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Abstract The present investigation deals with the bulk
arrival M/G/1 retrial queue with impatient customers and
modified vacation policy. The incoming customers join the
virtual pool of customers called orbit if they find the server
being busy, on vacation or in broken down state otherwise
the service of the customer at the head of the batch is
started by the server. The service is provided in k essential
phases to all the customers by the single server which may
breakdown while rendering service to the customers. The
broken down server is sent to a repair facility wherein
the repair is performed in d compulsory phases. As soon as
the orbit becomes empty, the server goes for vacation and
takes at most J vacations until at least one customer is
noticed. The incoming customers are impatient and may
renege on seeing a long queue of the customers for the
service. The probability generating functions and queue
length for the number of customers in the orbit and queue
have been obtained using supplementary variable tech-
nique. Various system characteristics viz. average number
of customers in the queue and the orbit, long run proba-
bilities of the system states, etc. are obtained. Furthermore,
numerical simulation has been carried out to study the
sensitivity of various parameters on the system perfor-
mance measures by taking an illustration.
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Introduction

In many queueing scenarios, it may happen sometimes that
a customer/job that did not receive service at the first
attempt from the server tries again and again to avail the
required service. These type of situations give rise to
special type of queues known as retrial queues. Such
queues are characterized by the phenomenon that a cus-
tomer if deprived of service is forced to join the virtual
pool of customers called orbit from where he tries again
and again for the service. The customers retrying for the
service are known as retrial customers. The retrial queues
are visible in all day-to-day congestion situations from
supermarkets to ATM, from hospitals to admission coun-
ters, etc. wherein the customer tries again from the retrial
orbit for the service. The detailed account of the retrial
queues along with their applications can be found in the
books by Falin and Templeton (1997) and Artalejo and
Corral (2008). The elaborate surveys on retrial queues can
be found in the articles by Yang and Templeton (1987),
Artalejo (1999a, b), Artalejo and Falin (2002) and Artalejo
(2010) and many more.

The modeling and analysis of queueing models, espe-
cially retrial queueing models, have attracted the queue
theorists since past many years. The retrial queueing
models enriched with various concepts like vacation, dis-
couragement, bulk, etc. had been studied in numerous ways
by a number of researchers. The study of bulk queues with
retrying customers is always in demand as it is directly
related to the study of telecommunication, manufacturing
and computer systems. In telecommunication system, the
fraction of the signal/message at the head of the queue is
transmitted to receive service and rest other customers/
messages are kept in buffer/retrial orbit so as to wait for the
server to get service. A bulk arrival retrial M/G/1 queue has
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been analyzed by Kahraman and Gosavi (2011). Choudh-
ury and Ke (2012) studied a batch arrival retrial queue with
delaying repair and Bernoulli vacation schedule.

A number of retrial queueing models have also been
analyzed by researchers keeping in mind the vacation
policy of the server. It is quite realistic that a server may go
for vacation of any kind when no customers are present in
the system and may come back when some customers are
present in the system or as per his vacation policy. The
various concepts related to queueing systems with server
vacations can be found in articles by Doshi (1986) and
Takagi (1991). Chang and Ke (2009) considered a batch
retrial model where the server can take at most J vacations;
the customer can go for a series of continuous J vacations if
no customers/jobs are available in the orbit. Ke and Chang
(2009) investigated modified vacation policy for M/G/1
retrial queue and obtained various performance measures.
Ke et al. (2011) discussed performance measures and
randomized optimization for an unreliable server vacation
system. Recently, Dimitriou (2012) studied a mixed pri-
ority retrial queueing model with multiple vacations and
negative customers.

The pattern of servicing also plays a significant role in
the modeling of retrial queues. In past investigations, var-
ious kinds of services like single service, optional services,
multioptional services and phase services have been stud-
ied. Choudhury et al. (2010) discussed steady-state
behavior of M*/G/1 retrial queueing system with two
phases of service. Choudhury and Tadj (2011) studied the
optimal control of bulk arrival M/G/1 unreliable server
with two phases of service and Bernoulli vacation sche-
dule. The servicing in phases clearly relates to many
realistic day-to-day situations. The admission in any
institute requires a number of formalities and filling of a
number of forms. This process is completed in various
compulsory phases from getting the form to the submission
of completed application form. In between, it goes through
the affidavit, medical fitness certificates, previous educa-
tional qualifications proof, completion of admit card, fees
deposition, etc. All these are compulsory phases and
admission cannot be completed if any of these compulsory
steps is skipped. Jain and Agarwal (2010) analyzed a batch
arrival queueing system with N-policy and Bernoulli
vacation schedule wherein the customer undergoes
l-essential stage service procedure to avail the service.

In real life situations, the repair of broken down server is
also an important factor. In real practice, the unreliable
server may breakdown or stops working during any phase
of service and needs to be repaired. Similar to service,
repair can also be completed either in single phase or in a
series of compulsory or optional phases depending upon
the severity of the breakdown. Atencia et al. (2006) studied
M/G/1 retrial queue with active breakdowns and Bernoulli
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schedule. Choudhury and Ke (2012) investigated a batch
arrival retrial queue under Bernoulli vacation schedule for
unreliable server and delaying repair.

Discouragement of the customers while waiting for the
service has also grabbed the attention of various
researchers working in the field of queueing theory. It may
happen sometimes that the customers waiting for the ser-
vice in the queue/orbit get impatient and decide to quit the
queue without availing the service. Using supplementary
variable technique, Arrar et al. (2012) investigated
asymptotic behaviour of M/G/1 retrial queues with batch
arrivals and impatience phenomenon. Bhagat and Jain
(2013) investigated unreliable M*/G/1 retrial queue with
multioptional services and impatience to obtain the queue
length of the system and other performance indices.

The maximum entropy approach (MEP) was introduced
by Shannon in (1948) to study the problems of information
theory as the measurement of uncertainty. This principle is
also applicable to select the appropriate probability distri-
butions for the queueing situation. Wang et al. (2002) used
the maximum entropy principle to examine the M/G/1
queueing system in different frameworks. Wang et al.
(2007) carried out the maximum entropy analysis of M"/M/
1 queueing system with multiple vacations. A comparative
study between the exact analytical results and approximate
results obtained using maximum entropy method has been
done by Wang and Huang (2009). Maximum entropy
principle has also been used for discrete time unreliable
server queue with working vacation by Jain et al. (2012).

