
ORIGINAL RESEARCH

An optimization model for management of empty containers
in distribution network of a logistics company under uncertainty

Ahmad Hosseini1 • Tobias Sahlin2

Received: 10 April 2018 / Accepted: 6 August 2018 / Published online: 16 August 2018
� The Author(s) 2018

Abstract
In transportation via containers, unbalanced movement of loaded containers forces shipping companies to reposition empty

containers. This study addresses the problem of empty container repositioning (ECR) in the distribution network of a

European logistics company, where some restrictions impose decision making in an uncertain environment. The problem

involves dispatching empty containers of multiple types and various conditions (dirty and clean) to meet the on-time

delivery requirements and repositioning the other containers to terminals, depots, and cleaning stations. A multi-period

optimization model is developed to help make tactical decisions under uncertainty and data shortage for flow management

of empty containers over a predetermined planning horizon. Employing the operational law of uncertainty programming, a

new auxiliary chance-constrained programming is established for the ECR problem, and we prove the existence of an

equivalence relation between the ECR plans in the uncertain network and those in an auxiliary deterministic network.

Exploiting this new problem, we give the uncertainty distribution of the overall optimal ECR operational cost. The

computational experiments show that the model generates good-quality repositioning plans and demonstrate that cost and

modality improvement can be achieved in the network.

Keywords Operations research � Uncertain programming � Logistics � Intermodal transport � Repositioning

Introduction

Lured by the promise of bigger sales, companies are

seeking to raise the volume of international trade. Conse-

quently, the amount of bulk products carried in containers

and transported overseas exploded as this type of trans-

portation is environment-friendly, secure, flexible, reliable,

and less prone to spillage (Crainic et al. 1993; Erera et al.

2005; Ünlüyurt and Aydın 2012; Zhang et al. 2017).

Therefore, it comes as no surprise that container-based

transportation offers a high degree of productivity and

provides undeniable advantages in terms of losses and

damages. However, minimizing the logistics and distribu-

tion costs arising from the container flow management

across different locations has emerged as a major problem

that companies and affiliated third-party logistics firms face

in everyday routine (Rashidi and Tsang 2015; Bhattacharya

et al. 2014).

A chief challenge that the logistics companies face

arises from the imbalance of product supply and demand,

and thus an imbalance in the container flow across different

regions. As a result, empty containers accumulate at

demand centers, which must be efficiently repositioned to

ensure the continuity of shipping activities. According to

Rodrigue and Notteboom (2015) and Wang and Tanaka

(2016), movement of empty containers accounts for circa

30% of movement of all containers, and about 20% of

global port handling. Therefore, the empty container

repositioning (ECR) problem has received a great attention

from both industries and academics in recent years, and the

need to avoid ad hoc decision-making processes has

become vital in container management (SteadieSeifi et al.

2014; Lee and Meng 2014; Song and Dong 2015).

As a class of multi-period distribution planning prob-

lems (Ahmad Hosseini et al. 2017; Gen and Syarif 2005;
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Hosseini 2013; Hosseini et al. 2014), this work focuses on

the ECR problem in a dynamic environment that occurs in

the context of intermodal distributions and transportation

operations. This paper is motivated by the analysis of the

operational context of a European Logistic Service Provi-

der company (denoted by ELSP throughout the paper) that

transports bulk products (chemical, oil, gas, petroleum,

foodstuff, etc.) loaded in containers. The ELSP company is

an international third-party logistics (3PL) that executes

transportation orders via road, rail, short sea, and deep sea,

which are supported by strategically located terminals.

This study reveals some characteristics that are rarely

described in previous papers, i.e., Liu’s uncertainty. Gen-

erally, precise information is usually not available on time,

which may lead to adverse operational planning reflected in

a high degree of variability in system parameters. This may

lead to costly transportation and ECR operations which

result in lower profit margins. More precisely, some

parameters cannot be predetermined prior to planning and

indeterminacy should therefore be taken into account by

the decision maker. Hence, an uncertain network is a more

realistic representation of an actual ECR distribution

network.

Although valuable insights have been obtained from the

previous studies, the current practice of ECR does not

properly account for uncertainty. In other words, there is a

lack of suitable optimization methods and models that can

simultaneously integrate uncertain factors. Therefore, it is

crucial to adopt proper policies in the uncertain environ-

ment of ECR problems. To respond to such a need for the

analysis of ECR in dynamic uncertain environment, we

illustrate a modeling process to take the uncertain nature of

ECR parameters into account using the operational law of

uncertainty programming. To this aim, we develop an

uncertain ECR model that can accommodate uncertainty to

ensure an efficient repositioning policy at minimal opera-

tional cost, while meeting the time-dependent demand,

supply, and capacity requirements.

We address the repositioning of empty containers in a

3PL intermodal distribution network with different types of

ports, depots, and terminals discrete-time settings using

Liu’s (2007) uncertainty. By this approach, a new chance-

constrained programming is established for the ECR

problem, which combines assumptions, estimations,

knowledge, and experience of a group of domain experts.

Associated with any non-deterministic parameter, we

introduce an uncertain variable, which is neither fuzzy nor

stochastic. We then employ the uncertainty operational

law to originally model, solve, and analyze the uncertain

ECR problem in the framework of uncertainty program-

ming. Marginally, we introduce the new problem of

ða; b; cÞ-ECR. We show that there exists an equivalence

relation between the uncertain ECR problem and the

ða; b; cÞ-ECR problem. By using this relation, we solve the

original non-deterministic problem and obtain the uncer-

tainty distribution of the optimal distribution cost.

Literature review

Last decades have witnessed an increased interest in the

literature to solve various logistics problems, including

ECR, considering different variations of uncertainty

accounting for different settings and solution philosophies

(Cheung and Chen 1998; Lam et al. 2007; Long et al.

2015; Hosseini 2015; Chiadamrong and Piyathanavong

2017; Nourifar et al. 2018; Hamidi et al. 2017; Tofighian

et al. 2018; Hafezalkotob and Zamani 2018; Shishebori

and Babadi 2018).

In management of containers, companies have to deal

with different uncertain factors, such as the real trans-

portation time between two ports/depots, the future demand

and supply, the transit time for returning empty containers

from customers, and the available transportation capacity

in, e.g., vessels (Crainic et al. 1993; Olivo et al. 2005;

Erera et al. 2009; Epstein et al. 2012; Lai 2013; Yi et al.

