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Abstract The rapid industrialization and growth of

world’s human population have resulted in the unprece-

dented increase in the demand for energy and in particular

electricity. Depletion of fossil fuels and impacts of global

warming caused widespread attention using renewable

energy sources, especially wind and solar energies. Energy

security under varying weather conditions and the corre-

sponding system cost are the two major issues in designing

hybrid power generation systems. In this paper, the match

evaluation method (MEM) is developed based on renewable

energy supply/demand match evaluation criteria to size the

proposed system in lowest cost. This work is undertaken

with triple objective function: inequality coefficient, cor-

relation coefficient, and annualized cost of system. It pro-

vides optimum capacity of as many numbers of supplies as

required to match with a load demand in lowest investment,

so it can handle large-scale design problems. Meteorolog-

ical data were collected from the city of Zabol, located in

south-east of Iran, as a case study. Six types of wind turbine

and also six types of PV modules, with different output

powers and costs, are considered for this optimization

procedure. A battery storage system is used to even out

irregularities in meteorological data. A multi-objective

particle swarm optimization algorithm has been used for the

prediction of an optimized set of design based on the MEM

technique. The results of this study are valuable for evalu-

ating the performance of future stand-alone hybrid power

system. It is worth mentioning that the proposed method-

ology can be effectively employed for any composition of

hybrid energy systems in any locations taking into account

the meteorological data and the consumer’s demand.

Keywords Sizing study � Match evaluation method

(MEM) � Electricity match rate (EMR) � Hybrid renewable

energy systems

Introduction

Countries are trying to decreasing their dependence to fossil

energy by integrating renewable energy sources to their

energy policies. Several projects in the field of renewable

energy system (RES) are developed in the last two decades.

Growing evidence of global warming phenomena, rapid

depletion of fossil fuel resources and fast escalation in

world’s population caused widespread attention to seek

energy from RES. Solar and wind energy are commonly

used RES to supply power for consumers in the remote area.

The reason is that they are non-polluting, no fuel cost,

renewable and available in most sites. A hybrid system using

a combination of these sources has the advantage of reli-

ability and stability. Utilization of solar and wind energy has

become increasing significant, attractive and cost-effective,

since the oil crises of early 1970s (Wei et al. 2010). How-

ever, substantial fluctuates of climate and meteorological

conditions may decrease the reliability of the system.

Therefore, batteries are required to even out irregularities in

the solar irradiation and wind speed. Hou et al. (2013) have

used sensitivity coefficients to predict climatic variation.

Optimally sized design of hybrid RES is an important

issue in hybrid systems. In large-scale problems, optimum

size of each component of hybrid energy systems will

require complex computer program and will need much

time for computing. This paper presents an optimization
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process for finding the optimum size of different hybrid

renewable energy configuration which maximizes the

electricity match rate (EMR) between supplies and demand

in lowest cost. The purpose is to provide the best config-

uration among all cases which can meet the load demand in

lowest cost. For this task, six types of wind turbine (WT)

and six types of PV module, with different output powers

and costs, are considered. To find the optimum configura-

tion which is economical and efficient, sizing optimization

method is necessary. Optimum match design will guarantee

the lowest investment and optimal use of hybrid energy

resources. Various optimization techniques in sizing of

hybrid energy resources have been reported in the litera-

tures. The design of hybrid systems is usually done by

searching the configuration and/or control with the lowest

total cost throughout the useful life of the installation or

pollutant emissions. Classical optimization techniques may

consume excessive CPU time or even be unable to take into

account all the characteristics associated with the posed

problem. Dufo-Lopez and Bernal-Agustin (2008) presented

a multi-objective design of hybrid systems by minimizing

the total cost, pollutant, emission and unmet load. Vafaei

(2011) confirms that hybrid stand-alone electricity pro-

duction systems are usually more reliable and less costly

than systems that use only single source of energy. The

optimization procedure can be done in different methods.

Proper design of stand-alone hybrid RESs using loss of

power supply probability technique is discussed by Xu

et al. (2005), Yang et al. (2008), Wei (2007), Wei and

Hongxing (2007), Nelson et al. (2005, 2006). Zhao et al.