In this investigation, a bulk arrival retrial vacation queue
with unreliable server has been studied. Both service of the
customers and repair of broken down server are done in a
series of fixed compulsory phases in succession. In many
cases, the server takes some time to start the repair so as to
make some preliminary settings, known as setup time.
Moreover, the concept of modified vacation has been
incorporated along with the discouragement behaviour of
the customers. The present analysis seems to be novel and
fascinating as compared to earlier existing retrial models
because of so many features incorporated at the same time.
The present work has been organized in the following
manner. Section “Model description” describes the requi-
site assumptions to formulate the model. The governing
equations along with the boundary conditions and gener-
ating functions of the queue size distribution are obtained
in Sect. “Queue size distribution”. The performances
measures are derived in Sect. “Performance indices”.
Section “Maximum entropy analysis” presents maximum
entropy principle to faciliate approximate results for
waiting time of the retrial model. Section “Numerical
simulation” is devoted to the sensitivity analysis which is
carried out by taking numerical illustration. The cost
function has been formulated in Sect. “Cost analysis”.
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Finally, the conclusions have been drawn in Sect. “Con-
cluding remarks”.

Model description

Consider a bulk arrival M/G/1 retrial queue model with
unreliable server and vacation policy. The basic assump-
tions underlying the model are as follows.

Arrival process

The customers arrive in batches in the system following the
Poisson distribution with state-dependent arrival rate A;
depending on server’s status; ‘I’ takes value 1, 2, 3,4 and 5
when the server is in retrial state, busy state, setup state,
repair state and in vacation state, respectively. Let X be the
random variable denoting the batch size defined by
Pr{X=m} =c,; m> 1suchthat Y} *° ¢, =1.

Retrial process

The incoming customers are served if they find the server
idle; otherwise, they are forced to join the virtual pool of
the customers called orbit from where they try again for the
service. The customers waiting in the retrial orbit are
known as retrial customers and they retry with retrial rate y.
The cdf, pdf and LST of pdf for the retrial process are
denoted by A(?), a(r) and da(s), respectively.

Service process

If an incoming batch of the customers finds the server in
idle state, then a customer at the head of the batch joins the
server to get served. All the customers are served in k
essential phases with service rate p; (1 <i < k) for a
customer availing ith phase of service. The service time
distribution is assumed to be general distributed. The cdf,
pdf and LST of pdf for the service time are denoted by

Bi(?), b(t) and Ii-(s), respectively.
Breakdown and repair process

The server under consideration is unreliable which can
breakdown during any course of service. The unreliable
server breakdowns exponentially with rate o;; (1 < i < k).
The broken down server is sent for repair immediately so
as to become as good as before failure. The repair process
is completed in d essential phases while the server is bro-
ken down during any ith (1 < i < k) phase of service. The
repair rate of jth phase of repair is f; (1 <i <k),
(1 <j < d) for server broken down during any ith phase of
service. The cdf, pdf and LST of pdf for the repair time are
denoted by G, (1) and g;;(r) and g;;(s), respectively.

Set up before repair

Before starting the repair process of broken down server,
some set up time is required to make some preliminary
settings, i.e. there is delay-in-repair with setup rate &
(1 < i < k). The setup process is also general distributed
with cdf, pdf and LST of pdf for the set up process denoted
by Ni(1), i) and 7;(s), respectively.

Vacation policy

If no more customers are present in the system, then the
server takes at most J vacations repeatedly with rate 6,
(1 <1 < J) for Ith vacation and returns back if at least one
job is found in the orbit after returning from the vacation.
This process repeats again if no more jobs are available in
the system, i.e. the server may reactivate at the end of /th
(1 <1 < J) vacation if any customer/job is available in the
system. But the server remains dormant in the system if no
job is present in the system at the end of Jth vacation. The
vacation time is assumed to be general distributed with cdf,
pdf and LST of pdf for the set up time denoted by U,(?),
u(r) and #(s), respectively.

Reneging

If a primary customer arrives earlier as compared to retrial
customer, then either retrial customer quits the system
forever with probability (1 — r) or it may cancel its attempt
for service and returns back to its initial position with
probability r.

Queue size distribution

To analyze the retrial queueing system, we need to con-
struct the mathematical equations for the system state
probabilities. The retrial process, service process, vacation
policy and repair process are assumed to be general dis-
tributed; therefore, the model under consideration is non-
markovian. In order to formulate the equations for the
present non-markovian system, the supplementary variable
technique has been employed by introducing the supple-
mentary variables ‘w’ for elapsed retrial time, ‘x” for
elapsed service time as well as for the elapsed vacation
time and ‘y’ for the elapsed repair time and elapsed setup
time. Also at time ¢, £(f) denotes the elapsed service and
vacation time whereas a(¢) denotes the elapsed repair and
set up time of the customers.

Let N(¢) represent the number of customers in the system
and U, (#), U,(?) and U;(¢) denote the phase of the service, phase
of repair and state of vacation, respectively at any time z.

The state of the server at any time ¢ is given by
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1. Whenthe serverisinidle state.

2. Whenthe serveris busy in providing
service to the customers.

. When the server is broken down and under
setup before repair.

5. Whenthe serverisin vacation state.

In the steady state, the joint distributions of the server
state and queue size are defined as

D, = lim Pr{I(t) =1, N(t) =n},n>0

Pin(x) = lim Pr{l(1) =2, x<&(r) <x+dy,
N(1) = n, Ui(t) =i},

Sun(y) = lim Pr{I() =3, (1) =x.y o) <y +dy,

N(t) = n, Ul(t):i7U2(t):j}7 }’lZO,
(1<i<k),(1<j<d)

n>0, (1<i<k)

Rijn(x,y) = lim Pr{I(1) =4, &() = x, y<o(1) <y +dy,

N(@t) = n, Ui(t) = i, Ua(t) =},

n>0, (1<i<k), (1<j<d)

Via(x) = tlg(l)lo Pr{l(t) =5, x<&(r) <x +dx,

N(1) = n, Ui (1) = i, Ua(t) =, Us(1) = I},
n>0, (1<i<k), (1<j<d), (1<

Mathematical formulation

Before framing the governing equations for the model, we
give the proposition stating the stability condition for the
model as follows:

Proposition The necessary and sufficient condition for
the system to be stable is

r(1 —a(k)) + Y <1,
where

=115H,

q=1

) Hi(z) = =22C'(1) — oM,

+Hglr

Proof In order to deal with the steady-state behaviour of
the system, we need to establish the stability condition for
the model. Wang et al. (2001) presented the proof for the
establishment of stability condition for M/G/1 model.

i(1)&M;(2)

= i3Cl /L C, )

o
% @ Springer

4. When the server is broken down and under repair.

Following the same approach, we have derived the stability
condition for our model.

