � ~ulðk5ð1 � CðzÞÞÞ; 107 ¼ �u
ð1Þ
l �k5C0ð1Þð Þ;

1007 ¼ �u
ð1Þ
l �k5C00ð1Þð Þ � u

ð2Þ
l �k5C0ð1Þð Þ2

v10 ¼ k5ð1 � CðzÞÞ; v010 ¼ �k5C0ð1Þ; v0010 ¼ �k5C00ð1Þ

18 ¼ ðz � v1v2Þv5; 1008 ¼ 2ð1 � v01 � v02Þv05;
10008 ¼ 3ðz � v1v2Þ00v0 þ 3ðz � v1v2Þ0v005
19 ¼ v21112; 1009 ¼ 2v021

0
2;

10009 ¼ 3v0021
0
2 þ 6v021

0
11

0
2 þ 3v021

00
2 ; 111 ¼ 18v6;

100011 ¼ 31008v
0
6; 1iv

11 ¼ 410008 v06 þ 61008v
00
6 ;

110 ¼ 141513; 1010 ¼ 103;

10010 ¼ 21041
0
51

0
3 þ 2141

0
51

0
3 þ 14151

00
3; 112 ¼ 19110;

100012 ¼ 310091
0
10; 1iv

12 ¼ 410009 1010 þ 610091
00
10

114 ¼ 18v7; 100014 ¼ 31008v
0
7; 1iv

14 ¼ 410008 v07 þ 61008v
00
7;

113 ¼ 1916; 100013 ¼ 310091
0
6; 1iv

13 ¼ 410009 106 þ 610091
00
6

Proof The mean queue length of the retrial orbit and

mean queue length of the system are obtained using

LR ¼ lim
z!1

K 0ðzÞ and Ls ¼ lim
z!1

L0ðzÞ

Here, L Hospital rule has been used six times to evaluate

the limiting value when z ! 1.

Theorem 7 The exact expected waiting time for a cus-

tomer in the system is obtained as

Ws ¼
Ls

keff

; ð66Þ

where keff ¼ k1PI þ k2PB þ k3PS þ k4PR þ k5PV½ �E½X�.

Proof The exact expected waiting time Ws is obtained

using Little’s formula (cf. Gross and Harris 1998) as

Ws ¼ Ls

keff
.

Reliability measures

A mathematical model for the unreliable server queue

framed analytically can be best validated by its reliability

measures as reliability of the system directly affects the

efficiency/availability of the system. Now, we derive some

important reliability measures, namely availability and

failure frequency.

Theorem 8 The steady-state availability ( Av) and failure

frequency (Ff) of the server are

Av ¼ D0 ~aðk1Þ þ
Xk

i¼1

k1

1 þ v03 � rð1 � ~aðk1ÞÞ
� �

ð1 � v02 � v01Þli

" #

ð67aÞ

Ff ¼ D0

Xk

i¼1

k1ai

1 þ v03 � rð1 � ~aðk1ÞÞ
� �

ð1 � v02 � v01Þli

ð67bÞ

Proof The availability and failure frequency for the

system are obtained using

Av ¼ D0 þ
Z1

0

Dðw; 1Þdw þ
Xk

i¼1

Z1

0

Piðx; 1Þdx

Ff ¼
Xk

i¼1

Z1

0

aiPiðx; 1Þdx

Maximum entropy analysis

The principle of maximum entropy can be used for esti-

mating probabilistic information measures which can be

used further to obtain queue size distribution of the

concerned queueing systems. In this section, we employ
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MEP to determine the steady-state probabilities

Pi,n (1 B i B k), Ri,j,n (1 B j B d), Si,n (1 B i B k),

Vl,n (1 B l B J) and Dn for the M[x]/G/1 retrial queueing

system with modified vacation policy. For the analysis

purpose, we follow the following procedure (c.f. Wang

et al. 2007):

(i) The construction of Lagrange’s function H using

the method of Lagrange’s multipliers subject to a

set of constraints in terms of known indices.