(2006) have optimized the wind/PV hybrid power system

with particle swarm optimization algorithm (PSO) to have

higher capacity and faster search efficiency. Dhillon (2009)

proposed the non-dominated sorting genetic algorithm

(NSGA-II) algorithm to simultaneously minimizing the

total system real power losses in transmission network and

cost by satisfying power balance equation. Proper sizing of

a wind/PV hybrid system has obtained with NSGA-II

procedure by Xu et al. (2006). The use of genetic algorithm

(GA) in unit sizing of photovoltaic/wind generator systems

is discussed by Koutroulis et al. (2006). Luna-Rubio et al.

(2012) reviewed different sizing technique developed in

the recent years. Another sizing technique, which is

developed in the current paper, is based on match evalua-

tion method (MEM) (Yazdanpanah Jahromi et al. 2012).

The MEM is based on the coordination criteria between

generation and consumption intervals.

In this paper, a PSO-based multi-objective algorithm

called multi-objective particle swarm optimization (MO-

PSO) is applied to different wind/PV hybrid systems in the

optimization of supply and demand matching. The results

are validated by NSGA-II. The MEM technique is devel-

oped to find the optimum system among all different

possible configurations, which offers to guarantee the

lowest investment with full use of the PV and wind turbine

components. Inequality coefficient (IC) and correlation

coefficient (CC) together can obtain good EMR for hybrid

systems. IC provides a relative measure of forecast accu-

racy in terms of deviation from the perfect forecast (Hen-

derson 2010). CC measures how well the predicted values

from a forecast model ‘‘fit’’ with the real-life data (Yuan and

Yu 2012). IC gives the match magnitude, while CC deals

with trend matching. Hence, IC and CC are selected toge-

ther to check the EMR between supplies and load demand.

Optimization algorithm selects the optimal sizing of stand-

alone wind/PV generator system with the help of PSO and

genetic algorithm. PSO and GA are the most suitable

algorithms in terms of global optimization, stochastic nature

of these renewable energies and particular nature of sizing

method. To have a perfect generation, a storage battery

bank system is considered in the optimization algorithm.

The excess generated power is used to charge the battery.

On the other hand, battery supplies the power when the total

generated power cannot meet the load.

The first step is the modeling of components in the

proposed hybrid system. Optimization procedure of this

hybrid system according to IC, CC and cost concepts is the

second step. By applying these two steps to each configu-

ration of proposed hybrid system, optimal configuration

among all cases, which can meet the maximum match

between demand and supplies, is obtained.

Modeling of hybrid wind/PV system components

To develop an overall power management strategy for the

proposed hybrid system and to investigate the system

performance, mathematical modeling of the components

has been developed. Various models for hybrid wind/PV

system have been reported in the literature. A brief

description for modeling wind/PV hybrid system is shown

in the following subsection.

The wind turbine model

There are six possible different WTs, shown in Table 1.

These WTs are most commonly used in the USA and

Europe for small wind power applications. It has been

considered a 30 m tower to be used with all turbines. The

price was obtained from reference (Rios Rivera 2008). The

lifetime of all WTs is supposed to be 20 years.

Wind speed height correction

The recorded anemometer data at a reference height (hr)

should be adjusted to the desired hub center (h) using the
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wind power law. This can be done through the following

expression (Borowy and Salameh 1996)

mðtÞ ¼ mrðtÞ
h

hr

� �c

ð1Þ

where m is the wind speed at the desired height h, mr is wind

speed measured at known height hr, c is wind shear

exponent coefficient which varies with pressure, tempera-

ture and time of day. A commonly used value for open land

is one-seventh.

Weibull probability density function

Probability density function (pdf) is the best description for

variation of wind speed. The pdf calculated the probability

that an event will occur between two end points. Note that

the pdf curve shape and its height provide in some way that

the area under the pdf curve from 0 to infinity is exactly 1.