Now, we formulate the set of equations along with the
boundary conditions governing the model by introducing
the supplementary variables technique as follows:

Governing equations

)»1D0 = V]ﬁo(x) Qj(x)dx (1)
/
FrRRE >]D< ) =0 n>1 )

d+A + o + p;(x)
dx 2 1 :uz

+ [ Ry (100, (1<j<a) ()
0
|:aay + f,(y) + /13:| Si,n(xa y) = )G Z CmSi,nfm(xv y)7
m=1

(1<i<k),n>0 (4)
"8 n
a_y + /l4 + ﬁlJ(Y)] Ri.j,n(xv y) = JV4 ZcmRi,j,nfm(xv y)7
L m=1

(1<i<k), (1<j<d), n>0 (5)
_%+/L5—|—61( ):| VL()(X) =0; (ISISJ) (6)
% /L5+61( :|Vln —)¥SZcmVln m

(1<1<)), n>1 (7)

Boundary conditions

[o.¢]

!
:Z/Vln )0, (x /Pk,,(x),uk(x)dx (8)
s=1 0
/Pl ln :uz l )dx7 (1§l§k),l’l21 (9)
0
Sin(x,0) = 0P n(x), (1<i<k); n>1 (10)
Rl,ln(xao):/Sun(xyy)it(y)dya (1§l§k),l’l21 (11)
0
Ridpn(%o)Z/Ri,j,n—l(xv)’)ﬁi.jqdy; (1<j<d),
0
(1<i<k), n>1 (12)
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Poo(0) = / Dy(w)y(w)dw + (1 —r)

0\8

S
o

=

+

s

o

=)

PL0) = [ D))+ (1= 12 [ Dy
0 0

+r/11/Dn(w)dw; n>1

0
(14)
Pro(x)u (x)dx n=0
no | ) Pt (15)
0 n>1
V1_170(x)91 1( )dx n= 0 l— 2,3,. ,J
Vio(0) = /0
0 n>1 1=23.,J
(16)
Also, the normalizing condition is given as follows:
00 k
00 k o0
Do—i—Z/Dn(w)dw—&—ZZ/P,,n(x)dx
n=1 i=1 n=0
0 0

Probability generating functions

We use probability generating functions (pgf) corresponding
to different states of the server to solve the set of differential
difference equations so as to obtain the steady-state solution of
the retrial queueing model. We define the probability gener-
ating functions corresponding to the various states as

s
= Pia(0)7Rij(x,y,2)
n=0

Zvln x%

= chz"; 2| <1,(1<1<T)
n=1

= Sinlx,y

n=0

The corresponding hazard rates are, respectively, given
by

a(w) bi(x)
?(w) :1—7A(w)’ 14(x) Zm
pilo) = 2L
_my) _ w(x)
Gi(y) = T=NG)’ 0i(x) = 1717(]1()6)7

(1<i<k), (1<j<d), (1<I1<J)

Now, we establish some theorems to present queue size
distributions as follows:

Theorem 1 The partial generating functions for the
server being in idle state, in busy state, under repair state
while broken down, during set up state, in Ith vacation
(1 <1 <J) at random epoch respectively, are

D(w,z) = D(0,z) exp{—Aiw}A(w) (18)
i—1

Pi(x,2) = P1(0,2) | [ by(Hy(2)) exp{—H;(z)x}Bi(x) (19)

Rij(x,y,2)

—%P1(0,2 H 2))exp{—Hi(2)x} B ()i, (—/3(C(2)))

XHéi(—fu(C’() Jexp{—14(C(2))y}Bi(x)Gi;(y) ~ (20)

Si(-x>y7 — OC11')1 0 Z f[ CXp{ H( ) }
Bi(x) eXp{ﬂis(f( DYINi(y) (21)
Vi(x,z) = Vi(0,z) exp{—25(C(2))x} Ui(x), (22)
where
__ADo
Vi(0,z) = 70s)] T for 1=1,2,..,J (23)

2= [Bu(H() T4 by(Hy(2) 11 4 7z = D1 = a(2)

(24)

N
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MDo[[l e 1) —a(i))}(([‘”“ S(CE) D1~ (is)) ]) _ 1) +Z}

Py(0,2) = . — Asll =il (aChs)) (25)
2= [BelH @) TTZ) by (Hy(2) | [1 4 (2 = (1 = a(2))]

N = Similarly, multiplying Eqs. (9)—(12) by 7" and summing

Mi(z) = :(%3(C(2)))8:,(4 Hg” (44(C (26) over all values of n (>1) and then using generating
B functions, we get

Hi(z) = [422(C(2)) + au(1 — Mi(2))] (27) oo
Proof Multiplying Eqgs. (2)—(7) by 7" and summing over  P;(0,z) = / Py (x,2)p;_y (x)dx, (1<i<k) (38)
all values of n and then using generating functions, the 0

above set of Eqs. (2)—(7) reduces to

L iz + nf;mw, Dl +3(w)] =0 (28)
L Pix,2) + (1) + 42(C() + 2Pl 2
= 7 Rij(x,y,2)Bi;(v)dy (29)
!
5 5103,2) + [(CE) + EONS G =0 (30)
o Rux.2) + (€ + BOIRSG ) =0 (1)
S i) + Us(C@) + Vil 2) = 0 (32)

On solving Eq. (28) we get results given in Eq. (18).
On solving Egs. (30), (31) and (32), we get

Si(x,y,2) = Si(x,0,2) exp{—23(C(2) y}N;(y) s (1 < i < k)
(33)

Rij(x,,2) = Rij(x,0,2) exp{—24(C(2))y}Gi; (v); (34)
(1<i<k)&(1<j<d)

Vi(x,2) = Vi(0,2) exp{—is(C(2))x} Wilx); (1 < 1<)
(35)
On solving (6), we get
Vio(x) = Vio(0) exp{(—2s)x} Ui (x) (36)

Multiplying (7) by z" and summing over all values of
n (>1) and then adding in (1), and using further generating
functions, we get

D(0,z) = Vi(x,z2)0;(x)dx
(0.2) / \(x,2)0,(x)

1=

0
00
+/Pk X, Z ,uk ZV]O AIDO (37)
0

o
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Rl,}('xaoaz):/Rl]—l(xayvz)ﬁljfl(y)dy (ZS.]Sd)’ (lglgk)
0

(39)

Riy(x,0,2) = / S0y n>1, (1<i<k)  (40)
0

Si(X,O,Z) = O(l‘Pl‘()C, Z), (1 Slgk) (41)

Now, multiplying (14) by 7" and summing over all
values of n (>1) and then adding them in (13) and after
using generating functions, we get