2016; Finke 2017). As a result, investigations into efficient

ECR strategies have drawn the attention of many

researchers. There is abundant literature on modeling and

optimizing container repositioning. While there is not the

space to provide comprehensive mathematical specifica-

tions of all methods, an attempt is made to undertake a

selective review of those prior studies that have tackled

problems somewhat similar in flavor to the problem we

deal with in this paper. We also refer to Braekers et al.

(2011), Song and Dong (2015), Song and Carter (2009) and

Song and Zhang (2010) to get more information regarding

ECR problem and different strategies for container

repositioning.

According to Dejax and Crainic (1987), although the

management of empty container has received much atten-

tion since the sixties, little consideration has been, how-

ever, dedicated to the development of specific models in

the container transportation issue. Aiming at specifying the

ratio of empty containers and laden containers to achieve

empty container equilibrium, Poo and Yip (2017) study the

ECR problem and examine the problem with container

inventory management under dynamic condition. Finke

(2017) investigates the repositioning problem with non-

logistic theories in order to elucidate problems between

different actors in the supply chain of ECR. Ji et al. (2016)

study an ECR problem in short sea liner service and

develop a dynamic optimization model of ECR for each

stage in short sea liner service minimizing the overall

repositioning cost during a decision-making horizon.

Florez (1986) develops a profit optimization model for the

586 Journal of Industrial Engineering International (2019) 15:585–602

123



ECR and investigates the sensitivity of his proposed model

to the length of the planning horizon. Focusing on the

business perspective of shipping industry, Shen and

Khoong (1995) propose a single-commodity network

model under a rolling horizon fashion to minimize the total

distribution cost of empty containers. Cheung and Chen

(1998) compare a two-stage stochastic model with a two-

stage deterministic model for the dynamic ECR problem.

In a top-to-bottom perspective, Chen (1999) discusses

factors causing unproductive moves from operational to

strategic levels. Newman and Yano (2000) develop a

heuristic approach based on the decomposition procedure

to address the day-of-week scheduling of containers.

Choong et al. (2002) present an interesting ECR compu-

tational analysis. They study the effect of planning horizon

length on empty container management for intermodal

transportation networks. Olivo et al. (2005) develop an

integer program for the ECR between depots and ports

through an inland transportation network and solve the

model by a linearization technique. Bin and Zhongchen

(2007) also consider a multimodal distribution network

consisting of ports and inland terminals. Lam et al. (2007)

develop a dynamic stochastic model for a two-port two-

voyages relocation of empty containers to solve the ECR

problems. A general model related to the scheduling of

container storage and retrieval is presented in Vis and

Roodbergen (2009). The authors present an integer pro-

gram in a static environment. Shintani et al. (2010) model

the ECR problem as an integer program to optimize the

repositioning in the hinterland. The authors show the pos-

sibility of operational cost reduction through the use of

foldable containers instead of standard containers. Long

et al. (2012) formulate a two-stage stochastic programming

model with random demand, ship weight capacity, and ship

space capacity in order to incorporate uncertainty in the

ECR problem and minimize the expected operational cost

for container repositioning. Later on, Zhang et al. (2014)

analyze the multi-period ECR problem with stochastic

demand and lost sales aiming to establish an effective ECR

policy minimizing the total operating cost. They develop a

polynomial-time algorithm to find an approximate reposi-

tioning policy for multiple ports. Afterward, Long et al.

(2015) computationally examine the impact of several non-

i.i.d sampling methods for the stochastic ECR problem. By

moving forward from imbalance-based locations to ship-

ment network-driven-based container repositioning, Wong

et al. (2015) present a yield-based container repositioning

framework optimizing the container repositioning from

surplus to deficit locations. An extension of the container

management problem is to integrate the assignment of

loaded containers. It is therefore natural to try to integrate

two types of movements, empty and loaded, into the same

allocation model. Examples of such models can be found in

Dejax and Crainic (1987), Crainic et al. (1993), Erera et al.

(2005), Land et al. (2008) and Brouer et al. (2011).

From another viewpoint, this paper also contributes to

the growing body of knowledge regarding the Liu’s

uncertain programming, by illustrating a modeling process

to take the uncertain nature of ECR into account. During

the last few years, there has been a vast interest in devel-

oping strategies to solve problems in different fields with

various uncertain phenomena. Examples of such works can

include uncertain multi-item supply chain network (Hos-

seini 2015), uncertain traffic network (Hosseini and Wad-

bro 2016), uncertain shortest path (Liu 2010b; Gao 2011),

uncertain inference control (Gao 2012), uncertain networks

(Liu 2010, 2007), uncertain graph and connectivity (Gao

and Gao 2013), uncertain traveling salesman problem

(Wang et al. 2013), uncertain multi-product newsboy

problem (Ding and Gao 2014), uncertain multi-commodity

flow problem (Ding 2017), uncertain maximum flow

problem (Ding 2015), uncertain multi-objective program-

ming (Wang et al. 2015), uncertain supplier selection

problem (Memon et al. 2015), logistics system under

supply and demand uncertainty (Moghaddam 2015), multi-

region supply chain under demand uncertainty (Langroodi

and Amiri 2016), uncertain railway transportation planning

(Gao et al. 2016), uncertain regression analysis (Yao and

Liu 2017), and uncertain random assignment problem

(Ding and Zeng 2018; Zhang and Peng 2013).

Uncertain ECR model and description

This work focuses on designing an integrated model for the

ELSP company’s intermodal distribution network. In order

to provide a high service level and gain desired margins

concurrently, the empty container management team at the

ELSP company seeks to correct imbalances in a cost-effi-

cient course of action while ensuring the on-time delivery

requirements. The model aims at facilitating the decision

making for the empty container management at tactical

level and helps set a framework for operational decisions.

Although empty moves do not generate profit; however,

due to imbalances in loaded flows, the management of

empty containers becomes crucial. Therefore, minimizing

such costly moves may considerably reduce the logistics

cost. We describe the main decisions and elements char-

acterizing the ECR that may come in different types (five

different container dimensions) and container conditions

(‘dirty’ and ‘orderly’). Decisions are mainly concerned

with

1. where and when empty moves start and finish,

2. where and when containers are cleaned,
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3. the type or dimension (cbm) of empty containers to be

sent,

4. the condition of empty containers (dirty or clean) to be

delivered,

5. the quantity of empty containers on each link in the

network.

