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Abstract Bi-objective optimization of the availability

allocation problem in a series–parallel system with

repairable components is aimed in this paper. The two

objectives of the problem are the availability of the system

and the total cost of the system. Regarding the previous

studies in series–parallel systems, the main contribution of

this study is to expand the redundancy allocation problems

to systems that have repairable components. Therefore, the

considered systems in this paper are the systems that have

repairable components in their configurations and subsys-

tems. Due to the complexity of the model, a meta-heuristic

method called as non-dominated sorting genetic algorithm

is applied to find Pareto front. After finding the Pareto

front, a procedure is used to select the best solution from

the Pareto front.

Keywords Availability allocation � Series–parallel

system � Repairable components � NSGA II

Introduction

In today’s world with rapid technological developments

and the increasing complexity of system structure, any

failure in any component can lead to malfunction or serious

failure to the system. Availability of the system is a suit-

able scale for measuring the reliability of a repairable

system. Repairable system represents a system that can be

repaired to operate normally in the event of any failure

(Juang et al. 2008). The importance of designing reliable

systems, which normally present high availability, is

increasing, due to the engineering requirements of products

with better quality and a higher safety level (Castro and

Cavalca 2003).

Availability is the most important terminology used for

evaluation on the effectiveness of any industrial plant,

where most of the machines are repairable systems (Murty

and Naikan 1995). It is therefore important to keep the

equipments/systems always available and to lay emphasis

on system availability at the highest order. System avail-

ability represents the percentage of time the system is

available to users (Yusuf 2014).

A series–parallel system consists of a few subsystems

connected in series, whereas each subsystem consists of a

few components connected in parallel. A subsystem is

failed if all the components in the subsystem are failed.

Failure of any subsystem causes the failure of the whole

system (Hu et al. 2012). The common structure of a par-

allel–series system is illustrated in Fig. 1.

On the subject of evaluating the availabilities of a sys-

tem and its components, there are commonly two kinds of

procedures. First, the aim of availability modeling is to

develop an availability model to appraise system avail-

ability. Second, availability allocation, allocates the avail-

ability for each component based on the system’s

requirements or objectives (Chiang and Chen 2007).

Due to limitation in technology, the second way is

better. Redundancy in a system means that the components

are structured in parallel. The Redundancy allocation

problem (RAP) is the most common method to meet the
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optimization of reliability and availability subject to the

realistic constraints such as cost, weight, volume, etc.

(Yahyatabar Arabi et al. 2014). Since the first paper on the

redundancy allocation problem in a series–parallel system

by (Fyffe et al. 1968) many researchers have tried to

develop this knowledge. Two main approaches in the

development of the RAP literature could be seen. First,

proposing a fresh method to solve the previous optimiza-

tion models on redundancy allocation problems. Second,

develop the new optimization models for redundancy

allocation problems (Amiri et al. 2014).

By investigation of literature reveals that many

researchers study on the RAP in a series–parallel system

for reliability optimization (Khalili-Damghani et al. 2014;

Dolatshai-Zand and Khalili-Damghani 2015; Coit and

Smith 1996; Wang et al. 2009; Yeh 2014; Hsieh and Yeh

2012; Azizmohammadi et al. 2013). Different heuristic and

meta-heuristic methods such as genetic algorithm (GA),

simulated annealing (SA), and particle swarm optimization

(PSO) were proposed in this area (Khalili-Damghani and

Amiri 2012; Chambari et al. 2012; Khalili-Damghani et al.

2013). A few of researchers (Elegbede and Adjallah 2003;

Galikowski et al. 1996; Srivasvata and Fahim 1998; Var-

varigou and Ahuja 1997) have studied on availability

allocation and availability optimization. Busacca et al.

(2001) presented Multi-objective optimization to maximize

net profit with respect to certain availability. Elegbede and

Adjallah (2003) proposed multi-objective availability

allocation model and solved through Genetic Algorithm

(GA). Chiang and Chen (2007) resolved the availability

problem via simulated annealing (SA) based multi-objec-

tive genetic algorithm to determine the optimal solution of

failure rates, repair rates, and the number of components in

each subsystem, according to multi-objectives, such as

system availability, system cost and system net profit.

