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Abstract Decentralized supply chain management is

found to be significantly relevant in today’s competitive

markets. Production and distribution planning is posed as

an important optimization problem in supply chain net-

works. Here, we propose a multi-period decentralized

supply chain network model with uncertainty. The impre-

cision related to uncertain parameters like demand and

price of the final product is appropriated with stochastic

and fuzzy numbers. We provide mathematical formulation

of the problem as a bi-level mixed integer linear pro-

gramming model. Due to problem’s convolution, a struc-

ture to solve is developed that incorporates a novel

heuristic algorithm based on Kth-best algorithm, fuzzy

approach and chance constraint approach. Ultimately, a

numerical example is constructed and worked through to

demonstrate applicability of the optimization model. A

sensitivity analysis is also made.

Keywords Decentralized supply chain � Production–
distribution planning problem � Bi-level approach �
Network design

Introduction

Fierce competition in today’s global markets, introduction

of products with short life cycles, and heightened cus-

tomers’ expectations have caused business enterprises to

focusly invest in their supply chain (Liang-Hsuan and

Hsin-Hung 2015). A supply chain is a network of organi-

zations that work with each other to convert and move

products from the raw materials stage to the final client.

These organizations are connected together through phys-

ical, information and financial flows. Having an efficient

and lean supply chain network with effective intercon-

nections between various levels of the chain can lead to a

significant decrease in costs and increase service levels.

In a supply chain network, inappropriate making deci-

sions could have a negative impact on performance of the

supply chain (Garcia and You 2015). Decision making in

supply chain network is characterized in two ways: cen-

tralized or decentralized. In a centralized supply chain, all

the decisions are made by a single decision maker at a

central location for all the levels in the entire supply chain

system (Cao and Chen 2006). The typical objective in a

centralized supply chain is to minimize the total cost of the

system. In decentralized supply chain, each entity decides

its own effective strategy without considering the impact

on the other entities of the supply chain system (Lai 1996).

In this way, centralized decisions lead to global optimiza-

tion, whereas decentralized decisions lead to local opti-

mization. It is obvious that entities in the context of supply

chain network refer to any organizations and facilities

involved in the supply chain: suppliers, manufacturers,

distributers and customers. In practical situations in most

cases, many different, non-cooperative parties control dif-

ferent entities within the supply chain, leading to non-co-

operative decision making. Each party has its own
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objective(s) and will make its own decisions, potentially

competing against other entities. These decisions include

the location of manufacturing plants or distribution centers,

the procurement of raw materials, the production process,

inventory control, the delivery of end product, etc. Thus,

researchers face the challenge of proposing appropriate

models of multi-layer decentralized supply chains as well

as presenting effective computational tools for the deter-

mination of solutions.

In the decentralized supply chain, the production and

distribution are controlled by different decision makers

with a hierarchical relationship between them and each of

them has its particular objective. So the decisions made at

each process need to consider and interact with the deci-

sions taken in the other process. Despite the fact that joint

to production–distribution models leads to improved

management of the supply chain, consideration of pro-

duction and distribution decisions with decentralized

structure comes at the cost of higher model complexity.

This has led to the need for using simplistic and unrealistic

assumptions in most of the existing studies on PDP prob-

lems that may lead to inaccurate results. In the real world,

supply chains are full of uncertainties. Ignoring uncertainty

in supply chain planning problems may result in non-op-

timal and/or infeasible solutions for real case studies.

Hence, in order to provide solutions more realistic to actual

situations, optimization models must be extended to

incorporate uncertainty. Likewise, most of the researchers

tend to overlook shortage costs and assume that all

demands must be fulfilled on time (Calvete et al. 2014;

Calvete et al. 2011; Dempe 2002). Whereas, supply chains

may frequently face shortage situations in practice due to

the limited production capacity. Therefore, there is a need

to further actualize the problem by assuming that shortage

is authorized.

Base on limitation aforementioned, recall that the

problem to be addressed is a joint production–distribution

model in decentralized supply chain consisting of multiple

manufacturing plans, distributions centers (DCs) and cus-

tomer groups that aim to overcome the aforementioned

limitations. The proposed model determines the number

and location of DCs, the assignment of customers to DCs,

and the size of orders for each DC. The problem is for-

mulated by using of bilevel programming model that in the

upper level distribution company controls the opening of

existing distribution centers and at the lower level the

manufacturing company handles plants’ operation costs.

The uncertain natures of the demands and price of final

product are addressed in the proposed model utilizing

stochastic theory and fuzzy sets. To solve the proposed bi-

level mixed integer linear programming model, we

addressed a novel heuristic algorithm based on Kth-best

algorithm which fuzzy programming and stochastic

chance-constrained programming method are embedded.

The performances of the proposed model and solution

method are demonstrated with numerical experiments and

the results are discussed in detail.

The remainder of our work is organized as follows. In

‘‘Literature review’’ section, the brief of literature on pro-

duction–distribution problems with decentralized decision

making as well as modeling efforts for tackling uncertainty

environment are reviewed. A definition of the production–

distribution planning (PDP) problem is given in ‘‘Problem

description’’ section. Notations, assumptions and mathe-

matical formulation of the decentralized SC modeling are

presented in ‘‘Mathematical model’’ section. In section

‘‘Solution methodology’’, an algorithm is presented to

solve the complex bi-level PDP model. Numerical exper-

imentation and the obtained results by the proposed algo-

rithm and sensitivity analysis are presented in ‘‘Numerical

testing’’ section. Finally, conclusions and directions for

further research are provided in ‘‘Conclusion and sugges-

tions for further research’’.