In representing the intermodal distribution system of the

ELSP company, a mathematical network DN ¼ ðL;AÞ is

established. The network consists of several locations

(nodes) with different functionalities: depots, cleaning

station, railway terminals, port terminals, rail ship termi-

nals, supply customers (unloading sites), demand cus-

tomers (loading sites), and various transportation links

between locations. In our setting, L represent all locations

in the distribution network, and A � L� L represents all

available links between locations for transportation. All

such locations are indexed by l 2 L, and a transportation

link between location l 2 L and l0 2 L is denoted by

ðl; l0Þ 2 A. Figure 1 shows all possible/allowed shipments

between locations and all available transportation modes

between the locations.

Cleaning processes are necessary since demand cus-

tomers require cleaned/orderly containers. This is of great

importance to ensure the safety of the shipment and quality

of the delivered products. Hence, it is assumed that a dirty

empty container is always sent to a cleaning station for

cleaning before reloading at demand customer sites. Both

requirements container condition (dirty, orderly) and the

container type (size or volume) are considered in the

model. In Table 1, containers are classified into five dif-

ferent classes based on their dimensions.

Some primary and secondary assumptions are made

during the modeling. In this project, we have had good

historical data and ample seasonal (as well as daily,

weekly, and monthly) frequencies to approximate

demands. Therefore, the expected demand and supply of

empty containers are assumed to be known during the

whole planning horizon. The planning horizon is prede-

termined. All demands of all types of containers must be

met by the same type of containers, i.e., substitutions

between container types are not included. Container

demand cannot be postponed. The model does not consider

returning-leased containers to the lessor. It is assumed that

a lease term does not expire in the planning horizon. When

demand cannot be met (yielding a shortage in the system),

containers can be provided by other partners or from

external sources (emergency shipments), but at a high cost.

It is important to distinguish between the locations

presented in Fig. 1. Depots are mainly utilized for storage,

whereas cleaning stations can be employed for both storage

and cleaning processes. A few depots and cleaning stations

are controlled by the ELSP company, which are referred to

as internal locations. The storage costs at these locations

are relatively lower compared to external depots and

cleaning stations. Railway, port and rail ship terminals

provide the options for intermodal transportation. Railway

Fig. 1 Problem overview and

the graph of the distribution

network

Table 1 Tank container classification, specified by its dimensions

Classes A B C D E

Dimensions (cbm) B 22 [22–24] [24–27] [27–32] C 32
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and port terminals are self-descriptive. As indicated in

Fig. 1, rail ship terminals allow for both trains and ferries

to arrive and depart from. Supply customers provide empty

containers that have become available after unloading of

the products, while demand customers requires empty

containers to be delivered at their site for loading. Note that

a customer can be both a demand and a supply customer.

The total supply of empty containers is made up of the

stocks stored at each location, the amount in transit, and the

number of containers available for pickup at supply cus-

tomer sites. It is possible to distribute empty containers

from supply sites to all locations except demand sites

(Fig. 1). Namely, a typical supplier s may be linked to

depot j, cleaning station c, railway terminal r, port terminal

p and rail ship terminal v. Assumptions necessary to pos-

tulate are listed below, all of which are standard in majority

of container management models.

1. Empty containers are not allowed to be stored at either

the supplier sites or demand sites. Hence, after

unloading, containers are hauled away immediately

to other locations.

2. Transportation capacities between locations, trans-

portation costs over links, and storage costs in

locations are assumed to be independent of the type

and the condition of the container.

3. Transportation from a location to itself is not allowed,

i.e., the distribution network is loop-free.

4. A container is assumed to be dirty after unloading at a

supplier site.

5. Arrivals and departures take place in the beginning of

time periods.

6. The cleaning times in all cleaning stations are assumed

to be same.

7. All shipment modes are assumed to have a limited

capacity.

8. The storage times are assumed to be identical.

9. A cleaning process cannot be interrupted.

The model takes several aspects of the problem into

account: uncertainty, multiple traveling modes, multiple

containers, multiple ports and terminals, and time-varying

storage and transportation mode capacities. To facilitate

the understanding of the modeling process, we first pre-

cisely describe system dynamics, indices, parameters, and

decision variables. The decision variables denote the empty

container flows between the locations in the underlying

network DN ¼ ðL;AÞ, stock-out flows (or shortages), and

inventories. The temporal horizon, with respect to which

the planning horizon is referred, is divided into several

periods. Periods can represent hours, days, or weeks

depending on the company’s needs. Moreover, decisions

refer to periods in which they are taken and may have

effects in other periods. Hence, there are three main types

of decision variables that define where, when, and how the

flows of empty container are used.

Sets and Indices

T Predefined integral planning horizon

N Set of time periods; elements indexed by

t ¼ 1; 2; . . .; T � 1

I Set of demand customers; elements indexed by

i ¼ 1; 2; . . .; jIj
S Set of supply centers; elements indexed by

s ¼ 1; 2; . . .; jSj
J Set of depots; elements indexed by j ¼ 1; 2; . . .; jJj
P Set of port terminals; elements indexed by

p ¼ 1; 2; . . .; jPj
R Set of railway terminals; elements indexed by

r ¼ 1; 2; . . .; jRj
C Set of cleaning stations; elements indexed by

c ¼ 1; 2; . . .; jCj
V Set of rail ship terminals; elements indexed by

v ¼ 1; 2; . . .; jV j
M Set of transport modes; elements indexed by

m ¼ 1; 2; . . .; jMj
K Set of container types; elements indexed by

k ¼ 1; 2; . . .; jKj
U Set of container conditions: d (dirty) and o (orderly)