Castro and Cavalca (2003) presented an availability opti-

mization problem of an engineering system assembled in a

series configuration which has the redundancy of units and

teams of maintenance as optimization parameters. They

used GA for maximized availability and considered

installation and maintenance costs, weight, volume and

available maintenance teams as constraints.

Yahyatabar Arabi et al. (2014)modeled availability

optimization of series–parallel system using Markovian

process by which the number of maintenance resources is

located into the objective model under constraints such as

cost, weight, and volume. They proposed meta-heuristic

SA algorithm to find good results in an efficient time.

Tewari et al. (2012) used genetic algorithm for calculation

of the steady-state availability and performance optimiza-

tion for the crystallization unit of a sugar plant. Amiri et al.

(2014) investigate a multi-objective optimization model for

series–parallel system with repairable components. The

suggested optimization model has two objectives: maxi-

mizing the system mean time to first failure (MTTFF) and

minimizing the total cost of the system. Finally a multi-

objective approach of Imperialist Competitive Algorithm

(ICA) is proposed to solve the model.

Tsarouhas (2015) developed analytical probability

models for an automated serial production, which consists

of n-machines in series. Both failure and repair rates are

assumed to follow exponential distribution. In this study

mathematical models of the production line have been

developed using Markov process. Chandna and Ram

(2014) applied fuzzy time series to forecast the availability

of a standby system incorporating waiting time to repair.

Faghih-Roohi et al. (2014) developed a dynamic model for

availability assessment of multi-state weighted k-out-of-

n systems and optimized by the genetic algorithm. For

availability assessment, universal generating function and

Markov process are adopted. Aggarwal et al. (2015)

applied Markov modeling and reliability analysis for urea

synthesis system. Lin and Droguett (2009) paired Multi-

objective GA with Monte Carlo simulation to solve a bi-

objective optimization of availability and cost in repairable

systems.
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Jiansheng et al. (2014) considered decision variables as

vague factors and developed uncertain multi-objective

RAP of repairable systems. They suggested artificial bee

colony (ABC) algorithm to search the Pareto efficient set

and showed this algorithm outperforms Non-dominated

Soring Genetic Algorithm II (NSGA-II) greatly and can

solve the multi-objective RAP efficiently. Srinivasa Rao

and Naikan (2014) presented a hybrid approach called as

Markov system dynamics (MSD) which combined the

Markov approach with system dynamics simulation for

reliability analysis of repairable systems.

In this paper, the RAP in repairable series–parallel

systems is considered, with two objectives (1) maximizing

the system asymptotic availability (2) minimizing the total

cost. Furthermore, in each subsystem only one component

type is allowed to be used. Each choice has different levels

of failure rate, repair rate, weight and cost. The decision

variables are to select the component choice and the level

of redundancy. Since the considered optimization problem

was proven NP-hard (Chern 1992) and Heuristic algo-

rithms do not provide an assurance for optimization of the

problem (Bashiri and Karimi 2012), therefore, meta-

heuristic algorithms used to generate near optimal solu-

tions. In this paper, proposed a Pareto-based meta-heuristic

algorithm called NSGA-II to solve the problem.

The remainder of the paper is organized as follows. The

mathematical formulation of the problem is introduced in

‘‘Problem description’’ section. The solution algorithm is

presented in ‘‘Solution method’’ section. The numerical

example is introduced in ‘‘Numerical example’’ sec-

tion. Finally, conclusion and recommendations for future

research are in ‘‘Conclusion’’ section.

Problem description

In this study, the mathematical model of the series–parallel

system with k subsystem and repairable components is

illustrated. The suggested optimization model has two

objectives: maximizing the system availability and mini-

mizing the total cost of the system. The notations and

assumptions of the model are presented in the following.

Notation

k Total number of subsystems;

mi The set of components in the i-th subsystem;

xij Number of type j component in subsystem i;

ni Total number of component in subsystem i;

kij Failure rate of component j in subsystem i;

lij Repair rate of component j in subsystem i;

cij Cost of component j in subsystem i;

wij Weight of component j in subsystem i;

W Total weight of system;

As Availability of system;

Cs Cost of system.