(ii) Partial differentiation of Lagrange’s function

H w.r.t. Pi,n, Ri,j,n, Si,n, Vl,n and Dn and setting

the results to zero.

(iii) Finally, solving the equations obtained in (ii) to

derive results for the required probabilities.

Maximum entropy function

The maximum entropy function Y (cf. El-Affendi and

Kouvatos 1983) is formulated to evaluate the steady-state

probabilities using several known constraints in terms of

performance characteristics as follows:

Y ¼ �
X1

n¼1

Xk

i¼1

Pi;n log Pi;n �
X1

n¼1

Xk

i¼1

Xd

j¼1

Ri;j;n log Ri;j;n

�
X1

n¼1

Xk

i¼1

Si;n log Si;n �
X1

n¼1

Dn log Dn �
X1

n¼1

XJ

l¼1

Vl;n log Vl;n

ð68Þ

Subject to the constraints

ðiÞ
X1

n¼1

Xk

i¼1

Pi;n ¼ PB;
X1

n¼1

Xk

i¼1

Xd

j¼1

Ri;j;n ¼ PR;
X1

n¼1

Xk

i¼1

Si;n ¼ PS

ð69Þ

ðiiÞ
X1

n¼1

Dn ¼ PI;
X1

n¼1

XJ

l¼1

Vl;n ¼ PV ð70Þ

ðiiiÞ
X1

n¼1

n
Xk

i¼1

Pi;n þ
Xk

i¼1

Xd

j¼1

Ri;j;n þ
Xk

i¼1

Si;n þ
XJ

l¼1

Vl;n þ Dn

( )

¼ LS

ð71Þ

Construction of Lagrange’s function

To determine the maximum value of entropy function, we

construct Lagrange’s function H (Pi,n, Ri,j,n, Si,n, Dn, Vl,n)

by introducing the Lagrange’s multipliers hi (1 B i B k),

dij (1 B i B k), /i (1 B i B k), hkþ1, el (1 B l B J) and

/kþ1 corresponding to the information, i.e. constraints (69–

71) available in the form of derived analytical results.

Thus, we have

H Pi;;Ri;j;n; Si;n;;Dn;Vl;n

� 	

¼
X1

n¼1

Xk

i¼1

Pi;n log Pi;n �
X1

n¼1

Xk

i¼1

Xd

j¼1

Ri;j;n log Ri;j;n

�
X1

n¼1

Xk

i¼1

Si;n log Si;n �
X1

n¼1

Dn log Dn

�
X1

n¼1

XJ

l¼1

Vl;n log Vl;n �
Xk

i¼1

hi

X1

n¼1

Xk

i¼1

Pi;n � PB

" #

�
Xk

i¼1

Xd

j¼1

dij

X1

n¼1

Xk

i¼1

Xd

j¼1

Ri;j;n � PR

" #

�
Xk

i¼1

/i

X1

n¼1

Xk

i¼1

Si;n � PS

" #

� hkþ1

X1

n¼1

Dn � PI

" #

�
XJ

l¼1

el

X1

n¼1

XJ

l¼1

Vl;n � PV

" #

� /kþ1

"
X1

n¼1

n

(
Xk

i¼1

Pi;n þ
Xk

i¼1

Xd

j¼1

Ri;j;n þ
Xk

i¼1

Si;n

þ
Xk

i¼1

Vl;n þ Dng � LS

#

ð72Þ

The obtained results for the approximate probabilities of

different states are presented in the form of theorem as

given below.