Parameters

Dt
iku Demand of customer i at time period t of type k in

condition u

Stsku Supply of supplier s at time period t of type k in

condition u

s
ll
0
m

Transit time (hours) between origin l and

destination l
0
via mode m, where

l; l
0 2 I; S; J;P;R;C;V;E

s Cleaning time at cleaning stations

D Storage time allowed at intermodal terminals

(railways, ports, and rail ships)

gt
ll
0
m

Uncertain transportation capacity between l and l0

via mode m at time period t with regular

uncertainty distribution Wll0tm

gtl Uncertain storage capacity available at location l at

time period t with regular uncertainty distribution

Wlt

ntll0m Uncertain unit transportation cost from l to l0 at
time period t via mode m with regular uncertainty

distribution Ull0tm

ntl Uncertain unit storage cost at location l at time

period t with regular uncertainty distribution Ult

Journal of Industrial Engineering International (2019) 15:585–602 589

123



�ti Uncertain emergency shipment cost for costumer i

at time period t with regular uncertainty

distribution /it

Integer nonnegative decision variables

xt
ll0mku number of empty containers of type k with

condition u to be arrived at destination l0 via
mode m in the beginning of period t from origin l,

where l; l0 2 I; S; J;P;R;C;V

ztlku number of empty containers of type k in

condition u available at location l in the

beginning of time period t, where

l 2 J;P;R;C;V

shtiku number of stock-out empty containers (to be

brought in from outside the system (leased,

borrowed, or newly purchased) of type k in

condition u for demand customer i at time

period t

Chance-constrained model for ECR

Empty containers must be repositioned between ports to

ensure the continuity of shipping activity and to meet

future transportation opportunities. However, significant

sources of uncertainty may still affect this issue. This is

because in many occasions, due to maintenance, economic

reasons, or technical difficulties, we have lack of observed

data about an unknown state of nature. For example, since

loaded containers have greater priority than empty con-

tainers and unexpected transportation opportunities may

arise, the residual transportation capacity for empty con-

tainers also fails to provide certain information. Moreover,

the maximum number of empty containers that can be

loaded and unloaded in ports is sometimes uncertain as

well. Information on the number of empty containers

requested in each port may also be imprecise, because

unexpected transportation demands may arise. Moreover,

the number of empty containers available in ports can also

be uncertain, because we do not know precisely when they

will be returned by import customers. In such cases where

information is not sufficient, we have to invite some

domain experts to evaluate their belief degree for events’

occurrence. When only belief degrees are available (no

samples), the estimated uncertainty distribution usually

deviates far from the cumulative frequency. In this case,

the uncertainty theory can be referred as one of the legit-

imate approaches (Liu 2007, 2010, 2012).

To formalize the discussion and develop a chance-con-

strained model, all ECR uncertain components are regarded

as uncertain variables and the following modeling process

is offered. It is worth noting that whenever there exists

accurate data with high level of certainty based on enough

proper historical data, one can easily substitute the corre-

sponding uncertain component with a crisp value without

any loss of generality and any change in the modeling

process (see Remark 1).

Remark 1 According to laws of uncertainty programming,

if, e.g., transportation cost ntll0m ¼ ct
ll0m is a certain number,

then it can be regarded as a constant function on the

uncertainty space, and therefore, it is concluded that

U�1
ll0tmðaÞ ¼ ct

ll0m for any confidence level a 2 ð0; 1Þ (Liu

2007, 2010, 2012).

Remark 2 Without loss of generality, we assume that all

uncertain variables used in this work are independent and

their uncertainty distributions are regular. Otherwise, a

small perturbation can be given to get a regular distribution

(Liu 2007).

The objective in the uncertain ECR problem is to min-

imize the total uncertain cost for empty container reposi-

tioning over a predefined certain horizon. The criteria of

interest are the transportation costs between locations,

storage costs, and the shortage costs associated with the

stock-outs. We assume that the logistics supervisor wants

to cut a budget B and hopes the chance that the total cost

exceeds the budget is kept below a confidence level a. This
is guaranteed by

M

 X
t2N

X
k2K

X
u2U" X

ðl;l0Þ2A

X
m2M

ntll0mx
t
ll0mkuþ

X
l2AnðI[SÞ

ntlz
t
lkuþ

X
i2I

�tish
t
iku

#
�B

!

�1� a

ð1Þ

Internal and external depots and cleaning stations all offer

storage. It is also possible to store at intermodal terminals.

Chance constraint (2) ensures that the total number of

containers to be stored at railway, port, and rail ship ter-

minals will not exceed the storage limits in such locations

with some given confidence level b.

M
X
k2K

X
u2U

ztlku � gtl

 !
� b l 2 fR;P;Vg; t 2 N ð2Þ

All shipment modes are assumed to have a limited capac-

ity. Chance constraint (3) ensures that total flow of all

empty containers on each link cannot be exceeded with

some given confidence level c.
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M
X
k2K

X
u2U

xtll0mku � gtll0m

 !
� c ðl; l0Þ 2 A; t 2 N;m 2 M

ð3Þ

Constraint (4) states that demand (of orderly containers) is

satisfied during the prespecified planning horizon. If it is

not possible to comply, containers will be brought from

sources outside the system, denoted by shtiko.X
l2AnI

X
m2M

xtlimko ¼ Dt
iko � shtiko i 2 I; t 2 N; k 2 K ð4Þ

Constraint (5) indicates that dirty empty containers avail-

able at supply customers sites must be shipped away at the

same time period they are unloaded.X
l2AnðS[IÞ

X
m2M

xtþsslm
slmkd ¼ Stskd s 2 S; t 2 N; k 2 K ð5Þ

Inventories of dirty containers at cleaning stations are

shown by constraint (6). These inventories are derived by

considering the inflow of dirty containers to cleaning sta-

tion and the outgoing flow of orderly containers.

ztckd ¼
X

l2AnðI[CÞ

X
m2M

X
t0 2 N

t0 � t

xt
0

lcmkd �
X

t0 2 N

t0 � t � s

xt
0

lcmkd

2
666664

3
777775

c 2 C; t 2 N; k 2 K

ð6Þ

Constraint (7) shows the inventories of orderly (cleaned)

containers at cleaning stations. These inventories can also

be derived by obtaining the inflow and outflow of cleaned

containers and the inflow of dirty containers that have been

cleaned.

ztcko ¼
X

l2AnðI[SÞ

X
m2M

X
t02N; t0 � t

xt
0

lcmko �
X
l2AnS

X
m2M

X
t02N; t0 � t

xt
0þsclm
clmko

þ
X

l2AnðI[CÞ

X
m2M

X
t02N; t0 � t�s

xt
0

lcmkd

c 2 C; t 2 N; k 2 K

ð7Þ

Constraint (8) shows the number of empty containers of

different types and conditions available at depots, railway,

port, and rail ship terminals at each time period. Note that

zero initial inventories of containers are assumed in our

application.