Literature review

Here, we give a review of production–distribution problem

modeling, optimization under uncertainty and Bi-level

programming.

Production–distribution planning problem

Production–distribution processes have attracted consider-

able attention in the literature of supply chain management

(SCM). A comprehensive form of the production–distri-

bution planning (PDP) is known as a multi-echelon net-

work that considers supplier, producer, distributor and

customer. Here, we review different approaches towards

PDP models. Several authors have studied modeling of

PDP in supply chains (SCs). They proposed mainly clas-

sical operations research methods considering some aspects

of SCM such as network design, production scheduling,

distribution and inventory management.

Park et al. (2007) designed the multi-product multi-pe-

riod PDP model consisting of supplier, plant, and distri-

bution center (DC) to minimize the total cost and presented

a genetic algorithm (GA) to solve the problem. Kazemi

et al. (2009) developed a multi-echelon supply chain-based

scenarios for production–distribution problem. They

applied a multi-factor system based on GA as the solution

algorithm. Chang (2010) investigated an integrated supply

chain network (SCN) including suppliers, plants, distribu-

tors, and retailers for minimizing the total operating cost of

the chain. They solved the problem by a GA and co-evo-

lutionary algorithm. Jolai et al. (2011) developed a multi-
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product multi-period PDP model in an SCN with several

objectives in a fuzzy environment. To solve, the model

metaheuristic of using GA, particle swarm optimization

(PSO), and a heuristic algorithm based on GA were pro-

posed. Liu and Papageorgiou (2013) and Liu et al. (2014)

proposed multi-objective optimization model for integrated

PDP problem in the supply chain. Sarrafha et al. (2015)

developed a bi-objective model with a multi-periodic

structure for an SCN involving suppliers, factories, distri-

bution centers, and retailers. The two objectives were

minimizing the total SC cost as well as minimizing the

average tardiness of products to DCs and the model was

solved using a multi-objective biogeography algorithm.

Supply chain network design under uncertainty

The SCN design optimization problems with uncertainty

have been addressed and developed in a wide variety of

past researches (Taleizadeh et al. 2008a, b, 2010, 2011;

Olivares-Benitez et al. 2012; Wang et al. 2011). These

researches typically considered demand as the uncer-

tainty parameter of the supply chain (El-Sayed et al.

2010; Rodriguez et al. 2014; Georgiadis et al. 2011;

Cardona-Valdés and Alvarez 2011). Mirzapour Al-e-

hashem et al. (2011) proposed a multi-site, multi-period,

multi-product aggregate production planning problem in

a supply chain consisting of multiple suppliers, multiple

plants and multiple customers under cost and demand

uncertainty. The proposed bi-objective model is solved

as a single-objective mixed integer programming model

using the LP-metrics method. Moreover, Azaron et al.

(2008) developed a multi-objective robust stochastic

programming approach for designing SCs under uncer-

tainty. In their approach, in addition to demands, sup-

plies, processing, transportation, shortage and capacity

expansion costs were also considered as the uncertain

parameters. They applied the goal attainment technique

to obtain the Pareto-optimal solutions. Hnaiena et al.

(2010) addressed a supply planning model for a two-

level assembly systems under random lead times. They

solved this problem by two multi-objective heuristics

methods based on GA algorithm. Song et al. (2014)

proposed a mathematical model for the optimal material

procurement and production control problem in a man-

ufacturing SC with multiple suppliers in the presence of

multiple uncertainties such as uncertain material sup-

plies, stochastic production times, and random customer

demands. They employed the integrated inventory man-

agement policy for procurement and production control

using the stochastic dynamic programming approach.

Pasandideh et al. (2015) addressed a multi-product SCN

design problem under uncertainty with three levels of

manufacturers, distributors and customers. The problem

of deciding the number of products, number and loca-

tions of distribution centers and the number of goods

going from factories to distribution centers and to the

customers, factory inventories and slack of time periods

were allowed. They utilized a non-dominated sorting

genetic algorithm (NSGA-II) to solve the problem.

Decentralized supply chain

Decentralized approach to supply chain network deci-

sions is subject to various economic factors at different

levels of the chain and the effectiveness of the decision-

making process is quite important. Multi-level linear

programming (MLLP) is a solution technique for solving

decentralized decision-making problems. MLLP prob-

lems generally include sequential decision processes

(from top to bottom), interactive decision makings, and a

leader–follower relationship within two adjacent levels

(Cao and Chen 2006; Simchi-Levi et al. 2004; Lu et al.

2007; Karakitsiou and Migdalas 2008; Sarrafha et al.

2015). Marinakis and Marinaki (2008) developed a bi-

level model in a decentralized decision making envi-

ronment for capacitated plant selection. The upper level

decided on the location of facilities. The lower level

involved decision on the passes serving the clients. This

problem combined a GA and was solved by a com-

mercial software package. Marinakis (2015) addressed a

bi-level model for solving a capacitated location routing

problem. A new version of the particle swarm opti-

mization (PSO) algorithms was presented and applied for

the solution of this problem. Calvete et al. (2011) con-

sidered a PDP problem in a three-level supply chain

network. They presented a bi-level model for problem in

which the first level decides the design of the routes

which serve the customers and the second level involved

decision on the manufacturing process. An ant colony

optimization-based approach was developed to solve the

problem using ants to construct the routes and exact

optimization to solve the production problem. Xu et al.