Theorem 9 The maximum entropy solutions for the

approximate values of probabilities Pi;n; Ri;j;n; Dn; Si;n&

Vl;nð1� i� kÞ; ð1� j� dÞ; ð1� l� JÞ; n� 1 subject to

the constraints are

P̂i;n ¼ PBr LS � r½ �n�1

Ln
S

R̂i;j;n ¼ PRr LS � r½ �n�1

Ln
S

D̂n ¼ PIr LS � r½ �n�1

Ln
S

ð73Þ

Ŝi;n ¼ PSr LS � r½ �n�1

Ln
S

V̂l;n ¼ PVr LS � r½ �n�1

Ln
S

where

r ¼ PB þ PR þ PV þ Ps þ PI ð74Þ

Proof The approximate state probabilities

Pi;n; Ri;j;n; Si;n; Vl;n &Dn can be obtained by taking partial

derivatives of H with respect to Pi;n; Ri;j;n; Si;n; Vl;n &Dn;

and then setting the results equal to zero. Thus, we get

Dn ¼ e�ð1þhkþ1Þe�n/kþ1 ;
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Pi;n ¼ e�ð1þhiÞe�n/kþ1 ; ð1� i� kÞ

Si;n ¼ e�ð1þ/ iÞe�n /kþ1 ;

Ri;j;n ¼ e�ð1þd ijÞ e�n /kþ1 ; ð1� i� kÞ ; ð1� j� dÞ

Vl;n ¼ e�ð1þelÞe�n/kþ1 ð1� i� kÞ; ð1� j� dÞ; ð1� l� JÞ
ð75Þ

For brevity of notations, we denote

e�ð1þ/ iÞ ¼ wi 1 � i� k þ 1ð Þ

e�ð1þ/ iÞ ¼ ci ; 1 � i� kð Þ

e�ð1þdijÞ ¼ pij 1 � i� kð Þ; 1 � j� dð Þ

e�/kþ1 ¼ dkþ1

e�ð1þelÞ ¼ -l; 1� l� Jð Þ ð76Þ

Therefore, (75) reduces to

Pi;n ¼ wid
n
kþ1;Ri;j;n ¼ pijd

n
kþ1; Si;n ¼ cid

n
kþ1;

Dn ¼ wkþ1dn
kþ1;Vl;n ¼ -ld

n
kþ1

ð77Þ

Using (77) in constraints, i.e. (69–71), we get approximate

results for the long-run probabilities of several states as

follows:

PB ¼ widkþ1

1 � dkþ1

; PR ¼ pijdkþ1

1 � dkþ1

; PS ¼ cidkþ1

1 � dkþ1

;

PI ¼
wkþ1dkþ1

1 � dkþ1

;PV ¼ -ldkþ1

1 � dkþ1

ð78Þ

Now using (71) and (77) we get the approximate queue

length of the system as

L̂s ¼
dkþ1

Pkþ1
i¼1 wi þ

Pk
i¼1

Pd
j¼1 pij þ

Pk
i¼1 ci þ

PJ
l¼1 -l

h i

1 � d2
kþ1

� 	

ð79Þ

Again denoting r ¼ PB þ PR þ PV þ Ps þ PI and using

(77) and (78), we have

Ls ¼
r

1 � dkþ1

and dkþ1 ¼ Ls � r
Ls

ð80Þ

Further, using (77) and (79), we get

wi ¼
PBr

Ls � r
; pij ¼

PRr
Ls � r

; ci ¼
Psr

Ls � r
;

wkþ1 ¼ PIr
Ls � r

; -l ¼
PVr

Ls � r
0 � i� kð Þ

ð81Þ

Finally, substituting results from Eqs. (80) and (81) in

Eq. (78), we get expressions given in Eq. (73).

Theorem 10 Using the principle of maximum entropy,

the approximate expected waiting time in the system is

Ŵs ¼
X1

n¼1

Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #

D̂n

þ
X1

n¼1

Xk

i¼1

n

li

þ
Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #

P̂i;n

þ
X1

n¼1

Xk

i¼1

Xd

j¼1

g
ð2Þ
ij

2g
ð1Þ
ij

þ
Xk

i¼1

n

li

þ
Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #

R̂i;j;n

þ
X1

n¼1

Xk

i¼1

Xd

j¼1

gð2Þi

2gð1Þi

þ
Xk

i¼1

n

li

þ 1

bij

þ
Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #

Ŝi;n

þ
X1

n¼1

XJ

l¼1

u
ð2Þ
l

2u
ð1Þ
l

þ
Xk

i¼1

n

li

þ
Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #

V̂l;n

ð82Þ

Proof For proof see ‘‘Appendix’’.