This means that blowing of wind speed will be between 0

and infinity (m/s). There are various notations for Weibull

pdf in papers. In this paper, the Weibull PDF is defined as:

f ðvÞ ¼ b
g

v

g

� �b�1

e�
v
gð Þ

b

ð2Þ

where b is the shape factor and v is wind speed. Figures 1

and 2 are the plots of f vs. v for different values of g and b
in (8), respectively. The value of b controls the curve shape

and hence is called the shape factor. The smaller shape

factor shows that the distribution of wind speed is near the

average. The scale factor (g) shows how the bulk distri-

bution lies and how it stretched out. For wind speed profile

shown in Fig. 3, the Weibull probability distribution

function has been shown in Fig. 4.

Wind turbine output energy

The output power of wind can be calculated using proba-

bility distribution function for a specific site. The output

energy from the wind turbine can be estimated using wind

turbine power curve. The wind turbine power curve usually

given by manufacturer shows the output power of wind

turbine at any wind speed. The available energy for a wind

speed profile can be calculated as Rios Rivera (2008):

Ewt ¼ ðdaysÞðhoursÞ � Pcf ðm; b; gÞ ð3Þ

where Ewt is the generated energy of wind turbine in kWh for

a specific site. The multiplication of days by hours gives the

Table 1 Small wind turbines rating and price

Type

of

wind

turbine

Small wind turbine parameters

Product Turbine

MSRP

(US$)

Tower

price

(US$)

Watt at

12.5 m/s

1 SouthWest (Air X) 600 804.86 400

2 SouthWest (Whisper 100) 2,085 804.86 900

3 SouthWest (Whisper 200) 2,400 804.86 1,000

4 SouthWest (Whisper 500) 7,095 1,157.19 3,000

5 SouthWest (Skystream 3.7) 5,400 1,157.19 1,800

6 Aeromax Engineering

(Lakota S, sSC)

1,591 804.00 800

Fig. 1 Weibull PDF with scale

factor g = 10 and shape factor

b = 1, 2, 3, 4, 5
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total hours in the period of simulation, Pc is the output power

of wind turbine; f(v) is the Weibull PDF for wind speed m; b
is the shape factor and g is the scale factor (Fig. 5).

Modeling of PV generator

There are six possible different PV generators, presented in

Table 2. The price was obtained from reference (Rios Rivera

2008). Each hybrid system will include one of them. The

mathematical model of PV modules is given in forthcoming

subsections. The lifetime of all PV modules is 20 years.

Photovoltaic power

Simulation of PV array performance has been done by

considering the modeling of the maximum power point

Fig. 2 Weibull PDF with

shape factor b = 2 and scale

factor g = 6, 7, 8, 9, 10, 11, 12

Fig. 3 Meteorological

conditions of wind speed
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tracking (MPPT) controller at any PV module temperature

in this modeling procedure. This model can predict output

power of PV panel in different temperatures and various

irradiation levels. The output power of a PV panel can be

calculated using the following equation (Ortiz Rivera

2006):

IðVÞ ¼ Ix

1 � exp � 1
b

� � : 1 � exp
V

b � Vx
� 1

b

� �� �
ð4Þ

Vx ¼ s � Ei

EiN

:TCV � ðT � TNÞ þ s � Vmax

� s � ðVmax � VminÞ � exp
Ei

EiN

� ln
Vmax � Voc

Vmax � Vmin

� �� �

ð5Þ

Ix ¼ p � Ei

EiN

� Isc þ TCi � ðT � TNÞ½ � ð6Þ

PðVÞ ¼ V � Ix

1 � exp �1
b

� � � 1 � exp
V

b � Vx
� 1

b

� �� �
ð7Þ

where P is the output power of the photovoltaic panel (W),

I(V) is the output current of the photovoltaic panel (A),

V is the output voltage of the photovoltaic (V), Isc is the

short-circuit current at 25 �C and 1,000 W/m2, Voc is the

Fig. 4 Weibull probability density function [f(v)]

Fig. 5 Wind turbine power curves (the symbols represent data sampled from the power curve graphs given by the manufacturer)

Table 2 Solar module power at STC rating and price

Type

of PV

module

PV panels parameters

Product PV

MSRP

(US$)

Watt at

1,000 W/m2
Efficiency

1 Kyocera Solar

(KC200)