(2013) developed a tri-level programming model for the

three-stage supply chain management based on the

conditional value-at-risk (CVaR) measure of risk man-

agement. In this model, the supplier and the manufac-

turer, at the upper and the middle levels, maximize their

own profits while at the bottom level, the retailer max-

imizes her CVaR of the expected profit. The authors

showed that the proposed tri-level programming model

could be transformed into a bi-level programming one to

be solved by methods at hand. Calvete et al. (2014)

investigated decentralized supply chain network includ-

ing manufacturing plants, warehouses and customers.

They developed a mixed integer bi-level programming

model for designing and planning the production–
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distribution system of supply chain. In the bi-level

model, the distribution company controls the location of

depots and the distributing process and the manufacturer

company controls the manufacturing process. To solve

the problem, they developed a heuristic algorithm based

on evolutionary algorithms. Wang and Lee (2015)

addressed a capacitated facility location and task allo-

cation problem of a multi-echelon supply chain against

risky demands. Two and three-echelon networks were

considered to maximize the profit. They represented the

problem by a bi-level stochastic programming model. A

revised ant colony algorithm was proposed to solve the

problem. Yanfang et al. (2016) proposed a bi-level

model for integrated PDP problem in a three-echelon

supply chain network. In this model, at the upper level

of hierarchy, the core firm controls the opening of plants

and warehouses in order to serve customers and reduce

the total cost of the chain. In the lower level, the pro-

duction part and distribution part make decisions based

on the upper level decisions. A hybrid genetic algorithm

with a fuzzy logic controller algorithm was proposed for

solving the model.

Using the above considerations, here we propose a

multi-period, multi-product production distribution plan-

ning model for a decentralized supply chain under uncer-

tainty. The supply chain network consists of plants,

distribution centers and customer group. The imprecision

related to uncertain parameters like demand and price of

the final product is handled with stochastic and fuzzy

numbers. We formulate the problem as a bi-level mixed

integer linear programming model. Moreover, a solution

framework is developed by integrating a novel heuristic

algorithm based on Kth-best algorithm, fuzzy programming

and stochastic chance-constrained programming. Problems

are solved using the software package ‘‘LINGO’’. Even-

tually, a numerical example is used to validate the practi-

cality and efficiently of the proposed algorithm.

Problem description

Here, we consider the development of a model for decen-

tralized supply chain network in markets. The chain con-

sists of several customers zone, distributors and

manufacturers (see Fig. 1). Customers are at the first level

while at the second level there are storage centers which

transport a number of products to the customers and at the

third level, there are manufacturers (producers) which

provide the products for storage centers. The unsatisfied

demand of each customer in each time period is assumed to

be backordered; however, the entire unsatisfied customers’

demands must eventually be satisfied.

Mathematical model

Notations

To formulate a mathematical model, the following nota-

tions are used.

Sets of indices

M Number of manufacturing plants (m = 1, …, M)

J Number of potential warehouse distribution centers

(j = 1, …, J)

I Number of customers (i = 1, …, I)

K Number of products (k = 1, …, K)

T Number of time periods (t = 1, …, T).

Parameters

pcmt
k Production cost of product k by plant m in period t/

unit

hpmt
k Holding cost of product k in plant m in period t/unit

hdjt
k Holding cost of product k in distribution center j in

period t/unit

tpmjt
k Transportation cost of product k from plant m to

distribution center j in period t/unit

tdjit
k Transportation cost of product k from distribution

center j to customer i in period t/unit

scmt
k Set up cost of product k by plant m in period t/unit

fppkjmt Fuzzy product price k supplied by plant m to

distribution center j in period t/unit

bcit
k Backorder cost of product k in supplying the

demand of customer i in period t/unit

... ...

Product Product

Manufacturer Distributor Customers’ zone

Fig. 1 The structure of a three-level supply chain network
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D
_

kit
Demand value of customer i for product k at time

period t which is a random variable having a

normal distribution

fj Fixed cost for establishing distribution center j

ptmt
k Production time required for manufacturing plant

m to produce one unit of product k in period t/unit

stmt
k Setup time of producing product k by

manufacturing plant m in period t/unit

ttmt Total available production time for plant m to

produce products in period t

WPm Total capacity available for manufacturing plant

m to store products (m3)

Wj Total capacity available for distribution center j to

store products (m3)

Rkm Total transportation capacity of plant m to transfer

product k

vk Volume of one unit of product k (m3)

Lb Lower bound on the percentage of average total

number of products dispatched to customers

Ub Upper bound on the percentage of average total

number of products dispatched to customers

kjt Parameter of an exponential distribution used to

model failure time of warehouse j in period t

Za Upper critical point of the standard normal

distribution used for a (1 - a) % chance constraint

on the solution obtained

a Chance of rejecting an infeasible solution (a

solution that does not satisfy a constraint)

Decision variables

Zmt
k 1, if product k is produced by plant m in period t; 0,

otherwise

Yj 1, if distribution center j is opening; 0, otherwise

QPmt
k Quantity of product k produced by plant m in

period t

Ujmt
k Quantity of product k transported by manufacturing

plant m to warehouse j in period t

Nijt
k Quantity of product k dispatched from distribution

center j to customer i in period t

Sit
k Backorder quantity of product k for customer

demand i in period t

IPmt
k Inventory of product k in plant m at the end of

period t

Ijt
k Inventory of product k in distribution center j at the

end of period t

Production model

In the production model, the objective is to minimize the

total cost, which typically includes the production costs and

the dispatching costs among plants and distributors. The

production operations can be formulated as follows:

MinFMan ¼
X

M

m¼1

X

T

t¼1

X

K

k¼1

sckmt:Z
k
mtþ

X

J

j¼1

X

M

m¼1

X

T

t¼1

X

K

k¼1

pckmt:QP
k
mt

þ
X

T

t¼1

X

M

m¼1

X

K

k¼1

X

J

j¼1

tpkjmt:U
k
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X

M

m¼1

X

T

t¼1

X

K

k¼1

hpkmt:IP
k
mt

s:t:

ð1Þ
X

K

k¼1

X

M

m¼1

vk:QPjmt �Wj:Yj; 8j; t ð2Þ

X

K

k¼1

ptkmt:QP
k
mt þ

X

K

k¼1

stkmt:Z
k
mt � ttmt; 8m; t ð3Þ

X

K

k¼1

vk:QP
k
mt �WPm; 8m; t ð4Þ

X

K

k¼1

vk:IP
k
mt �WPm; 8m; t ð5Þ

X

K

k¼1

Uk
jmt �

X

K

k¼1

Nk
ijt; 8j;m; t ð6Þ

Ikm;t¼Ikm;t�1 + Qk
mt þ

X

J

j¼1

Uk
jmt; 8m; k; t ð7Þ

Zk
mt 2 0; 1f g; 8m; k; t ð8Þ

Qk
mt; Ikmt;U

k
jmt � 0; 8m; j; k; t: ð9Þ

The objective shown as (1) is to minimize the producers’

costs, including setup cost of the production, manufactur-

ing the products, transportation costs from plants to DCs

and inventory holding costs of the product. The constraints

(2) limit the volume of the products dispatched to potential

DCs to their total storage capacity. The constraints (3)

guarantee that the total required time to produce the

products cannot exceed the mean value of the total avail-

able time. The constraints (4) state that the production

volume must be less than or equal to the total storage

capacity of the plants. Constraints (5) ensure that the end-

product inventory is less than or equal to the total storage

capacity of the plants. Constraints (6) specify that the total

quantity shipped from plants cannot exceed their capaci-

ties. Constraints (7) control the remained inventory in

every plant at the end of every period. Constraints (8) and

(9) are logical constraints to, respectively, describe the 0–1

variables and the non-negative variables.

Distribution model

In the distribution part, cost minimization is as an objective

for the network. The objective function involves inventory
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holding costs and the transportation costs from distributors

to markets. The corresponding model is:

Min FDis ¼
X

J

j¼1

fj:Yj þ
X

T

t¼1

X

M

m¼1

X

K

k¼1

X

J

j¼1

ppkmt:U
k
jmt

þ
X

J

j¼1

X

T

t¼1

X

K

k¼1

hdkjt:I
k
jt þ

X

T
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X

I

i¼1

X

K
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X

J
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k
ijt

þ
X

I

i¼1

X

T
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X

K
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k
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X

J

j¼1

Xk
ijt �Dk

it; 8t; i; k ð11Þ

X

K

k¼1

vk:I
k
jt �Wj:Yj; 8j; t ð12Þ

X

J

j¼1

Uk
jmt �Rk

m:Z
k
mt; 8k; t;m ð13Þ

Lo�
X

T
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X

I

i¼1

X

K

k¼1

X

J

j¼1

e�kjt :Nk
ijt �Up ð14Þ

Ikj;t ¼ Ikj;t�1 þ
X

M

m¼1

Uk
jmt �

X

I

i¼1

Nk
ijt; 8j; k; t ð15Þ

Skj;t ¼ Skj;t�1 þ Dk
it �

X

J

j¼1

Nk
ijt; 8i; k; t ð16Þ

Yj 2 0; 1f g; 8m; j; k; t ð17Þ

Skit; N
k
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k
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k
jt � 0; 8m; j; k; t: ð18Þ

The objective function (10) is to minimize the sum

of DCs’ and customers’ costs, including fixed cost of

establishing DCs, purchasing product, holding costs of

products, transportation costs from DCs to customers

and inventory shortage costs. The constraints (11)

guarantee that the quantity of any product transferred to

each customer in a period cannot exceed her demand.

The constraints (12) restrict the end inventory of

potential warehouses to their available capacities. Con-

straints (13) specify that the total quantity shipped from

any plant cannot exceed its capacity. Constraint (14)

guarantees that the average total number of products

transferred to customers cannot exceed the upper bound

while it must be more than or equal to the lower bound.

The constraints (15) are the balance equations for the

end inventory of potential DCs. Similarly, constraints

(16) are the balance equations for shortages of the cus-

tomers’ demands. The variable types are defined by (17)

and (18).

Bi-level model

Bi-level optimization models have been used to address

a variety of real-world problems, in which the hierar-

chical and competitive structure of decision making

prevails.

In the hierarchical decision making, the upper level is

called the leader, while at the lower level it is referred to

as the follower (Dempe 2002). The controls for the

decision variables are divided among the different levels

of decision making and the individual objective func-

tions are optimized (Bard 1998). Bi-level programming

(BLP) has been proposed to deal with multi-level deci-

sion problems when there are only two decision levels.

A general model of a bi-level programming problem is

(Bracken and McGill 1973)

min
x2X

F1ðx; yÞ

s:t:G1 x; yð Þ� 0

min
y2Y

F2ðx; yÞ

s:t:G2 x; yð Þ� 0

x; y� 0:

As seen in this model, the leader tries to minimize

F1(x, y) selecting an x 2 X and considering the best

response of the follower, y*(x), minimizing F2(x, y) at the

lower level. One may also consider functional constraints

in the form G1(x, y) B 0 and G2(x, y) B 0 at each level of

the problem.