Assumptions

• The state of each component at any point of time is one

of the ‘‘good’’ or ‘‘failed’’ states.

• The state of each component is independent of the other

components.

• For each subsystem, there are mi functionally equiva-

lent component choices that can be selected. In each

subsystem only one component type is allowed to be

used.

• The system conducts its function perfectly when each

subsystem has at least one operable component.

Therefore, for each subsystem at least one component

should be selected.

• The failure and repair rate of each alternative compo-

nent available for each subsystem has exponential

distribution with failure rate kij and repair rate lij.

Mathematical model

MaximizeAs ¼
Yk

i¼1

ð1 � ð ki
ki þ li

ÞniÞ; ð1Þ

MinimizeCs ¼
Xk

i¼1

Xmi

j¼1

cijxij ð2Þ

Subject to the following constraints:

Xk

i¼1

Xmi

j¼1

wijxij �W ð3Þ

ki ¼
Xmi

j¼1

kijyij; ð4Þ

li ¼
Xmi

j¼1

lijyij; ð5Þ

Xmi

j¼1

yij ¼ 1; ð6Þ

0� xij �Myij; ð7Þ

ni ¼
Xmi

j¼1

xij; ð8Þ

1� ni � nmax;i ð9Þ

The objective functions (1) and (2) maximizes the avail-

ability of system and minimizes total cost of system,

respectively. The formulation of system availability is
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presented by Elegbede and Adjallah (2003). Constraint (3)

represents the total weight of the system. The Constraints

(4)–(7) make it possible to select only one type of com-

ponents for each subsystem. The constraints (8) and (9)

imply minimum and maximum number of components

selected for each subsystem.

Solution method

There are two general approaches to multiple-objective

optimization. One is to combine the individual objective

functions into a single composite function or move all, but

one objective to the constraint set. Determination of a

single objective is possible with methods such as utility

theory, weighted sum method, epsilon constraint, etc., but

the problem lies in the proper selection of the weights or

utility functions to characterize the decision-maker’s

preferences.

In the second approach, a Pareto optimal set is deter-

mined. A Pareto optimum set is a set of solutions that are

non-dominated with respect to each other. Pareto optimal

solution sets are often preferred to single solutions because

they can be practical when considering real-life problems

since the final solution of the decision-maker is always a

trade-off (Konak et al. 2006). Multi-objective evolutionary

algorithms (MOEA) are employed to solve the multi-ob-

jective problems and generate Pareto frontiers. Among

MOEAs, NSGA-II proposed by Deb et al. (2002) is elitist

and fast multi-objective genetic algorithm. NSGA-II was

one of the best methods because it carried out an elite-

preserving strategy and explicit diversity preserving

mechanism (Li et al. 2015).

In an evolutionary cycle of the NSGA-II, a mating pool

is first created and filled using binary tournament selection.

Then, crossover and mutation operators apply to the

members of the mating pool. Next, the old set of solutions

and newly created solutions are merged to create a larger

population. This new population is sorted based on two

criteria: (1) rank and (2) crowding distance. Finally, a

certain amount of individuals in the sorted population is

selected and others are deleted. These steps are repeated

until a stopping condition is met. After NSGA-II termi-

nates, non-dominated solutions of the final population are

the approximate Pareto frontier of multi-objective opti-

mization problem (Pasandideh et al. 2013). The procedure

of evolution cycle in NSGA II is shown in Fig. 2.

Selection algorithm is the most important part of NSGA-

II that specifies the direction of search for finding optimal

solutions. Those of solutions with better ranking are

transferred to the next step. If two solutions are same rank,

the solution with the larger crowding distance is selected.

Figure 3 illustrates the ranking and crowding distance used

in NSGA-II. In the following subsection, the steps of this

algorithm are described.

Solution representation

A series of genes that arrange sequentially is called a

chromosome. The number of genes in a chromosome is

equal to the number of decision variables. Chromosome

description is one of the most significant parts of the

algorithm that is taken into account as the code form. In

this paper, the solution encoding for this problem is a 2 9 s

matrix. The elements of the first row illustrate the type of

component, selected for the related subsystem. The ele-

ment in the second row of each subsystem column, verifies

the number of selected components for related subsystem.

An example of the solution representation is illustrated in

Fig. 4.