Numerical simulation

The present section deals with the sensitivity analysis of

the performance indices of queueing model with respect to

various parameters. It is true to say that the efficiency of

any mathematical model can be best deciphered by means

of numerical illustration. The numerical simulation of

derived analytic results seems to be an important step with

regard to the validation of mathematical modeling of any

queueing system. The present analysis has been divided

into various subsections which are as follows:

Queue length (Ls)

To study the sensitivity of queue length towards various

parameters, Figs. 1, 2, 3, 4, 5, 6 have been plotted corre-

sponding to different service time distributions. Three

service time distributions, namely Erlangian-2, exponential

and gamma distributions have been considered for the

service time. The vacation time, retrial process, set up

process as well as repair process are assumed to follow

exponential distribution. The set of default parameters

assumed for simulation are as

k ¼ k1 ¼ k2 ¼ k3 ¼ k4 ¼ k5 ¼ 0:5; n ¼ 1;

l ¼ l1 ¼ l2 ¼ 5; a ¼ a1 ¼ a2 ¼ 0:01; c ¼ 0:1;

h ¼ 2; r ¼ 0:1; b ¼ b1 ¼ b2 ¼ 0:9:

The effect of parameters, namely breakdown rate (a)

and repair rate (b), on the queue length of the system have

been demonstrated in Figs. 1 and 2. It is noticed that the

breakdown rate and repair rate are supposed to have con-

tradictory effect on the queue length of the system which is

very true. It is clear from Fig. 1a–c that the queue length

increases as the breakdown rate increases from 0.008 to

0.01 U for all the service time distributions. The maximum
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number of customers or queue length is observed in the

case 1(c) when the service time is supposed to be gamma

distributed. On the other hand, in Fig. 2 wherein graphs are

plotted for different values of repair rate b (0.6, 0.8 and 1),

LS decreases with an increase in the repair rate. This is due

to the fact that an increase in breakdown rate forces the

customers to accumulate in the system due to the non-

working condition of the server and hence increases the

queue length. However, an increase in the repair rate helps

in the fast recovery of the server and thus reduces the

number of customers in the system.

Figure 3 has been plotted for various values of service rate

l for (a) Erlangian-2 (b) exponential and (c) gamma service

time distributions with arrival rate k. The graphs plotted in

Fig. 3 clearly demonstrate that the queue length of the system

(b)

(a)

(c)

Fig. 1 Effect of a. a Erlangian-2. b Exponential. c Gamma distri-

bution on Ls

(c)

(b)

(a)

Fig. 2 Effect of b. a Erlangian-2. b Exponential. c Gamma distri-

butions on Ls
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decreases with an increase in the service rate for all the three

service time distributions. The maximum queue length is

observed in case of system with gamma service time distri-

bution as compared to system following exponential and

Erlangian-2 service time distributions. Figure 4 depicts the

sensitivity of reneging probability r on the system size; the

queue length of the system increases as r increases from 0.1

to 0.3 U. The variations of the queue length with the vacation

rate h and setup rate n are explored through Figs. 5 and 6.

The queue length decreases as the vacation rate increases;

this is due to the fact that a server goes for vacation only

when there is no customer in the system which implies

the reduction in the number of customers in the system.

(a)

(b)

(c)

Fig. 3 Effect of l. a Erlangian-2. b Exponential. c Gamma distri-

bution on Ls

(c)

(b)

(a)

Fig. 4 Effect of r. a Erlangian-2. b Exponential. c Gamma distribu-

tions on Ls
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An increase in the vacation rate clearly implies that the

system becomes deprived of customers frequently. More-

over, the set up rate also affects the system size; an increase

in the setup rate decreases the number of customers in the

system as demonstrated by Fig. 6a–c. This pattern is due to

the fact that an increase in the setup rate improves the repair

process of the server which in turn increases the availability

of the server and thus a reduction in the number of customers

in the system is observed.