To model the PD problem in an integrated manner,

we will introduce a bi-level programming model to give

optimal decisions of the manufacturer and the distributer

in a three-echelon supply chain. The upper level (dis-

tribution problem) controls which DCs should be used

and determines the amounts of customers’ orders sup-

plied from each DC aiming to minimize the sum of the

fixed costs associated with operating the DCs plus

the inventory and transportation costs. In order to meet

the customers’ demands, sufficient product supply has to

be available at the DCs. After the leader’s (upper level)

decisions, the lower level (production problem) aims for

cost minimization by minimizing production, inventory

costs and transportation costs from the plant to the DCs.

Feedback regarding the production, transport, and

inventory decisions is sent to the leader and the leader

then revises her decisions with cost minimization in

mind. This process continues until a satisfactory solution

is found. Therefore, an optimal decision is found through

the interactions of all the involved SC members. Bi-level

programming can be used to represent this interaction

among the leader and the follower as seen in the bi-level

structure of the complex real-life decentralized
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production distribution planning (PDP) model in Fig. 2.

The bi-level optimization PDP problem can be formu-

lated as explained below.

Uncertain model

In reality, rather than having exact and complete infor-

mation related to decision criteria and constraints at hand,

only tangible and intangible information are usually

available to decision makers. In supply chain, price

uncertainty differs from demand uncertainty. Price usually

fluctuates within a large range, and cannot be predicted

more accurately than demand uncertainty. Thus, they are

fuzzy data rather than crisp values and a possibility theory

is suitable for modeling the uncertainty in the product’s

price. Most companies focus on collecting a large data set

for demand forecasting. Demand uncertainty, therefore, is

often modeled by probabilistic distributions through ana-

lyzing the market data (Zhang et al. 2011). To take both

data into consideration, we develop an integrated bi-level

model to accommodate for both fuzzy and stochastic data,

which we appropriately call fuzzy-stochastic bi-level

model (FSBLP). Here, utility theory is employed to treat

the stochastic data and fuzzy set theory is used to handle

the fuzzy data. The complete model is now formulated as

follows.
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Conversion of chance-constrained programming

problem

The model is a mixed stochastic and fuzzy programming

one. Here, we address a simplification of the stochastic and

fuzzy variables. For stochastic and fuzzy variable terms,

we introduce chance-constrained programming (CCP) of

(Charnes and Cooper 1962). CCP deals with uncertainty by

specifying the desired levels of confidence with which the

constraints hold. A typical chance-constrained program-

ming problem has the following form:

Min f x;nð Þ
s:t: gjðx; dÞ� 0; j ¼ 1; . . .; p;

ð20Þ

where x is composed of the decision variables of the model,

n and d are fuzzy and stochastic vectors, respectively,

f(x, n) is the fuzzy objective function, and gj(x, d) is the

stochastic constraint. Problem (19) is converted to chance-

constrained programming model at a confidence level a
and b as follows:

MinF

s:t: poss f ðx; nÞ� F
� �

� a

pr gjðx; dÞ� 0; j ¼ 1; . . .; p
� �

� b;

ð21Þ

where poss(.) and pr(.), respectively, denote the possibility

and probability of a certain event, F denotes the upper

bound of the related fuzzy variable, and a and b are the

acceptable risk levels, i.e., a-cut levels used to convert

associated fuzzy number to a crisp one; see Zhang et al.

(2011), for more details.

Converting fuzzy-stochastic BLP model to crisp

BLP model

Using the aforementioned concepts, a deterministic

equivalent of the fuzzy-stochastic optimization model is

obtained as a bi-level mixed integer linear programming

problem as follows:
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In the above model, fuzzy numbers are converted to

interval numbers with upper and lower bounds using a-
cuts. We consider trapezoidal fuzzy numbers in the model

with (.)L denoting the lower bound of the a-level set of the
associated fuzzy variable. The main advantages of trape-

zoidal numbers are the flexibility and simplicity of the

associated fuzzy arithmetic operations. For example, a

trapezoidal fuzzy number ~a ¼ a1; a2; a3; a4ð Þ can be

transformed into an interval number a = ((1 - a) * a1 ?

a * a2, a * a3 ? (1 - a) * a4) by use of a-cuts (Cao and

Chen 2006).

Solution methodology

According to the structure of the bi-level problem,

involving a constraint region defined by another opti-

mization problem, the problem is non-convex and trouble

to solve. Even when all the functions involved are linear,

the problem is NP-hard. Several heuristic methods have

been proposed to solve the bi-level programming problems

(Bard and Moore 1990; Lu et al. 2007; Emam 2013;

Hansen et al. 1992).

Here, we present an algorithm for the multi-period

decentralized PD planning problem formulated as a

mixed integer linear bi-level programming problem.

The proposed fuzzy-stochastic bi-level programming

model is complicated and difficult to solve. The

mathematical model becomes computationally

intractable when the number of manufacturers, distrib-

utors, part/product items, and time periods are large.

Figure 3 outlines our solution methodology. Details of

the technical steps necessary for solving the model are

described next.

To solve problem (19), it is first transformed into

(22), a BLP problem. According to Mirzapour Al-e-

hashem et al. (2011), the solution of a BLP problem

occurs at a vertex of the constraint region and, thus, the

result of a linear bi-level Kth-best algorithm (Bialas and

Karwan 1984) can be used to solve the problem. A

detailed algorithm for solving the decentralized multi-

period bi-level supply chain model is shown as Algo-

rithm 1 below.

Algorithm 1: solve decentralized multi-period
bi-level supply chain problem

Step 1 Transform the FSBLPproblem (19) into problem (22).