Initial population

The generation of an initial population is necessary to start

solving the optimization problem with a GA. The size of any

population is given and remains the same in each generation.

The main difficulty in the initial population is that the

individuals may not satisfy all or part of the constraints of the

problem (Elegbede and Adjallah 2003). In this paper, initial

population size is considered 100. This population size has

been used for a lot of researches like safari (2012), zoulfa-

ghari et al. (2014) and Deb et al. (2002). As mentioned safari

(2012), in problems with very large solutions paces, the

population size must be selected no\100.

Crossover

The crossover operator explores a new solution space and

provides the possibility of generating new solutions called

offspring through mating pairs of chromosomes (Pasan-

dideh et al. 2015). The most common crossover techniques

are: (1) One-point crossover (2) Two-point crossover (3)

Uniform crossover. At a single crossover point, two parents

selected and all data beyond that point with certain prob-

ability are swapped between two parents. The resulting

chromosomes are the children. In this paper, one-point

crossover is used. Figure 5 depicts the crossover performed

in the NSGA- II.

Mutation

Mutation operator because of its ability to enter new genes

into the chromosomes has extraordinary importance. The

mutation operator is also used at a certain rate less than the

crossover rate. The main purpose of applying the mutation

operator is to increase diversity and avoid being trapping
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into local optimization (Zoulfaghari et al. 2014). Since, in

reality, the mutation rarely happened, probability of muta-

tion is considered very low. In this paper, one subsystem is

selected. Then, type and number of components in this

subsystem are replaced with each other. Figure 6 illustrated

the mutation operator that applied in this paper.

Pt

Qt

F1

F2

F3

rejected

Pt+1

non-dominated sorting crowding distance sortingFig. 2 An evolution cycle in

NSGA II (Galikowski et al.

1996)

Fig. 3 a Non-dominated ranking and b the crowding distance calculation (Kumar et al. 2009)

Subsystem index 1 2 3 4 

Type of Component  3 2 3 1 

Number of components 2 1 2 2 

Fig. 4 Structure of the solution

representation

   

Parent2 

  

Parent1 
3 2 3 1   4 1 2 2 

2 1 2 2   1 3 1 3 

Offspring1 
3 2 3 2   

Offspring2 
4 1 2 1 

2 1 2 3   1 3 1 2 

Fig. 5 Example of one-point crossover
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Stopping criteria

The algorithm terminates after certain iterations. Number

of iterations in this problem considered 100 iterations.

Numerical example

In this section, to evaluate the performance of the proposed

NSGA-II, the example that the data it is presented in

(Amiri et al. 2014) has been used. In this paper, a series–

parallel system with four parallel subsystems is considered,

and each subsystem has three or four repairable compo-

nents of choice. Failure and repair rates of all components

are negative exponential. The maximum total weight of the

system is 4500. Table 1 includes details of the problem.

The objective is to maximize the system availability and

minimize the system cost. The decision variables are to

select the component choice and the level of redundancy in

each subsystem.

To solve the problem, the proposed NSGA-II was used.

The NSGA-II was implemented using MATLAB software

and was run on a computer with 2G of RAM. The param-

eters of NSGA-II approach are shown in Table 2. After

solving the problem, like other multi-objective optimization

models, the Pareto optimal solutions were obtained. The

Pareto optimal solutions contain the solutions that were not

dominated by other solutions. Table 3 showed the non-

dominated solutions obtained with NSGA-II.

Although determination of Pareto optimal solutions can

be considered as one of strengths of multi-objective opti-

mization algorithms, but the decision maker will be con-

fused in choosing the best solution. There are some

methods for determining the best solution in a Pareto set.