ztlku ¼
X
l02AnI

X
m2M

X
t02N;t0 � t

xt
0

l0lmku �
X

t02N;t0 � t

x
t0þsll0m
ll0mku

" #

l 2 fJ;P;R;Vg; t 2 N; k 2 K; u 2 U

ð8Þ

Constraint (9) ensures that outgoing flow of empty con-

tainers of any type and condition at any time period cannot

be more than the available empty containers at that period.

ztlku �
X
l02AnS

X
m2M

x
tþsll0m
ll0mku l 2 fJ;P;R;C;Vg; t 2 N; k 2 K; u 2 U

ð9Þ

The domain of decision variables prescribed in (10) guar-

anties that containers can flow in the network only until the

end of prespecified planning horizon.

xtll0mku ¼ 0 ðl; l0Þ 2 A; t 62 N;m 2 M; k 2 K; u 2 U

ð10Þ

With respect to flow conservation, there can be two dif-

ferent models of flow over time: with storage and without

storage. In the model with intermediate storage of flow at

intermodal terminals, it is possible to hold containers

inventory for, e.g., D units of time before sending it

onward. Storage means that the flow conservation is not

satisfied at each time period because the amount of con-

tainer flow arriving at a location at a given time can be

different from the amount of container flow that leaves the

location at that time. Thus, the flow conservation con-

straints are integrated over time to prohibit deficit at such

locations:X
l02AnI

X
m2M

xtl0lmku �
X
l02AnS

X
m2M

x
tþsll0m
ll0mku

l 2 fP;R;Vg; t 2 N; k 2 K; u 2 U

ð11Þ

In the model without intermediate storage, we require that

equality holds in (11). To cope with ‘D time units of

waiting time’, we note that for any time period d, the

amount of flow that has arrived at a location by d cannot be

more than the amount of flow that has left the location

before d. Therefore, if we view the arrivals and inventory

as a queue, we may argue that containers can have a

waiting time of at most D units at intermodal terminals:

ztlku �
X
l02AnS

X
m2M

X
d2N;d�D

x
tþdþsll0m
ll0mku

l 2 fP;R;Vg; t 2 N; k 2 K; u 2 U

ð12Þ

As we discussed, in practice, many parameters such as

storage and capacities usually are not certainly determined.

In this part, we employ uncertainty theory to deal with

belief degrees. Given the distribution network

DN ¼ GðL;AÞ, a flow of empty containers (x, z, sh) is

feasible if it satisfies the foregoing constraints (1)–(12).

Therefore, when a logistics supervisor wishes to cut the

budget, B, and the total flow of all containers satisfies some

chance constraints with some given confidence levels a, b,
and c, the uncertain ECR problem can be stated as follows:
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min B

subject to:

constraints ð1Þ�ð12Þ:

8><
>: ðModel 1Þ

In the reminder of this section, we discuss how to obtain

and solve an auxiliary ða; b; cÞ-ECR problem. Since ntll0m,
ntl, and �ti are all uncertain variables with regular distribu-

tions Ull0tm, Ult, and /lt, respectively, we can replace con-

straint (1) by constraint (13).

M

 X
t2N

X
k2K

X
u2U" X

ðl;l0Þ2A

X
m2M

ntll0mx
t
ll0mku þ

X
l2AnðI[SÞ

ntlz
t
lku þ

X
i2I

�tish
t
iku

#
�B

!
¼ a:

ð13Þ

Let us consider the ECR distribution cost as follows:

!ðx; z; shÞ ¼
X
t2N

X
k2K

X
u2U" X

ðl;l0Þ2A

X
m2M

ntll0mx
t
ll0mku þ

X
l2AnðI[SÞ

ntlz
t
lku þ

X
i2I

�tish
t
iku

#
:

Since !ð�Þ is an increasing function with respect to inde-

pendent uncertain variables ntll0m, ntl, and �ti, it is an

uncertain variable and its inverse uncertainty distribution

!�1 exists (Liu 2007, 2010). As a result, constraint (13)

boils down to the following constraint.

X
t2N

X
k2K

X
u2U

" X
ðl;l0Þ2A

X
m2M

U�1
ll0tmð1� aÞ

� �
xtll0mku

þ
X

l2AnðI[SÞ
U�1

lt ð1� aÞ
� �

ztlku þ
X
i2I

/�1
it ð1� aÞ

� �
shtiku

#
�B:

ð14Þ

On the other hand, the uncertain transportation capacities

gtll0m and uncertain storage capacities gtl are also regular

with uncertainty distributions Wll0tm and Wlt, respectively.

Therefore, along the same lines as those for (14), we can

transform constraints (2) and (3) to (15) and (16),

respectively.X
k2K

X
u2U

ztlku �W�1
lt ð1� bÞ l 2 fR;P;Vg; t 2 N ð15Þ

X
k2K

X
u2U

xtll0mku �W�1
ll0tmð1� cÞ ðl; l0Þ 2 A; t 2 N;m 2 M

ð16Þ

Consequently, the uncertain ECR problem illustrated in

Model 1 is equivalent to the following model.

min B

subject to:

constraints ð4Þ�ð12Þ;
constraints ð14Þ; ð15Þ; ð16Þ:

8>>><
>>>:

ðModel 1Þ0

Finally, it is easy to observe that Model 1 0 can be re-stated

as a well-defined, solvable, deterministic ða; b; cÞ-ECR
problem as follows:

min
P

t2N
P

k2K
P

u2U
P

ðl;l0Þ2A
P

m2M U�1
ll0tmð1�aÞ

� �
xtll0mku

h
þ
P

l2AnðI[SÞ U�1
lt ð1�aÞ

� �
ztlku

þ
P

i2I /�1
it ð1�aÞ

� �
shtiku

�
;

subjectto:

constraints ð4Þ�ð12Þ;
constraints ð15Þ�ð16Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ðModel1Þ00

Therefore, given the distribution network DN ¼ GðL;AÞ
and the confidence levels a; b, and c, we refer to the

solution of Model 1 00 as the ða; b; cÞ-optimal ECR solution

for the uncertain ECR problem (presented by Model 1).

We have then established the following results.