Step 2 Set it = 1. Solve the linear programming problem

distribution problem (upper level, L = 1) using the simplex

method (e.g., see Jolai et al. 2011) to obtain the optimal

solution (Yj, Ujmt
k , Nijt

k , Ijt
k , Bit

k), let W = {(Yj, Nijt
k , Ijt

k ,

Bit
k)it=1} and T = [.

Step 3 Solve the manufacturer problem (lower level

problem, L = 2) by using simplex method with fixed

decision variables obtained for the upper level (Yj, Nijt
k ,

Ijt
k , Bit

k). Let the obtained solution be (Gmt
k , Ujmt

k , QPmt
k ,

IPmt
k ). If (Ujmt

k )it=1
L=1 = (Ujmt

k )it=1
L=2 then stop (global optimum of

the FSBLP problem is at hand).

Step 4 LetW[it] denote the set of adjacent extreme points of

(Yj, Ujmt
k , Nijt

k , Ijt
k , Bit

k)it such that Fdis(Yj, Nijt
k , Ijt

k , Bit
k) C

Fdis(Yj, Nijt
k , Ijt

k , Bit
k)it. Let T = T [ {(Yj, Ujmt

k , Nijt
k , Ijt

k , Bit
k)it}

and W ¼ W [W½it�
� �

nT :

Initial leader’s decisions 

Find optimal solutions (by follower)

Return the optimal solutions to leader

Calculate leader’s objective values with 
follower's solutions

Is solution 
satisfactory?

Stop

Revised decisions
No

Yes

Fig. 3 A flowchart of decentralized bi-level decision making
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Step 5 Set it = it ? 1 and choose (Yj, Ujmt
k , Nijt

k , Ijt
k , Bit

k)it
from W such that Fdis(Yj, Ujmt

k , Nijt
k , Ijt

k , Bit
k)it =

min {Fdis(Yj, Ujmt
k , Nijt

k , Ijt
k, Bit

k)|(Yj, Ujmt
k , Nijt

k , Ijt
k, Bit

k) 2 W.}.

Go to Step 3.

Numerical testing

Decentralized supply chain instance

In this section, a numerical example is worked through to

demonstrate the validity and practicality of the proposed

model. In the model, the upper level is the distribution

problem and the lower level is the production problem,

both of which are formulated as mixed integer bi-level

linear programming problems. In the distribution problem,

the customer’s demand is assumed to follow a normal

distribution and the product prices are considered to be

trapezoidal fuzzy numbers. The problem is considered for a

3-month planning horizon. The corresponding system

includes three echelons composed of three manufacturers,

six distributors and three customer zones. The plant pro-

duces three kinds of products. The input parameters of the

three-echelon SC model are presented in Tables 1, 2, 3, 4

and 5. Table 1 presents the plant information consisting of

the production, setup and end-product inventory costs, and

warehouse capacity. This also includes production, setup

and total availability time and transportation capacity. In

Table 2, the distributors’ information, the distributors’

inventory costs and the fixed costs are given. Transporta-

tion costs are presented in Table 3. The prices of the final

products are shown in Table 4. Prices are assumed to be

fuzzy random numbers and are made up under different

conditions and possibilities. Table 5 presents backorder

costs and stochastic demands with mean (l) and standard

deviation (r) for the customer zone. Here, a is considered

to be 0.05 (hence, Za is 1.96).

Table 2 Distributors’ information

Distributer Fixed cost Inventory holding cost

Product

1 2 3

1 6444 2 2 4

2 5651 3 2 1

3 8300 1 1 4

4 5700 4 1 3

5 9378 3 3 3

6 8960 4 2 4

Table 3 Transportation costs

Distributer Product Plant Customer group

1 2 3 1 2 3

1 1 15 13 19 4 8 3

2 24 16 10 5 9 5

3 15 11 13 6 2 2

2 1 11 12 15 6 3 6

2 22 25 23 5 4 8

3 16 25 10 3 8 2

3 1 17 23 15 8 2 6

2 16 22 25 7 8 2

3 17 20 24 2 6 9

4 1 14 16 18 5 2 7

2 18 22 19 4 2 6

3 18 18 19 8 8 8

5 1 14 13 11 8 8 2

2 16 11 14 9 7 9

3 19 14 22 4 5 5

6 1 14 15 10 3 7 8

2 19 16 24 9 10 8

3 21 18 21 4 5 5

Table 1 Plant’s information
Plant Product Product Product Warehouse capacity

Production cost Setup cost Inventory holding cost

1 2 3 1 2 3 1 2 3

1 2 6 4 12 14 40 8 13 12 585

2 7 7 6 17 35 12 11 7 14 560

3 8 7 3 38 26 23 7 10 15 457

Plant/product Production time Setup time Total production time Transportation capacity

1 2 3 1 2 3 1 2 3 1 2 3

1 0.51 0.33 0.2 30 22 10 184 168 150 230 194 246

2 0.11 0.28 0.5 14 18 18 179 181 154 202 214 239

3 0.79 0.81 0.64 23 12 13 184 191 199 229 230 219
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Optimization

The fuzzy stochastic BLP model of the problem is solved

by LINGO software package to create optimal solutions.

The optimal solutions are presented in Tables 6, 7, 8 and 9,

and other data, based on which the problem is solved, are

displayed in Tables 10 and 11. Table 6 presents the pro-

duction plans and inventory levels for the products in dif-

ferent periods with stochastic demands and fuzzy prices. It

can be represented that, in the obtained production plan,

certain quantities of products remain in the inventory at the

end of some periods. These quantities are retained for the

next periods. Table 7 demonstrates the flow of products to

customer groups in the planning horizon. Table 8 presents

the flow of the products to distributors, and Table 9 shows

the corresponding inventory levels at the end of periods

retained for the next period. Finally, the solutions for the

final time period (T) are given in Table 10.