800.00 200 0.20

2 BP Solar

(SX 170B)

728.97 170 0.17

3 Evergreen

(Spruce ES-170)

731.00 170 0.17

4 Evergreen

(Spruce ES-180)

774.00 180 0.18

5 Evergreen

(Spruce ES-190)

817.00 190 0.19

6 Solar World

(SW-165)

709.97 165 0.17
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open-circuit voltage at 25 �C and 1,000 W/m2, Vmax is the

maximum open-circuit voltage at 25 �C and 1,200 W/m2

(usually, Vmax is close to 1.03 Voc), Vmin is the minimum

open-circuit voltage at 25 �C and 200 W/m2 (usually, Vmin

is close to 0.85 Voc), T is the solar panel temperature (�C),

Ei is the effective solar irradiation impinging on the cell in

W/m2. Tw is 25 �C standard test condition (STC), TCi is

the temperature coefficient of Voc in V/C, Ix is short-circuit

current at any given Ei and T; Vx is open-circuit voltage at

any given Ei and T; s is the number of photovoltaic panels

in series, p is the number of photovoltaic panels in parallel.

b is characteristic constant based on I–V curve.

The characteristic constant, b, usually varies from 0.01

to 0.18 and can be calculated using (8) with iterative

procedures

bnþ1 ¼ Vop � Voc

Voc � ln 1 � Iop

Isc
� 1 � exp �1

bn

� 	� 	� 	 : ð8Þ

Photovoltaic energy

To calculate the available output energy of PV array at a

specific site, the following equation is used:

EPV ¼ PoutðExÞ � ðSolarWindowÞ � ðTotalDayÞ ð9Þ

where Epv is the production of photovoltaic energy in kW,

‘‘SolarWindow’’ is the total time hours the sun hits the PV

module at an average hourly solar irradiation, the product

of ‘‘TotalDay’’ is to change from daily to monthly or yearly

quantities, pout (Ex) is the PV module power output at an

average hourly solar irradiation (Ex). The solar radiation

profile has shown in Fig. 6. The P–V and I–V curves for

different PV modules are shown in Fig. 7.

Battery storage system

The batteries are the most widely used devices for energy

storage in different applications. The stochastic nature of

available energy from the wind/PV system makes it neces-

sary to select a right size of battery bank that the system will

satisfy the load at any hour of a typical day. The battery sizing

is mainly depends on the number of days that the battery bank

itself can supply the load without being recharge by supply

resources which is called ‘‘autonomy days’’. Another

important factor in battery sizing procedure is the battery

depth of discharge (DOD). The battery can have the maxi-

mum life if the DOD is set to 30–50 %, for instance

DOD = 50 %. Temperature can also affect the performance

of batteries (Tbat). High temperature decreases the battery

lifetime. The batteries are normally installed inside a build-

ing where the temperature is not expected to change drasti-

cally. It is recommended to keep the battery at 25 �C. In this

temperature, the derate factor (Df) is one. The required

battery band capacity can be calculated as Rios Rivera

(2008):

CBR ¼ L � ðAutonomy DaysÞ
DODmax � Df

ð10Þ

where CBR is the required battery bank capacity (Ah), L is

the amp-hour consume by the load in a day (Ah/Day). The

Fig. 6 Meteorological

conditions of solar radiation
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number of batteries that should be connected in parallel to

reach the amp hours required by the system can be calcu-

lated using (11)

Bparalel ¼
CBR

CB

ð11Þ

where CB is the capacity of the selected battery (Ah). The

number of batteries that should be connected in series to

reach the voltage required by the system can be calculated

using (12)

Bseries ¼
VN

VB

ð12Þ

where VN is the DC system voltage (Volt) and VB is the

battery voltage (Volt).

Finally, the total number of required batteries can be

expressed as:

NB ¼ Bparalel � Bseries: ð13Þ

The selected battery characteristic is presented in

Table 3 (Industrial Power Battery 2013).

Load model

The hourly load demand is presented in Fig. 8. This is the

yearly variation of domestic load profile in the region.