) o9
Po(0.2) = [ DOw.2 )

0
00

1_
rere /D w,z)dw+ 2Dy (42)
0

Multiplying (36) by #,(x) on both sides for [ = J and

integrating w.r.t. ‘x’, we have
/ V()0 (x)dx = / V,.0(0) exp((— 7)) Ui ()01 (x)dx
0 0
(43)
Using (1) and (43), we get
ADg
Vy0(0) = 44
J,O( ) ﬂ(iS) ( )
Using (16) for [ = J, we get
21Dy
Vio(0)=———— for [=1,2,3,...,(J—1 45
1,0( ) [ﬁ(JVS)]J_Z-H ( ) ( )
Also,
1Dy
Vi(0,z) =————— for [=1,2,3,...,J 46
l( ) [ﬁ(}us)]171+1 ( )
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Integrating (36) from O to co and using (45), we obtain where
B MDo[l — i(25)]

k
=——,(1<i<J 47 - 0)=4 Y = — ()
0= G ( ) @7 gbq H(1), 7 =r(1 —a(i)),
Also, the probability that no customer arrives in the [1 Ty )J]
system when the server is on vacation is obtained using (47) x| = - — 2 —— u;])(—/15 c'(1)).
. As[1 —a(7s)][u(4s)]
o ilDo[l — u(/u5)}
NP Theorem 2 The marginal probability generating func-
s[i(4s)] ; R
tions at random epochs, when the server is in idle state,
Using (40) and (41), we get busy with ith (I <i<k) phase service, under jth
Ri1(x,0,2) = 0;Pi(x,2)7;(73(C(2))); (1<i<k) (48) (I =j= d) phase repair while breakdown, under set up
before repair and under Ith (1 < | < J) vacation are given,
Solving (39) for j = 2, 3, 4,..., we obtain respectively, by
D(0,2)(1 —a(A
RiJ(anaZ):alP (xzﬂl /“3 Hglr )”4 D(Z): ( )(,{1 ( 1)) (51)
(1<i<h), 2<j<d) (49) P1(0,2) (T, by (Ho(2)) ) (1 = bi(Hi(2))
Pi(z)= p(1<i<k
Therefore, we have @) Hi(z) (1<i<k)
(52)

P (02) (T3 B0 (Ha @) ) (T3 81, (4 (@) ) C@ (1 = Bi(Hi(2)) (1 =83, ((C(2)))
( )

Rij(z)= TABIAEED (1<i<k), (1<j<d)
(53)
iP1(0,2) (TTi2) ba(Hy(2)) (1 = BilHi()(1 = ,(a(C(2)
Si(z) = Hi(2)(a(CR) ; (1<i<k) (54)
_ MDoi(45(1 — C(2)))]
Rij(x,y,2) = @P;(x,2)ff;(43(C Hg” (24(C(2) it = () (=r=7) %)
x exp(—2a(C(2))y)Gi (y) (50) Proof The marginal generating functions for the different

states of the server are obtained by using the following results:
Using (50) in (29) and solving (38) recursively for
i=2,3, we get (19). D(z)
Further, on solving (37) and (42) simultaneously as a
pair of linear equations, we get (24) and (25).
Dy can be determined by using normalizing condition
(17) as

oo

D(w,z)dw, P;(z) = / Pi(x,z)dx, R;j(z)

0

0\80\8

/R,ny7 )dxdy
0

Dy = (1-%-1)
WA (g —r(1=d(h))) {1 wi-ats)’] |’
(1= = )ath) + 2 =55=2 (Va4 ) ) + i

N
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0\80\8

/Sl X, y,2 dXd% VI(Z)
0

= [ Vilr,2)dx, (1<i<k), (1<j<d), (1<I<J)

Theorem 3 The generating function for the number of
customers in the retrial queue is

Proof The generating function of the number of cus-
tomers in the system is obtained using the results of mar-
ginal generating functions given by

L(z) = Do+ D(z +ZZP +zzk:zd:Ri,;(z)

= i=1 j=1
k
+2) Si(x) + Z Vi(z) (59)
i=1 =1

“ by(Hy(2) ) (1 — bi(H;
NETPALE LY R (T4 <z§()z)< (#(2)
P (0,2) (T by (Hy(2)) ) (TB2) 8, 0a(C(2) )i (Aa(C@D (1 = Bi(Hi())(1 = &, (24(C(2)))
R HE(L(CE)
¢ 2P (0,2) (TTi) by (Hy(2)) ) (1 = BilHi(2) (1 = i, (C(2))) )
+ + Vol (75(C(2)))] (56)

= H;(2)(43(C(2))

Proof We can obtain the probability generating function
for the number of customers in the retrial queue using

U

K(z) =

+ZS,-(Z) +) Vi(z) 57)

Theorem 4 The generating function for the number of
customers present in the system is

D(0, Z)(

(Hg@w

Performance indices

The performance measures to quantify the system charac-
teristics are of vital utility to improve the effectiveness of
any system. Similarly, the applicability of any queueing
model can also be best deciphered by means of its per-
formance indices. Some of the important performance
indices are derived using generating functions in various
categories.

(2)) (1 = Bi(Hi(2)

+ZZP1 (0,2)

wm@mghﬁwnm;@wu

Hi(z)
- C(Z)))ﬁi(ﬂs(l — C(2))(1 = bi(Hi(z)) (1 = &;;(A4(1 — C(2)))

H;(z)(Z4(1 — C(2)))

H;(2)))(1 —1;(43(1 = C(2)))

+ Voli(25(1 = C(2)))] (58)

o
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Long-run probabilities

We derive analytic expressions for the long-run probabil-
ities of the server states. These results are significant in the
sense that these probabilities completely describe the
behaviour of a system when the system is analyzed after a
long period of time. The long-run probabilities of the ser-
ver being in idle (Py), busy (Pg), repair (Pr), set up (Ps)
and vacation (Py) states, respectively, are given below in
the form of theorem.