Comparison of expected and approximate average

waiting time

Waiting time plays a significant role in the validation of

any retrial queueing model. It is an important parameter

that judges the efficiency of mathematical model. A cus-

tomer always wishes to join a system where service can be

availed in the minimum waiting time (either in queue or in

system) and hence the importance of waiting time. In the

(a)

(b)

(c)

Fig. 5 Effect of h. a Erlangian-2. b Exponential. c Gamma distri-

bution on Ls

(a)

(b)

(c)

Fig. 6 Effect of n. a Erlangian-2. b Exponential. c Gamma distri-

butions on Ls
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present subsection, a comparison between exact expected

(Wq) and approximate average waiting time has been

framed in Tables 1, 2. Table 1 shows the comparison

between expected and approximate average waiting time

for two types of service time distributions, namely expo-

nential and gamma distributions. The absolute percentage

error (APE %) has been obtained for various varying

parameters and four cases with variation in different

parameters, namely (Case 1) setup rate n, (Case 2) retrial

rate c and (Case 3) breakdown rate a = a1 = a2.

An increase in the set up rate n from 1.0 to 2.5 U

affects the waiting time of the customer in the queue.

APE decreases with an increase in the retrial rate for

both the distributions with maximum % error as 16.20 %

for the exponential distribution and 15.92 % for gamma

distribution in Case 2. The data captured in Case 3

depict the effect of the breakdown rate a on the waiting

time of the customer in the system. Both expected and

approximate waiting times increases with the increase in

breakdown rate from 0.006 to 0.01 U. This is because

breakdown of the server increases the queue length of

the system and thus increases the waiting time for the

service.

Table 2 depicts the data for the waiting time for a

queueing model with Erlangian-2 and deterministic dis-

tributed service time. With an increase in the retrial rate c
and breakdown rate a, APE as well as waiting time

decreases. APE increases with an increase in the setup rate

n for both Erlangian-2 and deterministic distributed service

process. Hence, the choice of appropriate service time

distribution may help in reducing the waiting time of the

customers in the system.

Cost analysis

In the present section, we frame the expected total cost

function (ETC) for the retrial queueing model with modi-

fied vacation policy under consideration. The cost function

is formulated as

ETC ¼ ChLs þ CbPB þ CsPs þ CRPR þ CVPV þ CIPI;

where

Ch ¼ Holding cost per unit customer

Cb ¼ Cost per unit time while servicing the customers

Cs ¼ Cost per unit time for making pre repair settings

CR ¼ Cost per unit time for providing repair to the

broken down server

CV ¼ Cost per unit time in the system when the

server is on vacation

CI ¼ Cost per unit time when the customer retry

for the service

The effect of various parameters on the total cost of the

system has been examined so as to visualize the nature of

cost function towards various parameters. The set of

default cost elements are taken as CI = 10, CR = 50,

Ch = 5, Cb = 50, CV = 20, Cs = 20.

Table 1 Comparison of exact and approximate average waiting time

for Exponential and Gamma distributed service time

Service time as Exponential

distributed

Service time as Gamma

distributed

Case 1 Case 1

n Wq Ŵq APE (%) Wq Ŵq APE (%)

1.0 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592

1.8 4.1718 4.2041 0.7755 3.8460 3.8577 0.3066

2.0 4.1685 4.2098 0.9900 3.8430 3.8624 0.5062

Case 2 Case 2

c Wq Ŵq APE (%) Wq Ŵq APE (%)

0.080 4.2578 4.9479 16.2072 3.9054 4.5272 15.9205

0.090 4.2195 4.5384 7.5560 3.8795 4.1622 7.2858

0.10 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592

Case 3 Case 3

a Wq Ŵq APE (%) Wq Ŵq APE (%)