Evaluation of results

The decisions and the corresponding results for the distri-

bution problem (upper level), and the production problem

(lower level) are shown in Table 9 changing from iteration

1 to iteration 10 for the first product (K = 1) and the first

period (T = 1). The best satisfactory solution is determined

at iteration 10. In Table 9, Yj indicates whether distributor

Table 4 Fuzzy random prices of products

Plant Product Distributor

1 2 3 4 5 6

1 1 [55, 56, 58, 59] [50, 53, 55, 57] [63, 66, 67, 69] [62, 64, 65, 68] [63, 65, 67, 69] [52, 59, 60, 63]

2 [62, 64, 65, 67] [60, 63, 65, 69] [59, 61, 63, 65] [63, 64, 66, 69] [61, 63, 64, 66] [50, 53, 55, 58]

3 [55, 57, 58, 59] [59, 62, 65, 69] [50, 52, 54, 56] [66, 69, 70, 73] [65, 68, 71, 74] [65, 67, 68, 70]

2 1 [51, 54, 56, 59] [60, 64, 67, 69] [65, 67, 68, 69] [55, 57, 58, 59] [63, 66, 68, 71] [62, 64, 66, 69]

2 [48, 50, 53, 56] [60, 62, 64, 67] [55, 58, 59, 61] [66, 69, 71, 73] [47, 50, 53, 55] [57, 59, 62, 64]

3 [56, 58, 61, 64] [57, 59, 63, 65] [64, 66, 67, 69] [55, 56, 58, 59] [62, 66, 68, 69] [56, 59, 60, 63]

3 1 [47, 50, 53, 56] [50, 53, 55, 57] [62, 65, 66, 68] [57, 59, 61, 63] [51, 53, 55, 57] [55, 57, 58, 59]

2 [60, 62, 64, 67] [52, 54, 57, 59] [63, 65, 67, 68] [52, 55, 57, 59] [67, 69, 71, 73] [54, 55, 56, 57]

3 [64, 66, 68, 70] [50, 53, 56, 59] [55, 56, 58, 60] [50, 51, 54, 56] [60, 62, 65, 67] [60, 64, 66, 68]

Table 5 Stochastic demand

and backorder cost information
Customer Period/product Backorder cost Demand [l, d]

1 2 3 1 2 3

1 1 362 175 295 [20, 1.5] [30, 3] [49, 2]

2 209 272 123 [37, 1.5] [41, 2] [26, 3]

3 150 227 475 [59, 2] [25, 1.5] [38, 4]

2 1 144 206 408 [52, 3] [31, 2] [43, 2]

2 114 281 226 [26, 4] [24, 2] [36, 3]

3 109 362 283 [57, 1] [26, 4] [31, 2]

3 1 474 419 258 [18, 3] [50, 1.5] [41, 1.5]

2 369 344 409 [17, 5] [57, 1] [36, 2]

3 216 483 196 [39, 2] [20, 4] [15, 6]

Table 6 Production and inventory plant in planning horizon

Plant Product/period Production plant Inventory plant

1 2 3 1 2 3

1 1 98.15 80.42 0 0 0 0

2 86.84 0 127 0 0 0

3 0 31 0 0 0 0

2 1 0 0 4.92 0 0 0

2 0 0 0 0 0 0

3 49.64 30.43 92 0 0 0

3 1 0 54.58 74 0 0 0

2 93.21 0 0 0 0 0

3 63.36 48.57 0 0 0 0
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j is opened, Nij is the total number of units of product that

the open distributor j dispatches to customer zone i; Ij and

Bi, respectively, are the level of inventory open distributor

j and backorder customer zone i. These are all decision

variables for the upper level. Take row 10 as an example;

in the Ujm column, the rows of the matrix represent the

distribution centers, and the columns represent the plants.