Theorem 5 (i) The long-run probability of the server
being in idle state is

Py = (1 - a(1))Do (M) (60)

(i1) The long-run probability of the server being in busy
state is

Do(1 —a(4))(1 =7,

=)0+ 7)) + O + ) +

k

k d
Py =1limD(2), Py = liir;ZP[(z),PR = limZZRiJ(z)

i=1 i=1 j=1

Queueing measures

Queue length is the most important and effective perfor-
mance measure for any queueing system as it directly
corresponds to the effectiveness of the system and further
guides the system engineers to design the system as
desired. We proceed to find out the analytic expressions for
the queue length of both system and retrial orbit in the
following theorem:

Theorem 6 The mean queue length of the retrial orbit
(Lg) and that of the system (Lg) are

l// b//)

(i + 1) (s + 1) +iilD o(a"b" —

br = 21— — 1) 1201 — 7, — )2
(1= - 1) (1= = 15)7%5 (65a)
i(xiilDO(Seivdw 5d"e ///) N ia[; DO( fivh/// hin/// N i /LIDO <ng/9/ /é//d9>
= 6241 — 7 — 1) 12 %8 624(1 — 1, — )17 = AslaCis)) TN 2
k. Sy )1D0C9 Y0 2iDocly & 24 Doclly
Pg = ZMDO i 61) Ls=1Lr+ - Z AN Z e
i—1 &8 1 =1 C11 =1 Sl4
i - . (65b)
(iii) The long-run probability of the server being in
repair state is where

A
PR = ZalllDO (g’”) (62)

i=1 11

(iv) The long-run probability of the server being under
set up state is

k
=D
i=1

(v) The long-run probability of the server being under
vacation state is

D !
py— Do (—) (64)

Jsii(2s)) " \ug

(63)

Proof The expressions for the long-run probabilities are
obtained using

=r(l —a(k))
ngr /L4 1 - ))

Mi(43(1 = C(2)))g;;(Aa(1 = C

M(z) =" (=2C'(1 +Hg,, —C'(1

M!'(@) = 1P (=i C (1) + 1" (=75C"(1)) + 0 (=5 C'(1))

X Hg” (=24C'(1

j
+[[ &7 (~rc1 +Hgl, —24C"(1
r=1
s = Hi(z) = io(1 = C(2)) + 0i(1 — Mi(2)), ¥5 = Hi(z)
= = C'(1) = uM;(1), 35 = H(z) = —22C"(1) — M} (1)

o
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T

1o = [ [ Pa(Hy(2)be(Hi(2)), 2, = [ [ 6" H, (1),
g=1 q=1
k
7 =1 H, )+ ] 68V H, (1)
g=1 g=1
i-1 i—1 i—1
a1 = [ [ 2a(Hy(2)), & = T[ 23" (H (1)), & = T [ 657 (H, (1))
9=1 9=1 9=

o
Il

& =1-bi(Hi(2)), & = —b"H(1), &§ = —bPH](1)?
—b{"H](1)

— (a1 - C(2))), ¢ = —g (~4C'(1)),

&= =g (1)) — gl (—2aC" (1))

U i (=l C'(1
e
" [1 — (/s J] (2) / 2, ~(1) 1
B sl RC WP+t )
= 1(2a(1 = C(2)), &4 = - 7€' (1),
¢ =0 (=20 (1) =" 25" (1)
j—1 j—1
o5 = [ &, (a(1 = C@)). & = [[ &t (—24C' (1)),
r=1 r=1
Jj—1 Jj—
& = [T (—rac" ) + [T & (~2aC'(1))?
r=1 r=1
G =1 —(a(1 = CR))), ¢ = —n"(=C' (1)),
=" (=25C"(1) — 0P (1 (1))

17 =73(1=C(), 1 = —2C' (1), 75 =—13C"(1)
& =1—a(2s(1 - C(2)), & = —uf" (~15C'(1)),
& =~ (=25C"(1) = ) (=45C'(1))°

10="75(1 = C(2)), o = —4sC'(1), 1y = —25C"(1)
Ccg = (Z - Xllz)}{s» @é’ = 2(1 - X’
oy =3(— )Y +3(

- XIZ)/Sa
o

- 112) x5

- "ot
So = 226152, Sg = 2%557;
/// "/

o N/
So = 312%; +6)5¢1S + 3128, St = S8lles

lV n. 1 "

n "ot
S = 3Qg/{67 ST 4»3 L T 6C3X6a
~ — o~ A~ ~ A
510 — 5455535 510 — ©3»
r . o o
Clo = 2646563 + 2646563 + 6465C3, S12 = 9510,
Al v g "o

S12 = 3%9S10, St = 4G9 S1 + 659510

o
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",/ lV ", ",

3;8/{7’ Sy = 458 17+ 6\87%

" zv "1 " n
3@9565 C13 = 459 S T 65956

C14 = C8X75 C 514
S13 = G9G6; Cn

Proof The mean queue length of the retrial orbit and
mean queue length of the system are obtained using

Ly = lim K'(z) and L, = lim L'(z)
— —

Here, L Hospital rule has been used six times to evaluate
the limiting value when z — 1.

Theorem 7 The exact expected waiting time for a cus-
tomer in the system is obtained as

A (66)
Deft”

Where /Ateff = [/llp] + )QPB + )@PS + /14PR + iSPv]E[X]
Proof The exact expected waiting time W; is obtained

using Little’s formula (cf. Gross and Harris 1998) as
VVS = L\

Aeff”

Reliability measures

A mathematical model for the unreliable server queue
framed analytically can be best validated by its reliability
measures as reliability of the system directly affects the
efficiency/availability of the system. Now, we derive some
important reliability measures, namely availability and
failure frequency.

Theorem 8 The steady-state availability ( Ay) and failure
frequency (Fy) of the server are

k Yo —r1 a L1
Ay =Dola(Z1)+ > L +(f3_ 7,2(1 7’1)/(1)4 ))]1 (67a)
i=1 L L i
L+24 —r(1 —a(h))]

(67b)

Ff —D()Z)l(x,

Proof The availability and failure frequency for the
system are obtained using

o0 k o0
:D0+/Dw1dw+Z/P,~(x 1)dx
0 0

i=1

(I =2 = 7w

P
Z/OCI'P,'(X 1)dx
0

i=1

Maximum entropy analysis

The principle of maximum entropy can be used for esti-
mating probabilistic information measures which can be
used further to obtain queue size distribution of the
concerned queueing systems. In this section, we employ
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MEP to determine the steady-state probabilities
P, 1<i<k), Ry, A1=j=<d, S, (I1=5i<k),
Vi, (1 <1 <J)and D, for the M™/G/1 retrial queueing
system with modified vacation policy. For the analysis
purpose, we follow the following procedure (c.f. Wang
et al. 2007):

(1) The construction of Lagrange’s function H using
the method of Lagrange’s multipliers subject to a
set of constraints in terms of known indices.

(i) Partial differentiation of Lagrange’s function
H wrt. P, Rijn Sin Vi, and D, and setting
the results to zero.

(iii)  Finally, solving the equations obtained in (ii) to
derive results for the required probabilities.