Problem formulation

After modeling the hybrid components, the design prob-

lem of the hybrid wind/PV system is formulated as a

multi-objective optimization problem. The MEM tech-

nique is used to check the match rate. Three objectives

(Inequality coefficient, correlation coefficient, and total

system cost) are considered. The number of WTs and PV

modules is a decision variable in this procedure. The aim

is to seek the optimal system configuration which gives

the acceptable EMR and low total system cost. The fol-

lowing three subsections describe the objective definitions

in detail.

Correlation coefficient

The maximization of EMR between demand and supplies

in hybrid RESs is an important subject in power systems. In

Fig. 7 P–V and I–V curves for different PV modules

Table 3 Battery

characteristics
Volt Rated capacity

(Ah)

Price (US$) Dimensions (m) Weight (kg) Lifetime

(years)
Width Length Height

12 50 87 0.132 0.239 0.205 17.1 5
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other words, generation periods of renewable generators

should nearly match with consumption periods. For quan-

tifying the deviation between two set of data variables, the

least squares (LS) approach can be used (Scheaffer et al.

2011). The following equation describes LS:

LS ¼
Xn

t¼0

ðDt � StÞ2: ð14Þ

It is clear that the answer of LS is always a positive

value. The value of zero for it shows a perfect match.

Several authors have discussed and investigated the con-

cepts of correlation in differences methods. Zeng and Li

(2007) proposed a method for calculating the correlation

coefficient of fuzzy sets. Spearman’s rank correlation

coefficient is one of the objectives which can describe the

correlation between supply and demands. CC can vary

from -1 to 1. ‘‘1’’ shows the perfect positive match and

‘‘-1’’ shows perfect negative correlation, while ‘‘0’’ rep-

resents no match. The correlation coefficient can be

expressed as follows (Born 2001):

CC ¼
Pn

t¼0 ðDt � dÞ � ðSt � sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼0 ðDt � dÞ2 �

Pn
t¼0 ðSt � sÞ2

q ð15Þ

where Dt is the demand and St is the supply at time t, d and

s are demand and supply average over time period n,

respectively. St is composed of two parts; S1 and S2 are the

energy supply sources, PV modules and wind turbines,

respectively. The higher correlation coefficient gives more

electricity match between supplies and demands. Note that

as said before, the upper limit of CC is 1.

Inequality coefficient

The other objective function which can be ideally used to

describe match rate is inequality coefficient. This objective

defines the inequality in time-series due to three sources:

unequal tendency (mean), unequal variation (variance) and

imperfect co-variation (co-variance) (Born 2001). The

smaller IC gives us the larger match rate. The inequality

coefficient can vary in the range of 0–1 and can be given by

the following equation (Born 2001):

IC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
t¼0 ðDt � StÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
t¼0 Dtð Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
t¼0 ðStÞ2

q : ð16Þ

Value of IC between 0 and 0.4 shows good matches and

value above 0.5 represents bad match (Waqas 2011). IC is

the best criterion for matching between supplies and

demand. However, CC is also good but not as good as IC.

Total system cost

A cost analysis of the system is performed for each con-

figuration according to the concept of annualized cost of

system (ACS). For all wind/PV configurations, the ACS is

Fig. 8 Yearly variation of

domestic load profile
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composed of the annualized capital cost (ACC), annualized

operation and maintenance cost (AOC), and annualized

replacement cost (ARC). It is supposed that the life time of

the project is 20 years. ACS can be calculated as:

ACS ¼ ACC(PV + Wind + Tower + Battery)

þ AOC(PV + Wind + Tower + Battery)

þ ARC(Battery) ð17Þ

Annualized capital cost (ACC)

ACC of each component is as follows:

ACC ¼ Ccap � CRFði; nÞ ð18Þ

where Ccap is capital cost of each component and CRF is

capital recovery factor, defined as:

CRFði; nÞ ¼ ið1 þ iÞn

ð1 þ iÞn � 1
: ð19Þ

The project life time is n and the annual interest rate

(i) consists of nominal interest rate (iloan, the rate at which a

loan can be obtained) and the annual inflation rate, f, by the

equation given below:

i ¼ iloan � f

1 þ f
ð20Þ

Operation and maintenance cost (AOC)

The maintenance cost of each component can be calculated

as follows:

AOC ¼ AOCð1Þ � ð1 þ f Þn ð21Þ

where AOC (1) is the maintenance cost of that component

for the first year of the project.