Theorem 1 Let DN ¼ ðL;AÞ represent the distribution

network of the uncertain ECR problem and suppose that

ntll0m, n
t
l, �

t
i, g

t
ll0m, and gtl denote the independent uncertain

variables with regular distributions Ull0tm, Ult, /lt, Wll0tm,

and Wlt, respectively, associated with the parameters of the

network. The uncertain ECR problem is equivalent to the

well-defined deterministic ða; b; cÞ-ECR problem presented

by Model 1 00 , provided that the confidence levels a; b; c
are given.

Theorem 1 yields that the optimal solution of the

uncertain ECR problem is actually the ða; b; cÞ-optimal

ECR solution obtained from Model 1 00. It also presents a

simple way to obtain the uncertainty distribution of the cost

of repositioning of empty containers. To this aim, it is

enough to choose a number of different a; b, and c and

solve Model 1 00 repeatedly. We also highlight that Model

1 00 is decreasing with respect to a and non-decreasing with

respect to b and c.

Computational study and experiments

A computational study with real data is employed to

demonstrate the functionality of the model. The case-study

company is a European logistic service provider (ELSP) that

transports bulk products loaded in containers and owns circa

35000 containers. The case-study problem deals with one

main part of the company’s whole distribution network that

involves approximately 20% of its total market. To account

for variability in demand and to investigate the model’s
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performance, we examine the proposed model under dif-

ferent planning horizons using one-year actual historical

shipping patterns performed by the company, with key

practical considerations such as delivery time periods and

intermodal transports. Computational experiments show the

functionality of the model and suggest that potential distri-

bution cost savings of about 6�10% would be possible to

achieve through flow and modality alterations. Furthermore,

to highlight certain features of the model and to reveal how

the distribution cost depends on the model’s parameters, we

present a sensitivity analysis and we investigate the effect of

the parameters on the container management.

We start by describing the general settings applied in

our computational experiments. Each instance is solved on

a personal computer with Intel Core i7-5600U processor,

clock rate of 2.6 GHz, and 16 GB RAM. We used the

optimization modeling language AIMMS and the CPLEX

solver in order to solve our instances. The data used have

been collected from the database of the ELSP’s trans-

portation planning tool (for the period of one year), which

comprises the total planning actions performed by the

ELSP company within Europe. Although the mathematical

model is not exactly a network flow model, the coefficient

matrices tend to be sparse so that solution times have been

short fast for small- and medium-sized instances. Figure 2

and Table 2 give an overview of the topology and statistics

of the distribution network under study. Table 3 also shows

customers’ locations along Europe and their tributaries,

classified by countries and regions.

The data obtained from the company include time-de-

pendent demands over one year for all customers,

transportation costs over links for all transportation modes,

cleaning times, storage times, storage costs, transit capac-

ities for all modes, and storage capacities at intermodal

terminals. Transportation costs and transit times (lead

times) for shipments to be carried out via vessel and train

were derived by calculating the average price and transit

time of each origin–destination pair. Distances between

each origin–destination pair were calculated and related to

the average speed of a truck (60 km/h) in order to derive

the transit times for shipments over roads. The storage

capacities at intermodal terminals were supposed to rep-

resent the only sources of uncertainty, controlling the

values taken by the other uncertain parameters. Uncertainty

distributions about the capacities over the whole planning

horizon are provided by expert-based opinions, and the

confidence levels a, b, and c are provided by the logistics

supervisor. The domain experts are presumed to be

independent.

Based on the expert-based opinions, we decided to

mostly employ linear, discrete, empirical, and zigzag

uncertainty distributions (see Liu 2007, 2010). To construct

our distributions, some parameters should have been esti-

mated. All such information was gathered from domain

experts through qualitative and quantitative analysis,

interviews, and observations. For more information on

uncertainty distributions and exploring the recent devel-

opments of uncertainty theory, the reader may consult Liu

(2007). As we discussed earlier, when for some uncertain

parameter like ntll0m we have an exact (crisp) value of ct
ll0m,

we can set U�1
ll0tmð1� aÞ ¼ ct

ll0m for any a 2 ð0; 1Þ in the

model. The same is true for any other parameter of exact

Fig. 2 (Left) depots, cleaning stations, railway, port and rail ship terminals; (right) demand and supply customer locations
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values. This means that the proposed model is a generic

model that can also cover deterministic problems.

In addition, the network topology of the case-study

problem is utilized to create random instances with random

parameters, and the model is also evaluated on these

instances. We randomly selected a combination of different

customers and compared the real-life situation to the pro-

posals suggested by the model in order to investigate the

behavior of the model. The sensitivity analysis employs a

set of data from our case study and randomly generated

data to highlight certain features of the model and provide

some insights regarding its behavior.

The company’s motivation to use our model was to

reduce the distribution costs by improving the transport

modality over links, so there was no budget restriction.

Hence, our experiments are mainly based on Model 100.
Table 4 shows the performance of the model for some

instances with different planning horizons, fixed trans-

portation and storage costs, and with fixed confidence

levels b ¼ 0:9999 and c ¼ 0:9999. The computational

experiments show that the model finds good-quality solu-

tions and demonstrate that cost improvements could be

achieved in the network.

The first sensitivity analysis concerns the planning

horizon. The objective is to show what effects different

discretizations of the planning horizon may have on oper-

ational costs, modality utilization, and computational per-

formance. Although the length of the planning horizon

remains constant at 4 days (96 h), the discretization of the

time periods varies. The latter is of interest since time

discretization methods are used to make the problem

solvable within a certain amount of time. Although we

keep the length of the planning horizon constant, we gen-

erate different discretization of the planning horizon by

changing the length of the time periods (see, e.g., Fig 3).

Subsequently, the whole system and its parameters are

modified to fulfill the company’s requirements. Table 5

partially shows that the discretization can have substantial

impact on the solution time, the size of the problem

(number of variables and constraints), and travel mode

usage.

Figure 4 indicates that, in our sample, the cost function

usually tends to linearly increase as the number of time

periods becomes larger. However, while comparing the

total cost, we conclude that the cost will be constant after

some point. Figure 4 also indicates that the computational

time increases rapidly as the planning horizon discretiza-

tion becomes more realistic. Instance 5 could not be solved

since the solver terminated the process. The process was

terminated since the memory of 16 GB RAM was insuf-

ficient for this instance. The ‘out of memory error’

occurred in the ‘generation phase’ of AIMMS and CPLEX

could never initialize.