0.006 4.1146 3.6017 12.4659 3.7856 3.3029 12.7513

0.008 4.1498 3.8788 6.5305 3.8210 3.5611 6.8004

0.01 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592

Table 2 Comparison of exact and approximate average waiting time

for Erlangian-2 and Deterministic distributed service time

Service time as Erlangian-2

distributed

Service time as deterministic

distributed

Case 1 Case 1

n Wq Ŵq APE (%) Wq Ŵq APE (%)

1.0 4.2248 4.2393 0.3434 4.2659 4.2818 0.3720

1.8 4.2125 4.2474 0.8290 4.2533 4.2907 0.8815

2.0 4.2092 4.2532 1.0452 4.2499 4.2966 1.0994

Case 2 Case 2

c Wq Ŵq APE (%) Wq Ŵq APE (%)

0.080 4.3019 5.0005 16.2398 4.3459 5.0531 16.2716

0.090 4.2621 4.5854 7.5868 4.3046 4.6324 7.6169

0.10 4.2248 4.2393 0.3434 4.2659 4.2818 0.3720

Case 3 Case 3

a Wq Ŵq APE (%) Wq Ŵq APE (%)

0.006 4.1969 3.6764 12.4015 4.1558 3.6391 12.4333

0.008 4.2320 3.9582 6.4696 4.1909 3.9185 6.4998

0.01 4.2659 4.2818 0.3720 4.2248 4.2393 0.3434
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Figure 7 displays the effect of various parameters,

namely reneging probability r, retrial rate c, arrival rate (k)

and breakdown rate (a1), respectively, on the total cost

ETC of the system. The graphs are plotted with ETC on the

y-axis and service rate l (l1 = l2) on the x-axis. The

sensitivity of cost with respect to service rate l for different

values of r is displayed in Fig. 7a. The total cost of the

system increases with an increase in the reneging rate r for

both exponential and gamma service time distributions.

Higher costs are noticed in case of exponentially distrib-

uted service time. It is seen that the total cost of the system

decreases with the increase in retrial rate (c) from 0.1 to

0.3 U for fixed values of other parameters as displayed in

Fig. 7b for both types of distributions. The higher cost

values are achieved for the exponential distributed service

time as compared to gamma distributed service time. The

sensitivity of total cost with varying values of arrival rate

(k) and breakdown rate (a1) has been depicted in Fig. 7c

and d, respectively. It is seen that the total cost increases

with an increase in the reneging probability (1 - r), retrial

rate (c), arrival rate (k), breakdown rate (a1) and service

rate (l). Figure 7d displays the effect of breakdown rate

and service rate on ETC; it is quite interesting to observe

that the total cost values obtained for different service time

distributions, namely exponential and gamma service time,

are quite close enough. In this case, ETC varies minutely

till l reaches 6.5 U; after that the total cost of the system

becomes independent of service time distribution chosen.

Overall, we observed that the total cost of the system is

sensitive towards variation in different parameters likewise

arrival rate, retrial rate, reneging rate, etc. A control over

these parameters can help in controlling and reducing the

total cost of the system at a permissible level.

Concluding remarks

The bulk arrival retrial queueing model with discourage-

ment and modified vacation has been analyzed. The con-

cepts of phase service and phase repair incorporated along

(a) (b)

(c) (d)

Fig. 7 Effect of a reneging rate r, b retrial rate c, c arrival rate k and d break down rate a1 on ETC of the system
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with delaying repair make the present model close to many

real-life queueing scenarios. The analytic results obtained

for various queueing and reliability indices along with long

run probabilities are also validated numerically by taking

an illustration. The process of taking admission in any

institute, working at bank counters, hospital formalities for

a patient, etc. can be considered as suitable examples of

real-life congestion situation for this particular model. The

admission procedure in any institute starts from the filling

of application to the completion of fees deposition wherein

there is a series of essential formalities to be completed.

And, if there emerges any mistake/breakdown in the server,

then again it follows a phase service/repair. The person

involved in the admission may go for a series of vacations

with some probabilities if no more jobs are available.