Maximum entropy function

The maximum entropy function Y (cf. El-Affendi and
Kouvatos 1983) is formulated to evaluate the steady-state
probabilities using several known constraints in terms of
performance characteristics as follows:

0k ok d
=- Z Z P;, logP;, — Z Z ZRij,n logR;j .
n=1 i=1 n=1 i=1 j=1
ok ' oo J
Zzslnlogstn ZD IOgD - ZZVIH 1Ogvln
n=1 i=I n=1 I=1
(68)
Subject to the constraints
ook ok d ok
) ZZPM = Pg, ZzzRi,j,n = Pg, Zzsi,n = Ps
n=1 i=1 n=1 i=1 j=1 n=1 i=1
(69)
..
(i) > D, =Py, Z Z Vin =Py (70)
n=1 n=1 I=

d

00 k k
(iii) Zn{ P,,,Jrz
i=1

n=1 i=1 j=

le)l+zst)l+ZV1)1+D }
1
(71)

Construction of Lagrange’s function

To determine the maximum value of entropy function, we
construct Lagrange’s function H (P;,, R;; ., Sin» Dn Vi)
by introducing the Lagrange’s multipliers 0; (1 < i < k),
0j 1 <i<k), ¢; 1 <i<k) Oy, & (1 <1=<1J) and
¢y corresponding to the information, i.e. constraints (69—
71) available in the form of derived analytical results.
Thus, we have

H (Pi,,Ri,j ns Si.n. Dn,Vl,n)

00 ook d
= Z Z in 10g Pip — Z Z ZRi,]'Jl log R;jn
n=1 i=1 nel i=1 j=1

ok

- Z Z Si,n 10g Si,n

— iDn log D,
n=1 i=1 n=1

oo J k ok
- ZZV;,,, 10ng7n—Zei[ZZPi,n_PB

n=1 I=1 i=1 n=1 i=1

=1 n=1 [=1
00 k kK d k
- ¢k+1 [Zn{zpi’"+ZZR’J”+ZS”’
n=1 i=1 i=1 j=1 i=1

(72)

The obtained results for the approximate probabilities of
different states are presented in the form of theorem as
given below.

Theorem 9 The maximum entropy solutions for the
approximate values of probabilities P;,, Rij,, Dy,Sin&

Vin(1<i<k), (1<j<d), (1<I<J),n>1 subject to
the constraints are
. PgolLs —o]"" ProlLs — o]
Po==— Run="" —
S B S (73)
13,1 _ P]O'[Ls — O']n
Lg
Si_n _ PSO—[LS — O']n_] Vl'n _ PVo'[LS - O'] -
L ’ L
where
c=Pg+Pr+Py+P;,+ Py (74)
Proof The approximate state probabilities

Piy, Rijn, Sin, Vin & D, can be obtained by taking partial
derivatives of H with respect to P;,, Rij., Sin, Vin & Dy,
and then setting the results equal to zero. Thus, we get

(40 1) o
D,=¢e (14+0k1) o m/ﬁm’

o
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Piy= e "We e (1<i<k)
Sin = e—(H“f’z)e—" ¢k+]7
Rijn= e~ (14+9i) o= dpsy , (1<i<k), (1<j<d)

Vip =e e (1 <i<k), (1<j<d), (1<I<J)
(75)

For brevity of notations, we denote

e ) — (1 <i<k+1)

e ) =y, (1 < i< k)

e 1% = (1 <i<k), (1 <j<d)

e P = di

e M) — @ (1<1< ) (76)
Therefore, (75) reduces to

n n N
Piy =Vidi s Rijn = Tydi g, Sin = Vidii1

n n 77
D, = Wk+1dk+1a Vlﬁn = wldk+1 ( )

Using (77) in constraints, i.e. (69-71), we get approximate
results for the long-run probabilities of several states as
follows:

pB:M7 Py = Tijr+1 Py = Vidk+1 ’
1 — dk+] 1 — dk+] 1 —_ dk+l (78)
P — Vi 1dis P — widis
I = y 'V —
1 — dit 1 —diyq

Now using (71) and (77) we get the approximate queue
length of the system as

k k d
i dit1 Zi:ll Vit i Zj:l T + Zf:l Vit ZIJ:I wj

’ (1 - dl%+l)
(79)

Again denoting ¢ = Pg + Pr + Py + Ps + P1 and using
(77) and (78), we have

Li—o

o
Li=——— and dj;1 = 80
S 1_ dk+l an k+1 Ls ( )
Further, using (77) and (79), we get
Pgo Pro Pio
l//i = , T = y Vi = ;
Li—o Li—o Li—o
Pio Pyo (81)
1 \% .
= = 0<i<k
l//k+l Ls_aawl LS_G( S )

Finally, substituting results from Eqgs. (80) and (81) in
Eq. (78), we get expressions given in Eq. (73).

Theorem 10 Using the principle of maximum entropy,
the approximate expected waiting time in the system is

o
% @ Springer

x [yl Kn 1 &1 [EX? X
+2 ZZW—,)+Z_+E+Z_.( [[X]]l)}si‘"

Proof For proof see “Appendix”.

Numerical simulation

The present section deals with the sensitivity analysis of
the performance indices of queueing model with respect to
various parameters. It is true to say that the efficiency of
any mathematical model can be best deciphered by means
of numerical illustration. The numerical simulation of
derived analytic results seems to be an important step with
regard to the validation of mathematical modeling of any
queueing system. The present analysis has been divided
into various subsections which are as follows:

Queue length (L)

To study the sensitivity of queue length towards various
parameters, Figs. 1, 2, 3, 4, 5, 6 have been plotted corre-
sponding to different service time distributions. Three
service time distributions, namely Erlangian-2, exponential
and gamma distributions have been considered for the
service time. The vacation time, retrial process, set up
process as well as repair process are assumed to follow
exponential distribution. The set of default parameters
assumed for simulation are as

A= =h===4=05 (=1,
,u:,ul::u2:57a:a1:“2:O~OI7V:O~17
022,720.1,ﬁ2ﬁ12ﬁ2:0.9.