To further evaluate the sensitivity of the model, we

investigate the effects of length of the planning horizon and

Table 2 Statistics of the ELSP

company’s distribution network
Depots: 38 (4 ? 34)

(Internal ? external)

Supply customers: 1196 Demand customers: 487

Cleaning stations: 138 (8 ? 130)

(Internal ? external)

Railway terminals: 98 Port terminals: 93

Rail ship terminals: 15 Links/sections 14,590 Total number of locations 2065

Table 3 Countries and regions of the ELSP distribution network

Country Region 1 Region 2 Region 3 Region 4

Austria

Belgium

Bulgaria

Switzerland

Germany East

Denmark North West South

Spain Central North–East North–West

Finland North South

France North–West South–East Venissieux

England North–East North–West South

Scotland

Ireland North South

Italy Central North–East North–West South

Netherlands

Norway

Poland

Portugal North South

Russia

Sweden North East West South

Slovenia

Table 4 Model’s performance

and achievements
Settings Instance 1 (%) Instance 2 (%) Instance 3 (%)

Total cost savings 6.54 6.29 10.3
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two different amounts of initial inventory on the optimal

plans. We compare the effects of 4-day, 7-day, and 21-day

planning horizons on modality utilization and different

logistics cost. This analysis is presented in Table 6.

Regardless of the amount of initial inventory, Table 6

reveals that the total cost is an increasing function of the

length of the planning horizon, that is quite intuitive.

However, we have observed that although the 7-day, and

21-day models consider longer planning horizons, the

optimal solutions only suggest a higher cost during the

early periods. We have observed that setting a good value

for the planning horizon can highly depend on the topology

and the size of the network under study and that a longer

planning horizon (used on a rolling basis) can offer more

efficient empty container distribution plans (but not nec-

essary cheaper), especially for the earlier periods. How-

ever, the advantages of using a long planning horizon

might be little for a shipping company that has many

suppliers, as the distribution system of such companies

may have small end-of-horizon effects. These observations

are also shown in Fig. 5.

Focusing on the instances with 0 initial inventory and

the results of the 4-day, 7-day and 21-day models, some

considerable allocation impacts can be noted. We also

10 20 30 40 50
0

25

50

75

# Time periods

C
os
t

Operational costs

Total Cost
Trp. Cost
Storage Cost

Fig. 3 Cost comparison under different time discretizations

Table 5 Distribution cost, modality utilization, and elapsed computational time for an instance with different discretizations

# Supply sites: 292, # Demand sites: 170, Initial inventory: 0, Max capacity = 5000

Settings Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

# Time periods 4 16 24 32 48

# Constraints 138,468 553,579 830,013 1,106,352 1,925,630

# Variables 601,761 2,407,041 3,610,561 4,814,081 8,376,501

Total cost 37,509 40,843 41,350 41,396 –

Trans. cost 23,758 26,803 27,122 27,129 –

Storage cost 13,751 14,040 14,228 14,267 –

Shortages 0 0 0 0 –

Modality util. (%) 100/0/0 100/0/0 100/0/0 99/0/1 –

Road/Rail/Sea

Elapsed time for AIMMS/CPLEX

(s)

261.63 912.47 1596.56 2562.31 [ 1000.00

Status Normal

completion

Normal

completion

Normal

completion

Normal

completion

Terminated by

solver

10 20 30 40 50
0

1.8

3.6

# Time periods

Se
co
nd
s(
Th

ou
sa
nd
s)

Elapsed time for AIMMS/CPLEX

Total time

Fig. 4 Computational time comparison under different time

discretizations
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observed that the 7-day and 21-day models propose a lower

utilization of road over the first 4 days compared to the

4-day model. Containers not needed for meeting the

demand in the next four days have been mainly transported

via slower modes to other regions where demand may arise

in future time periods. On the other hand, the results from

instances with high inventories suggest a high utilization of

road regardless of the length of the planning horizon. High

initial inventory allows demand to be satisfied from facil-

ities close to the demand sites. i.e., intermodal transporta-

tions are not necessary. Figure 6 illustrates a decreasing

storage cost function and increasing transportation cost

function as a result of changes in the length of the planning

horizon. It is observed that longer planning horizon usually

allows transportation with longer transit times, hence

suggesting more transportation and less storage. Invento-

ries of empty containers are usually repositioned to nearby

facilities with relatively lower storage cost.

The next sensitivity analysis concerns the capacity

restriction on transportation modes over links and time

periods. To do so, they are set to crisp values, i.e.,

gtll0m ¼ Ct
ll0m, and we also set c ¼ 1. Hence, constraint (16)

will be of following form:X
k2K

X
u2U

xtll0mku �Ct
ll0m ðl; l0Þ 2 A; t 2 N;m 2 M:

The aim is to investigate how the distribution costs and the

modality utilizations are influenced by this condition. The

results are presented in Table 7, Figs. 7 and 8.

Table 6 Operational costs and

modality utilization as a result

of different planning horizons

and initial inventory

Supp. and dem. (in the first 4 time periods): 361, 170, Max capacity = 5000

Settings Instance 1 Instance 2 Instance 3

Initial inventory clean: 0, initial inventory dirty: 0

# Time periods 4 7 21

Total cost 53,884 61,874 89,048

Trans. cost 52,946 60,895 87,748

Storage cost 938 979 1300

# Shortages 0 0 0

Modality util. (%) 91.9/3.3/4.8 90.2/4/5.8 82.9/6.8/10.3

Road/Rail/Sea

Initial inventory clean: 399, initial inventory dirty: 510

# Time periods 4 7 21

Total cost 63,990 65,711 75,394

Trans. cost 27,906 37,360 51,457

Storage cost 36,084 28,351 23,937

# Shortages 0 0 0

Modality util. (%) 100/0/0 99.7/0.3/0 99.7/0.3/0

Road/Rail/Sea

4174

20

40

60

Time horizon length

C
os
t

Total Cost 0 Inv.
Total Cost High Inv.
Trp. Cost 0 Inv.
Trp. Cost High Inv.
Storage Cost 0 Inv.
Storage Cost High Inv.