Annual replacement cost (ARC)

The components which have a lifetime less than the life-

time of the project need to be replaced during the project

lifetime. The ARC can be calculated from the following

equation:

ARC ¼ Crep � SFFði; nrepÞ ð22Þ

where Crep is replacement cost of units, SFF is sinking fund

factor which depends on lifetime of units (nrep) and interest

rate (i) as follows:

SFFði; nrepÞ ¼
i

ð1 þ iÞnrep � 1
: ð23Þ

The cost parameters used in this paper are presented in

Table 4 (Wei 2007; Vafaei 2011).

Multi-objective optimization procedure using MOPSO

By mathematical formulation of optimization design

problem and applying it to each configuration of hybrid

system, the best combination of components (minimizing

IC and ACS and also maximizing CC) has been obtained.

The proposed objective functions conflict with each other.

It is not possible to improve them simultaneously and there

is always a trade-off between them. The optimization

design problem has nonlinearity characteristic due to the

nonlinear behavior of the hybrid components. To reach the

best combination for IC, ACS and CC, long-term system

performance is required. Daily and seasonal variations of

RES and the load demand make design problem more

complex, as well as mismatch between them.

Implementation of MOPSO and NSGA-II in various

engineering and business applications has been done in the

recent years. These two algorithms are well suited to solve

these kinds of problems. The reason is that they are pop-

ulation based and this property allows them to find an

entire set of Pareto-optimal solution in one single simula-

tion run. They can seek for the best configuration among all

possible cases in somehow the electricity production peri-

ods have better match with the consumption periods than

others, in the lowest total system cost. With the same

number of iteration and population, MOPSO has higher

speed than NSGA-II. The good sizing algorithm is the one

which can find the optimal size of each component in each

configuration to maximize the EMR between demand and

supplies. By employing the MOPSO algorithm to each

configuration, a set of possible solutions (Pareto set) will be

obtained. These solutions validated with NSGA-II. The

Table 4 Economic parameters of the project

Lifetime

(years)

Wind turbines maintenance

cost for the first year (US$)

Wind tower maintenance

cost for the first year (US$)

PV modules maintenance

cost for the first year (US$)

Inflation rate

f (%)

Interest rate

iloan (%)

20 95 6.5 65 2 5
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number of PV panels and wind turbines is a design vari-

able. The minimum value (lower limit) of design variables

is selected as 1 to be sure that there is at least one of each

supply in the system and the upper bound of them is set as

maxðDÞ=minðSnÞ. Where max (D) and min (Sn) are the

maximum and minimum values of demand and supplies

over considered time period, respectively. The flow chart

of the MOPSO algorithm is shown is Fig. 9.

Fig. 9 The scheme of

optimization using MOPSO

(or NSGA-II)
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Results

The output powers of PV array and wind turbine were

calculated according to the model which described before

by specifications of wind turbine and PV module given in

Tables 1 and 2. The output power of PV panels calculated

with considering MPPT controller. The battery sized based

on the given characteristic on Table 3. The DC voltage of

the battery system will be 48-V. The number of autonomy

days is supposed to be 3 days. The DOD is selected 50 %

for longevity of battery lifespan. The derate factor is 1

because the batteries are kept at a temperature of 25 �C.

Taking into account the above consideration, the total

number of batteries is defined as 12 (4 batteries in series

and 3 batteries in parallel).