The effect of parameters, namely breakdown rate (o)
and repair rate (f3), on the queue length of the system have
been demonstrated in Figs. 1 and 2. It is noticed that the
breakdown rate and repair rate are supposed to have con-
tradictory effect on the queue length of the system which is
very true. It is clear from Fig. la—c that the queue length
increases as the breakdown rate increases from 0.008 to
0.01 U for all the service time distributions. The maximum
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Fig. 1 Effect of o. a Erlangian-2. b Exponential. ¢ Gamma distri-
bution on L,

number of customers or queue length is observed in the
case 1(c) when the service time is supposed to be gamma
distributed. On the other hand, in Fig. 2 wherein graphs are
plotted for different values of repair rate 5 (0.6, 0.8 and 1),
Lg decreases with an increase in the repair rate. This is due
to the fact that an increase in breakdown rate forces the
customers to accumulate in the system due to the non-
working condition of the server and hence increases the

600
500
400 -

P 300 -
200 -

100 +

600 -
500 A
400 -
- 300 4
200 A

100 4

700 q

600 -

500 4

400 1

Ls

300 ~

200 ~

100

(0

Fig. 2 Effect of . a Erlangian-2. b Exponential. ¢ Gamma distri-
butions on L

queue length. However, an increase in the repair rate helps
in the fast recovery of the server and thus reduces the
number of customers in the system.

Figure 3 has been plotted for various values of service rate
u for (a) Erlangian-2 (b) exponential and (c) gamma service
time distributions with arrival rate 1. The graphs plotted in
Fig. 3 clearly demonstrate that the queue length of the system

N
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Fig. 3 Effect of u. a Erlangian-2. b Exponential. ¢ Gamma distri-
bution on L,

decreases with an increase in the service rate for all the three
service time distributions. The maximum queue length is
observed in case of system with gamma service time distri-
bution as compared to system following exponential and
Erlangian-2 service time distributions. Figure 4 depicts the
sensitivity of reneging probability r on the system size; the
queue length of the system increases as r increases from 0.1

@ Springer
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Fig. 4 Effect of r. a Erlangian-2. b Exponential. ¢ Gamma distribu-
tions on L,

to 0.3 U. The variations of the queue length with the vacation
rate 0 and setup rate ¢ are explored through Figs. 5 and 6.
The queue length decreases as the vacation rate increases;
this is due to the fact that a server goes for vacation only
when there is no customer in the system which implies
the reduction in the number of customers in the system.



J Ind Eng Int (2014) 10:63

Page 15 of 19 63

50
6=0.2 /
40 e_ : y
=0.3 /
30 A — - 0=04 P

Lg
N\

4 ’
20 ,

50 7

40 4

80

70 ——==0=02 ’,4

€0 - — 0=0.3 ,,
— . 0=0.4 /,

50 A ’

Fig. 5 Effect of 6. a Erlangian-2. b Exponential. ¢ Gamma distri-
bution on L,

An increase in the vacation rate clearly implies that the
system becomes deprived of customers frequently. More-
over, the set up rate also affects the system size; an increase
in the setup rate decreases the number of customers in the
system as demonstrated by Fig. 6a—c. This pattern is due to
the fact that an increase in the setup rate improves the repair
process of the server which in turn increases the availability
of the server and thus a reduction in the number of customers
in the system is observed.
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Fig. 6 Effect of ¢. a Erlangian-2. b Exponential. ¢ Gamma distri-
butions on L,

Comparison of expected and approximate average
waiting time

Waiting time plays a significant role in the validation of
any retrial queueing model. It is an important parameter
that judges the efficiency of mathematical model. A cus-
tomer always wishes to join a system where service can be
availed in the minimum waiting time (either in queue or in
system) and hence the importance of waiting time. In the

N
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Table 1 Comparison of exact and approximate average waiting time
for Exponential and Gamma distributed service time

Service time as Exponential ~ Service time as Gamma

distributed distributed
Case 1 Case 1
14 Wy Wq APE (%) W,y Wq APE (%)
1.0 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592
1.8 41718 4.2041 0.7755 3.8460 3.8577 0.3066
2.0 4.1685 4.2098 0.9900 3.8430 3.8624 0.5062
Case 2 Case 2
y W, W, APE (%) W, W, APE (%)
0.080 4.2578 4.9479 16.2072 3.9054 4.5272 15.9205
0.090 4.2195 4.5384 17.5560 3.8795 4.1622 7.2858
0.10 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592
Case 3 Case 3
o Wy Wq APE (%) W, Wq APE (%)
0.006 4.1146 3.6017 12.4659  3.7856 3.3029 12.7513
0.008 4.1498 3.8788  6.5305 3.8210 3.5611 6.8004
0.01 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592

Table 2 Comparison of exact and approximate average waiting time
for Erlangian-2 and Deterministic distributed service time

Service time as deterministic
distributed

Service time as Erlangian-2
distributed

Case 1 Case 1
¢ Wy Wq APE (%) Wy Wq APE (%)
1.0 4.2248 4.2393 0.3434 42659 4.2818 0.3720
1.8 42125 4.2474 0.8290 4.2533 42907 0.8815
2.0 42092 4.2532 1.0452 42499 4.2966 1.0994
Case 2 Case 2
Y Wy vf/q APE (%) W, Wq APE (%)
0.080 4.3019 5.0005 16.2398  4.3459 5.0531 16.2716
0.090 4.2621 4.5854 7.5868 43046 4.6324 7.6169
0.10 4.2248 4.2393 0.3434 4.2659 4.2818 0.3720
Case 3 Case 3
o Wy Wq APE (%) W,y Wq APE (%)
0.006 4.1969 3.6764 124015  4.1558 3.6391 12.4333
0.008 4.2320 3.9582 6.4696 4.1909 39185 6.4998
0.01 42659 4.2818 0.3720 4.2248 4.2393 0.3434

present subsection, a comparison between exact expected
(Wy) and approximate average waiting time has been
framed in Tables 1, 2. Table 1 shows the comparison
between expected and approximate average waiting time
for two types of service time distributions, namely expo-
nential and gamma distributions. The absolute percentage
error (APE %) has been obtained for various varying
parameters and four cases with variation in different

o
% @ Springer

parameters, namely (Case 1) setup rate &, (Case 2) retrial
rate y and (Case 3) breakdown rate o = oy = 0l,.

An increase in the set up rate & from 1.0 to 25U
affects the waiting time of the customer in the queue.
APE decreases with an increase in the retrial rate for
both the distributions with maximum % error as 16.20 %
for the exponential distribution and 15.92 % for gamma
distribution in Case 2. The data captured in Case 3
depict the effect of the breakdown rate o on the waiting
time of the customer in the system. Both expected and
approximate waiting times increases with the increase in
breakdown rate from 0.006 to 0.01 U. This is because
breakdown of the server increases the queue length of
the system and thus increases the waiting time for the
service.

Table 2 depicts the data for the waiting time for a
queueing model with Erlangian-2 and deterministic dis-
tributed service time. With an increase in the retrial rate y
and breakdown rate o, APE as well as waiting time
decreases. APE increases with an increase in the setup rate
¢ for both Erlangian-2 and deterministic distributed service
process. Hence, the choice of appropriate service time
distribution may help in reducing the waiting time of the
customers in the system.