Similarly, in the Nij column, the rows are the customer and

the columns are the distribution centers. So, the best sat-

isfactory cost is 102,900 units for the upper level. On the

lower level, the production problem is shown, where Gm
k

shows whether product k is manufactured at plant m, Ujm

shows the total number of units of product shipped from

plant m to the open distributor j, QPm
k shows the total

number of units of product k produced in plant m and IPm
k is

the total number of units of product k held at plant m. The

Table 7 Flow of products to customer groups in planning horizon

Product Period Distributor

1 2 3 4 5 6

Customer group 1

1 1 0 0 0 20 0 0

2 52 0 0 0 0 0

3 0 0 0 0 18 0

2 1 0 30 0 0 0 0

2 0 0 31 0 0 0

3 0 0 50 0 0 0

3 1 0 0 0 0 49 0

2 12.57 0 0 0 30.43 0

3 41 0 0 0 0 0

Customer group 2

1 1 19 0 0 0.15 0 0

2 0 23.83 0 2.17 0 0

3 0 0 0 0 17 0

2 1 0 4.17 36.68 0.15 0 0

2 0 24 0 0 0 0

3 0 0 0 57 0 0

3 1 26 9 0 0 0 0

2 0 0 0 36 0 0

3 23.64 0 0 0 12.36 0

Customer group 3

1 1 0 0 35.06 23.94 0 0

2 26.25 30.75 0 0 0 0

3 0 0 35.42 0 3.58 0

2 1 0 25 0 0 0 0

2 0 26 0 0 0 0

3 0 0 20 57 0 0

3 1 37.36 0 0 0 0.65 0

2 0 0 31 0 0 0

3 15 0 0 0 0 0

Table 8 Flow of products to distributors and inventory of distributors

in planning horizon

Plant Product Distributor

1 2 3 4 5 6

Period 1

1 1 19 0 35.05 44.09 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

2 1 0 0 0 0 0 0

2 0 50 36.68 0 0 0

3 0 0 0 0 0 0

3 1 0 0 0 0 0 0

2 0 59.17 34.04 0.15 0 0

3 63.36 0 0 0 49.64 0

Period 2

1 1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 12.57 0 31 36 30.43 0

2 1 78.25 54.58 0 2.17 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

3 1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

Period 3

1 1 0 0 0 0 0 0

2 0 0 70 57 0 0

3 0 0 0 0 0 0

2 1 0 0 0 0 4.92 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

3 1 0 0 35.42 0 38.58 0

2 0 0 0 0 0 0

3 79.64 0 0 0 12.36 0

Table 9 Flow inventory of distributors in planning horizon

Product Period Inventory distributor

1 2 3 4 5 6

1 1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

2 1 0 50 34.04 0 0 0

2 0 0 3.04 0 0 0

3 0 0 0 0 0 0

3 1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0
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total production cost is 17,706.88 units. In the last iteration,

the leader and the follower of bi-level structure decision

making reach an agreement.

Sensitivity analysis

Here, we focus on a single factor sensitivity analysis to

study how the variation (uncertainty) in individual vari-

ables affects the performance of the model.

Results for product’s price variation

Since the decision making model is involved with the

important parameter a, it is useful to investigate variation

of the objective function values with the change in a.
Table 11 shows the obtained results under different a
levels. Our aim is to find the best solution according to

different degrees of possibilities for a. Ten a values are

chosen in the interval [0, 1].

Table 10 gives the values of the final total costs of the

leader company and the follower company under dif-

ferent a-level sets. For a = 0.5, total costs for the leader

company and the follower company are 102,900 and

17,706.9, respectively. The results represent that differ-

ent a-levels would correspond to various costs for both

companies. These are often due to the fact that any

change in the a-level would yield a change in the unit

price for each product, and results in different costs for

the leader and the follower companies. As a-level
increases, the total cost of the leader company increases.

For the leader company, the highest and lowest costs are

95,250 and 112,665, respectively, corresponding to

a = 0.1 and a = 1. Similarly, for the follower company,

the highest and lowest costs are 14,030.2 and 17,706.9,

corresponding to a = 0.6 and a = 0.5, respectively.

Therefore, different a-levels can provide more decision

schemes to the companies. A larger a value can be taken

when the relevant information provided by the leader

company and the follower company is definite and cer-

tain. On the contrary, when crucial information is not

adequately available, a smaller a value can be chosen.

As clearly seen from Fig. 4, the total costs of the SC for

a values close to zero are lower than the ones for a
values close to 1.

Results for the demand conversion

We discuss the effects of variations in mean of demand, l,
and standard deviation of demand, r, on the overall cost of

the supply chain.

1. Results for variation in mean of demand

Consider increasing the mean, l, having normal dis-

tribution by 5% in each scenario. The results are sum-

marized in Fig. 5. We found out that when l increases

by 25%, the cost decreases by 36%. The leader company

and the follower company ameliorate at a rate compa-

rable to the increase in demand. This is because the fixed

costs and transportation costs are shared as demand

increases; lower unit cost raises the profitability of the

supply chain network. Compared with price of uncer-

tainty in product, the impact of demand uncertainty on

the cost is much more significant, which gives a moti-

vation for paying more attention to demand uncertainty

in practice.
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Fig. 4 Profits versus changes in prices of a-level
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Fig. 5 Total cost versus changes in mean of demand

Table 11 Objective values corresponding to different a levels

a Leader’s cost Follower’s cost

0.1 95,250 16,160.2

0.2 97,600 15,950.9

0.3 99,380 16,299.5

0.4 100,800 15,552.5

0.5 102,900 17,706.9

0.6 103,400 14,030.2

0.7 104,200 15,754.6

0.8 106,340 16,069.7

0.9 108,450 16,719.9

1 112,665 153,487
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2. Results for variation in standard deviation of demand

We increased the demand’s standard deviation, r, by
0.5% in each experiment. The results are summarized in

Fig. 6. We see that with an increase of r by 75%, the cost

increases by 12%. The greater the change in r, the higher

the risk, and the less accurate the forecast; therefore, the

larger the inventory risk, the less the profitability.

Conclusion and suggestions for further research

We investigated the design of a decentralized supply chain

(SC) network as a multi-period multi-product production

distribution planning problem in the presence of both

stochastic uncertainty and fuzzy uncertainty. We formu-

lated the optimization problem with randomness and

fuzziness as expectedly faced in practice. Demands for

products were assumed to be stochastic, while the prices of

final products were considered to be fuzzy. Utility theory

was used to treat the stochastic data and fuzzy set theory

was employed to handle the fuzzy data. The problem was

mathematically formulated as a stochastic fuzzy bi-level

programming model. A novel heuristic algorithm based on

Kth-best algorithm was designed to solve the proposed bi-

level model. Our study contributes to the decentralized SC

network literature by proposing a comprehensive fuzzy

chance-constrained programming model. The solution

methodology and the model provide useful guidelines for

the design of complex decentralized SC networks. The

effectiveness of the developed fuzzy stochastic optimiza-

tion model as well as the usefulness of the proposed

solution approach were investigated by solving an illus-

trative example. For further research, consideration of

more participants in the supply chain may be useful. Also,

metaheuristic optimization algorithms such as particle

swarm and ant colony could be developed and compara-

tively tested for their efficiency in handling complex bi-

level problems.
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