Hence, our study clearly relates a very common scenario of

proposed model. Moreover, our model is best fitted to the

transmission of messages and telecommunication processes

also. The present investigation can be further extended by

enriching the model with the concepts of negative cus-

tomers and bulk service to make it more general and

effective.
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Appendix

MEP is used to obtain the approximate expected waiting

time in the queue is detailed below (cf. Wang et al. 2007).

Let us consider that a particular customer, say ‘‘Q’’,

arrives in the system and finds n customers preceding him

in the queue. The server can be in any one of the states

(i) idle, (ii) busy, (iii) repair, (iv) set up and (v) vacation,

when ‘‘Q’’ arrives. So, the following cases arise:

Idle state If on arrival, the customer ‘‘Q’’ finds the server

in idle state then the incoming batch will be immediately

served. The mean waiting time for a customer in this case

includes the time taken by the additional customers in the

batch preceding him to be served which is given as

X1

n¼1

Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #

Busy state If the server is found in busy state, then the

incoming batch joins the orbit and waits for its turn. For

this case, the waiting time includes the serving time
Pk

i¼1
n
li

of those n customers already present in the queue plus the

waiting time
Pk

i¼1
1

2li

E½X2�
E½X� � 1

� �
of those who precedes

‘‘Q’’ in the batch. The total mean waiting time is given by

X1

n¼1

Xk

i¼1

n

li

þ
Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #

Setup state If the server breaks down, then it is sent for

the repair. But before repair, it is essential for the repair-

man to make some preliminary settings before starting the

repair. If the incoming customer finds the server in set up

state, then it has to wait for the server to complete its set up

procedure with mean remaining set up time
Pk

i¼1

gð2Þ
i

2gð1Þ
i

,

repair process 1
bij

, as well as
Pk

i¼1
n
li

, which is the servicing

time of n customers already present in the system. More-

over, the customers preceding ‘‘Q’’ will also take time

Pk

i¼1

1
2li

E½X2�
E½X� � 1

� �
. Thus, the mean waiting time in the set up

state is given by

X1

n¼1

Xk

i¼1

gð2Þi

2gð1Þi

þ 1

bij

þ
Xk

i¼1

n

li

þ
Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #

Repair state In case when the server is in repair state,

then the incoming batch will be served after completing the

repair of the server plus the servicing of those n customers

already waiting in the queue. The mean remaining repair

time is given by
Pk

i¼1

Pd
j¼1

g
ð2Þ
ij

2g
ð1Þ
ij

, and waiting time for the

servicing of n customers is
Pk

i¼1
n
li

. Moreover, the cus-

tomers preceding ‘‘Q’’ will also take some time
Pk

i¼1
1

2li

E½X2�
E½X� � 1

� �
. Hence, the total mean waiting when

the server is in repair state is

P1
n¼1

Pk
i¼1

Pd
j¼1

g
ð2Þ
ij

2g
ð1Þ
ij

þ
Pk

i¼1
n
li
þ
Pk

i¼1
1

2li

E½X2�
E½X� � 1

� �� �

.

Vacation state When the server is in vacation state, the

incoming batch will be served after completing the vaca-

tion of the server plus the servicing of those n customers

already waiting in the queue. The mean remaining vacation

time is given by
PJ

l¼1

u
ð2Þ
l

2u
ð1Þ
l

, and waiting time for the ser-

vicing of n customers is
Pk

i¼1
n
li

. Moreover, the customers

preceding ‘‘Q’’ will also take some time
Pk

i¼1
1

2li

E½X2�
E½X� � 1

� �
. Hence, the total mean waiting when

the server is in vacation state is obtained as

X1

n¼1

XJ

l¼1

u
ð2Þ
l

2u
ð1Þ
l

þ
Xk

i¼1

n

li

þ
Xk

i¼1

1

2li

E½X2�
E½X� � 1


 �" #
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The total mean waiting time in the system given by

Eq. (82) is obtained by adding the (i–v) after multiplying

the respective probabilities of system states.
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