Cost analysis

In the present section, we frame the expected total cost
function (ETC) for the retrial queueing model with modi-
fied vacation policy under consideration. The cost function
is formulated as

ETC = GyLs + C,Pg + CsPs + CrPRr + CyPy + C1Py,
where

Cy, = Holding cost per unit customer

Cp, = Cost per unit time while servicing the customers
Cs = Cost per unit time for making pre repair settings
Cr = Cost per unit time for providing repair to the

broken down server

Cy = Cost per unit time in the system when the

server is on vacation

C1 = Cost per unit time when the customer retry

for the service

The effect of various parameters on the total cost of the
system has been examined so as to visualize the nature of
cost function towards various parameters. The set of
default cost elements are taken as C; = 10, Cr = 50,
C, =5, G, =50, Cy = 20, Cs = 20.
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Fig. 7 Effect of a reneging rate r, b retrial rate vy, ¢ arrival rate 4 and d break down rate a; on ETC of the system

Figure 7 displays the effect of various parameters,
namely reneging probability r, retrial rate ), arrival rate (1)
and breakdown rate («;), respectively, on the total cost
ETC of the system. The graphs are plotted with ETC on the
y-axis and service rate u (¢; = pp) on the x-axis. The
sensitivity of cost with respect to service rate p for different
values of r is displayed in Fig. 7a. The total cost of the
system increases with an increase in the reneging rate r for
both exponential and gamma service time distributions.
Higher costs are noticed in case of exponentially distrib-
uted service time. It is seen that the total cost of the system
decreases with the increase in retrial rate (y) from 0.1 to
0.3 U for fixed values of other parameters as displayed in
Fig. 7b for both types of distributions. The higher cost
values are achieved for the exponential distributed service
time as compared to gamma distributed service time. The
sensitivity of total cost with varying values of arrival rate
(4) and breakdown rate («;) has been depicted in Fig. 7¢c
and d, respectively. It is seen that the total cost increases
with an increase in the reneging probability (1 — r), retrial

rate (y), arrival rate (1), breakdown rate (o) and service
rate (u). Figure 7d displays the effect of breakdown rate
and service rate on ETC; it is quite interesting to observe
that the total cost values obtained for different service time
distributions, namely exponential and gamma service time,
are quite close enough. In this case, ETC varies minutely
till u reaches 6.5 U; after that the total cost of the system
becomes independent of service time distribution chosen.
Overall, we observed that the total cost of the system is
sensitive towards variation in different parameters likewise
arrival rate, retrial rate, reneging rate, etc. A control over
these parameters can help in controlling and reducing the
total cost of the system at a permissible level.

Concluding remarks
The bulk arrival retrial queueing model with discourage-

ment and modified vacation has been analyzed. The con-
cepts of phase service and phase repair incorporated along
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with delaying repair make the present model close to many
real-life queueing scenarios. The analytic results obtained
for various queueing and reliability indices along with long
run probabilities are also validated numerically by taking
an illustration. The process of taking admission in any
institute, working at bank counters, hospital formalities for
a patient, etc. can be considered as suitable examples of
real-life congestion situation for this particular model. The
admission procedure in any institute starts from the filling
of application to the completion of fees deposition wherein
there is a series of essential formalities to be completed.
And, if there emerges any mistake/breakdown in the server,
then again it follows a phase service/repair. The person
involved in the admission may go for a series of vacations
with some probabilities if no more jobs are available.
Hence, our study clearly relates a very common scenario of
proposed model. Moreover, our model is best fitted to the
transmission of messages and telecommunication processes
also. The present investigation can be further extended by
enriching the model with the concepts of negative cus-
tomers and bulk service to make it more general and
effective.
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Appendix

MEP is used to obtain the approximate expected waiting
time in the queue is detailed below (cf. Wang et al. 2007).

Let us consider that a particular customer, say “Q”,
arrives in the system and finds n customers preceding him
in the queue. The server can be in any one of the states
(1) idle, (ii) busy, (iii) repair, (iv) set up and (v) vacation,
when “Q” arrives. So, the following cases arise:

Idle state If on arrival, the customer “Q” finds the server
in idle state then the incoming batch will be immediately
served. The mean waiting time for a customer in this case
includes the time taken by the additional customers in the
batch preceding him to be served which is given as

> 1> 5 ()

Busy state If the server is found in busy state, then the
incoming batch joins the orbit and waits for its turn. For

o
% @ Springer

this case, the waiting time includes the serving time Zl .
‘u
of those n customers already present in the queue plus the

waiting time 3% 12” (%_

“Q” in the batch. The total mean waiting time is given by

> |5y ()

Setup state If the server breaks down, then it is sent for
the repair. But before repair, it is essential for the repair-
man to make some preliminary settings before starting the
repair. If the incoming customer finds the server in set up
state, then it has to wait for the server to complete its set up

2
n()
M

1) of those who precedes

procedure with mean remaining set up time Zl 1—

repair process z-, as well as Z, 1 - Which is the servicing

/f ’
time of n customers already present in the system. More-
over, the customers preceding “Q” will also take time

k
1 (EX]
2 (E[x]

state is given by

). Thus, the mean waiting time in the set up

k k 1

m n 1 (EX?
S St ey o (B )

Repair state In case when the server is in repair state,
then the incoming batch will be served after completing the
repair of the server plus the servicing of those n customers
already waiting in the queue. The mean remaining repair

@
. . . k d & .. .
time is given by > ., > i1 ﬁ, and waiting time for the
8

servicing of n customers is > & Moreover, the cus-

i=1 p
tomers preceding “Q” will also take some time
Zf 12L (E[f;]] ) Hence, the total mean waiting when
the server is in repair state is

S [T S e s e T (B 1)]

Vacation state When the server is in vacation state, the
incoming batch will be served after completing the vaca-
tion of the server plus the servicing of those n customers
already waiting in the queue The mean remaining vacation

@
time is given by Zz 15 (,), and waiting time for the ser-

. Moreover, the customers
take

vicing of n customers is Z, L

preceding  “Q”  will also time

Zk 1 (EX?
i=12p; \ E[X]
the server is in vacation state is obtained as

co JoE o &1 (EXY
> e Yy (G )

n=1 | I=1

some

). Hence, the total mean waiting when
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The total mean waiting time in the system given by
Eq. (82) is obtained by adding the (i—v) after multiplying
the respective probabilities of system states.
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