Fig. 5 Operational costs with 0

and high initial inventory
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Fig. 6 Modality utilization with

0 and high initial inventory

Table 7 Costs and modality

utilizations in terms of

transportation capacities (Ct
ll0m)

Supply: 265, demand: 170, initial inventory: 0, # time periods: 4

Settings Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Ct
ll0m (increase in %) 0 10 20 30 40

Total cost 51,064 50,910 50,800 50,751 50,704

Trans. cost 50,239 50,083 49,970 49,920 49,870

Storage cost 826 828 830 831 834

# Shortages 0 0 0 0 0

Modality util. (%) 91.7/3.9/4.3 91.3/3.9/4.6 91.2/3.8/5 91/4/5 91/3.8/5.2

Road/Rail/Sea

0 10 20 30 40
40

50

60

Increase of Ct
ll m

as a percentage

C
os
t

Total cost and transportation cost

Total Cost
Trp. Cost

0 10 20 30 40
0.7
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0.9
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as a percentage

C
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t

Storage cost

Storage Cost

Fig. 7 Cost as a result of increasing Ct
ll0m
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Fig. 8 Modality utilization as a result of increasing Ct
ll0m

Table 8 Cost and modality

utilizations in terms of allowed

storage time at intermodal

terminals

Supp.: 265, Dem.: 170, initial inventory: 0, # periods: 21, Max capacity = 5000

Settings Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

D 0 1 2 3 4

Total cost 955,117 954,110 945,584 934,718 930,831

Trans. cost 810,709 806,818 801,542 790,397 785,505

Storage cost 144,408 147,292 144,042 144,321 145,326

# Shortages 38 22 0 0 0

Shortages (%) 0.37 0.2 0 0 0

Modality util. (%) 100/0/0 90.8/4.5/4.7 91.0/4.7/4.3 89.0/4.8/6.2 89.1/5.1/5.8

Road/Rail/Sea
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Fig. 9 Modality utilization as a result of increase in D
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Table 7 and Fig. 7 demonstrate that the total cost tends

to decrease as we are allowing higher transportation

capacity over links. Slower and cheaper modes are utilized

more when the transportation capacities are extended. This

can be seen through Fig. 8. This explains the decreasing

transportation cost function. Transportation via train and

sea can cause a relatively higher storage cost at intermodal

terminals. As a result, sometimes, the storage cost slightly

increases (Table 7).

We also address the storage time (D) at intermodal

terminals. The aim is to investigate what impact allowed

storage time at intermodal terminals may have on the

distribution cost and the modality utilization.

When storage at intermodal terminals is not allowed

(D ¼ 0), we expect a low utilization of transportation via

rail and sea. Table 8 and Fig. 9 confirm this expectation.

Even though the storage cost tends to fluctuate as we allow

longer storage time at intermodal terminals, the total cost

tends to be decreasing (see Fig. 10). The slower and

cheaper modes are used more, and so the transportation

costs tend to decrease.

As discussed in Theorem 1, given the confidence levels

a, b, and c, uncertainty programming offers a simple way

to obtain the uncertainty distribution of the optimal ECR

cost. It is done by converting the uncertain ECR problem

into an (a; b; c)-ECR problem and solving Model 1 00 for
different values of a, b, and c. It should be highlighted that

as a increases, the total ECR cost will decrease (see

Fig. 11). This is due to the relation between the unit

transportation and storages costs and the inverse

uncertainty distributions of the uncertain cost variables (see

the objective function in Model 1 00).
In addition, Model 1 00 is non-decreasing with respect to

b, and c. This is intuitive. Because when the confidence

levels b and c increase, the model has to find an optimal

ECR solution in a smaller feasible set, so the total ECR

cost either increases or stays the same. Hence, by solving

the problem for different values of b and c we also get to

estimate the uncertainty distribution of optimal ECR cost

with respect to these parameters.
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Fig. 10 Cost as a result of increase in D
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Fig. 11 The optimal ECR cost uncertainty distribution
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Conclusion

Based on Liu’s uncertainty theory, this paper addresses the

repositioning of empty containers (of multiple types) in

time-dependent, intermodal distribution network of an

anonymous international European logistic service provi-

der company (denoted by ELSP) in discrete-time settings

under uncertainty and data shortage. The company trans-

ports bulk products (oil, gas, petroleum, chemical, food-

stuff, etc.) loaded in containers via road, rail, and sea

needing to properly reposition its empty containers over

different types of ports.

Exploiting the operational law of independent uncertain

variables, the uncertain ECR problem is originally mod-

eled and analyzed in the framework of uncertainty pro-

gramming. In order to solve the uncertain ECR problem, a

new auxiliary ða; b; cÞ-ECR model is proposed and its

equivalence relation with uncertain ECR problem is

demonstrated. By exploiting this relation, the original

uncertain ECR problem is solved and the uncertainty dis-

tribution of the optimal logistics cost is obtained.

The case-study problem has been dealing with one main

part of the company’s whole distribution network that

involves approximately 20% of its total market, which is

used to illustrate the interest and functionality of the model.

Computational experiments show the functionality of the

model and suggest that potential distribution cost savings

of 6�10% would be possible to achieve through modality

alteration over links of the distribution network. Further-

more, to highlight certain features of the model and the

effect of the model’s parameters on empty container

management, an extensive sensitivity analysis is presented.

The proposed model captures many time-varying parame-

ters, which makes it possible to quantify the trade-offs

between different criteria of the ECR problem. The model

includes many practical considerations needed for ECR

distribution networks: meeting demand and supply

requirements, multimodal transports, cleaning processes,

transport and storage capacity, internal and external loca-

tions, various types of ports, terminals, and depots, etc.

However, there are several possibilities for extending the

model proposed in this study.

We note that proposed model is concerned with one of

the main objectives of the ECR distribution networks, viz.

the distribution cost. However, there can be some other

aspects and criteria that could be taken into account, e.g.,

profit, power, customer’s credit performance, and objec-

tives of various business divisions (such as marketing,

sales, distribution, planning, and purchasing). Hence,

developing a unified and rigorous structure that can capture

all synergies, criteria, and trade-offs could be worthy of

further exploration. To include multiple criteria, the use of

analytical hierarchy process (AHP) and non-preemptive

weighted goal programming is highly recommended.

Including short- and long-term leasing in the model could

be another direction for future research. Moreover, it might

be worthwhile to consider the uncertain nature of transit

times in the ECR problem as well. One future research

endeavor could be to integrate the loaded and empty con-

tainers flow decisions in a single integrated model. Finally,

exploring the use of parallel computing and decomposition

algorithms, such as Bender’s decomposition, to cope with

larger instances could be one other area for further

expansion.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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