The most widely used method that described in (Esche-

nauer et al. 1990) is the LP-norm. This technique minimizes

the normalized distance from the Pareto set to an ideal

solution (i.e., utopia point) to find the optimal solution

according to the following formula (Kasprzak and Lewis

2000):

Minimize
Xm

i¼1

fi xð Þ � fmin
i

fmax
i � fmin

i

� �p
 !1

p

; p ¼ 1; 2; . . .;1

ð10Þ

Child before mutation 
3 2 3 2 

Child after mutation 
3 2 2 2 

2 1 1232 3 3 

Fig. 6 Example of mutation

Table 1 Subsystems alternative components

Subsystem Maximum number

of components in

subsystem

Minimum number

of components in

subsystem

Component

types

Failure

rate

Repair

rate

Weight Cost

1 5 1 1 2 10 100 120

2 5 18 80 100

3 4 25 85 140

4 4 2 90 110

2 6 1 1 5 40 250 400

2 6 42 200 380

3 10 100 200 500

3 4 1 1 4 22 450 800

2 4 28 550 800

3 7 20 250 800

4 7 18 300 800

4 4 1 1 5 30 500 1200

2 7 35 500 1500

3 3 25 500 1500

Maximum weight of the system = 4500

Table 2 The parameters for

NSGA II
Parameter Value

Population size 100

Mutation rate 0.08

Crossover rate 0.9

Number of iterations 100
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where fi
min and fi

max are the minimum and maximum value

for the i-th objective function in the Pareto optimal set. In

this formula all objective functions must be minimized.

In this paper, we apply L2-norm. For using this method,

first objective function (maximize system availability)

must be transformed to minimization. For this purpose,

Table 3 The non-dominated

solutions resulted from using

the NSGA-II

Answer number System characteristic L2

Availability Cost Weight Decision variable

Subsystem number 1 2 3 4

1 0.5135869 2480 1330 zi 2 2 2 1 1

ni 1 1 1 1

2 0.5657327 2520 1335 zi 3 2 2 1 0.89228

ni 1 1 1 1

3 0.6252362 2580 1410 zi 2 2 2 1 0.76945

ni 2 1 1 1

4 0.6380208 2620 1450 zi 1 2 2 1 0.74316

ni 2 1 1 1

5 0.6688466 2780 1420 zi 3 3 2 1 0.68047

ni 2 1 1 1

6 0.7033908 2960 1610 zi 2 2 2 1 0.61140

ni 2 2 1 1

7 0.7242354 3040 1610 zi 3 2 2 1 0.56998

ni 2 2 1 1

8 0.7712303 3600 1950 zi 2 1 2 3 0.49222

ni 5 2 1 1

9 0.7913146 3760 2160 zi 2 2 2 1 0.46086

ni 2 2 2 1

10 0.864036 4260 2400 zi 1 1 2 3 0.36825

ni 3 2 2 1

11 0.8757403 4700 2670 zi 2 1 2 3 0.39481

ni 4 3 2 1

12 0.8765127 4720 2600 zi 1 2 2 3 0.39591

ni 4 3 2 1

13 0.8775877 4900 2850 zi 1 1 2 3 0.41398

ni 5 3 2 1

14 0.9043596 4960 2560 zi 2 2 2 1 0.39055

ni 2 2 2 2

15 0.9228515 5000 2700 zi 1 2 2 1 0.37818

ni 2 2 2 2

16 0.9311598 5040 2670 zi 3 2 2 1 0.37660

ni 2 2 2 2

17 0.9957989 8820 4500 zi 2 2 1 1 0.86850

ni 5 4 4 3

18 0.9965262 9120 4375 zi 3 2 2 3 0.90959

ni 5 4 3 3

19 0.9966230 9500 4450 zi 1 3 2 3 0.96165

ni 5 4 3 3

20 0.9967914 9600 4475 zi 3 1 1 3 0.97534

ni 5 3 4 3

The bold row is the best non-dominated solution

zi component type, ni numbers of component
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system unavailability is calculated. The best non-domi-

nated solution is shown at row 10 in Table 3.

Conclusion

In this paper, we have developed a bi-objective model for

solving availability allocation problem in series–parallel

systems with repairable components. The considered sys-

tem in this study has components with constant failure and

repair rate, therefore considering systems comprising of

components without exponential distribution for their

repair and failure times could be a good challenge for

future studies.

In this study, the designed optimization model is solved

by a meta-heuristic algorithm, NSGA-II; the main goal of

the paper was to propose an optimization model and a

solving algorithm to attain the optimal structure of a

repairable series–parallel system. Using other algorithms to

solve the proposed optimization model and comparing the

results of the solutions resulted in this paper could be the

goal for future works.
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