The optimization process which dynamically searches

the optimal configuration to minimize the IC and ACS and

also maximize the CC is employed. The results of these

studies suggest the choice of Kyocera Solar (KC200) PV

module and Southwest (Air X) wind turbine for the pro-

posed hybrid power system, compared to the other con-

figurations. This configuration provides the lowest cost in

larger EMR. Other configurations, either have not optimal

IC range (0 B IC B 0.4) or optimal CC range (CC = ?1,

-1) or have higher cost than the selected configuration. For

this configuration, results obtained for the capacities of WT

and PV modules from multi-objective algorithms (MOPOS

and NSGA-II), and the Pareto front are recorded in Table 5

which shows the optimal solutions. As said before, to have

a good EMR, IC values must be as low as possible. The

values lower than 0.4 are acceptable for providing good

match rate between supplies and demand. The ACS cost

needs to be as low as possible. Higher CC is another cri-

terion for this process. Note that the upper limit of CC is

one.

It is important to know that IC is the main objective

function which is most importantly desirable (Waqas 2011).

Although the algorithm involves CC and ACS as other

objectives for optimization procedure, but it does not pro-

vide equal importance as that of IC. CC is also more

important objective with respect to ACS. Owing to the above

considerations, the Pareto front has been plotted for IC and

CC, IC and ACS, and also CC and ACS whose obtained

curves are shown in Figs. 10, 11 and 12, respectively. The

Table 5 Pareto front/optimal solutions obtained from multi-objec-

tive optimization algorithm

Solution number Optimization algorithm made in MOPSO and

NSGA-II

NPV NWIND IC CC ACS

1 7 1 0.1528 0.9223 7,683/30

2 6 1 0.1563 0.9224 6,804/00

3 5 1 0.1830 0.9218 5,924/80

4 4 1 0.2319 0.9202 5,045/57

5 4 2 0.1282 0.9119 6,574/20

6 2 2 0.2056 0.9037 4,815/70

7 6 2 0.1480 0.9172 8,332/70

8 2 4 0.1301 0.8981 7,873/00

9 5 2 0.1283 0.9149 7,453/40

10 3 2 0.1549 0.9083 5,694/96

Fig. 10 2D Pareto front for the

last generation. Inequality

coefficient (IC) vs. correlation

coefficient (CC)
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evolution of the 3D Pareto front can be observed in Fig. 13.

When a pre-specified iteration count (N = Nmax) is reached,

MOPSO is terminated. Nmax = 200 and a population size of

Npop = 200 are considered.

The solutions found by these optimization algorithms

are shown in Table 5. These results show the optimum

combination of equipment needed to supply the energy to

the load at the lowest cost possible. The 10 best sizing

selections from 30 runs in Matlab for best configuration

have been obtained. The designer can select the solution

that most appropriate to the requirements from the set of

solutions obtained, studying for each solution its IC, CC

and ACS. Hence, the designer can limit the acceptable

upper and lower bounds of each objective function, and

consider several solutions, which agree with the limits that

have been imposed. The results show good EMR between

supplies and demand, and the practical utility of this pro-

cedure. Table 5 shows sizing number of 2 for both PV

modules and WT, and gives the minimum cost in accept-

able EMR.

Fig. 11 2D Pareto front for the

last generation. Inequality

coefficient (IC) vs. annualized

cost of system (ACS)

Fig. 12 2D Pareto front for the

last generation correlation

coefficient (CC) vs. annualized

cost of system (ACS)
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Conclusion

In this paper, a new sizing method has been applied to the

multi-objective design of hybrid wind/PV systems of

electrical energy generation. The MEM is developed to

calculate the optimal size of each component based on

MOPSO algorithm and NSGA-II. The both selected algo-

rithms have the ability to attain the global optimum solu-

tion. The best solutions, that the applied algorithm has

found, simultaneously consider three objectives: Inequality

coefficient, correlation coefficient and ACS. Battery stor-

age systems are used to even out irregularities in the solar

irradiation and wind speed. Obtained solutions are non-

dominated and they form the Pareto front. Results suggest

the choice of Kyocera Solar (KC200) PV module and

Southwest (Air X) wind turbine for the proposed hybrid

power system, among all configurations. Simulation results

show that a configuration with two PV and two WTs has

the minimum ACS value compared to other configurations,

in acceptable EMR. The designers can select other con-

figurations among the Pareto set which fits their desire. It is

worth mentioning that the proposed methodology can be

effectively employed for any composition of hybrid energy

systems in any locations taking into account the meteoro-

logical data and the consumer’s demand.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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