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Abstract

In this paper, Burr-type XII X synthetic schemes are proposed as an alternative to the classical X synthetic schemes when the
assumption of normality fails to hold. First, the basic design of the Burr-type XII X synthetic scheme is developed and its perfor-
mance investigated using exact formulae. Secondly, the non-side-sensitive and side-sensitive Burr-type XII X synthetic schemes
are introduced and their zero-state and steady-state performances, in terms of the average run-length and expected extra quadratic
loss values, are investigated using a Markov chain approach. Thirdly, the proposed schemes are compared to the existing classical
runs-rules and synthetic X schemes. It is observed that the proposed schemes have very interesting properties and outperform the
competing schemes in many cases under symmetric and skewed underlying process distributions. Finally, an illustrative real-life
example is given to demonstrate the design and implementation of the proposed Burr-type XII X synthetic schemes.

Keywords Non-side-sensitive synthetic schemes - Side-sensitive synthetic schemes - Zero-state mode - Steady-state mode -

Transition probability matrix (TPM)

Introduction

Statistical process monitoring (SPM) schemes are used from
monitoring production and manufacturing processes (e.g.
Gupta et al. 2018) to monitoring project performance (e.g.
Mortaji et al. 2017) to monitoring profiles (e.g. Zakour and
Taleb 2017). In SPM, two sources of variation are distin-
guished. On the one hand, we have chance (or common)
causes of variation and on the other, special (or assignable)
causes of variation. Common causes of variation are una-
voidable and can be found in any process. A quality process
that runs in the occurrence of common causes only is said to
be in-control (IC). However, when the quality process runs
in the occurrence of special causes of variation the quality
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process is said to be out-of-control (OOC). In this case, the
causes of variation must be identified and removed as soon
as possible. The faster a scheme is in detecting an OOC
state, the more efficient it is (cf. Montgomery 2013).

A basic Shewhart X scheme is known to be more efficient
(or sensitive) in unmasking large shifts (i.e. changes) in the
location process parameter. However, it is relatively insensitive
in unmasking small and moderate shifts. This popular scheme
gives a signal if a single sample mean (or point) falls beyond
the upper or lower control limits (UCL and LCL) defined by

UCL/LCL = g + koy, (1

where u, and ¢, are the IC process mean and standard devia-
tion, respectively, and k is a charting constant that is typi-
cally found such that some IC metric [such as the average
run-length (ARL)] is equal to a pre-specified value. In order
to improve the sensitivity of the basic X scheme in detect-
ing smaller shifts, Wu and Spedding (2000a) proposed a
synthetic X scheme for monitoring the location (or mean)
process parameter which consists of two sub-charts, one, a
basic X sub-chart and a second, a conforming run-length
(hereafter CRL) sub-chart. For a basic synthetic scheme, an
OOC signal is not based on a single charting statistic (i.e.
point) plotting beyond the threshold values given by Eq. (1).
However, when a point plots beyond the threshold values
defined in Eq. (1), the corresponding sample is marked as
a “nonconforming sample” and the monitoring procedure

@ Springer


http://orcid.org/0000-0001-7236-7678
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-019-0304-z&domain=pdf

450

Journal of Industrial Engineering International (2019) 15:449-478

moves to the second sub-chart where an OOC signal is
obtained depending on the outcome of the CRL sub-chart.
Note that whenever a point falls between LCL and UCL,
the corresponding sample is marked as a “conforming sam-
ple” (cf. Wu and Spedding 2000a, b). Bourke (1991) defines
a CRL as the number of conforming samples (or points)
between two successive nonconforming points, including
the nonconforming point at the end. Figure 1 illustrates an
example with CRL=2, CRL=5 and CRL=3.

Note that whenever we do not get any conforming point
between two nonconforming points, the CRL value is equal
to one (i.e. CRL=1). The control limit of the CRL sub-chart
is denoted by H (where H is a positive integer greater or
equal to 1). Thus, the CRL sub-chart gives a signal when-
ever the CRL value is less than or equal to H (cf. Huang
and Chen 2005; Wu et al. 2010; Guo et al. 2015). To make
the computation of the run-length distribution of the syn-
thetic scheme easier, Davis and Woodall (2002) showed that
“a synthetic chart is a special case of a run-rule scheme,
i.e. a 2-of-(H+ 1) rule with a head-start (HS) feature”. The
standard 2-of-(H + 1) rule gives an OOC signal when two
consecutive plotting statistics, out of H + 1 consecutive plot-
ting statistics, plot above (below) the UCL (LCL) where H
is a positive integer greater or equal to 1. The HS feature
implies that at time O the first sample is assumed to be non-
conforming; therefore, at least one other nonconforming
sample is needed within the following H sampling points,
for a 2-of-(H + 1) runs-rules scheme to issue an OOC signal
(cf. Shongwe and Graham 2016).

Before proceeding any further, let us acknowledge that
synthetic charts have received a lot of criticism in the litera-
ture (Knoth 2016). Knoth (2016) advised against the use of
synthetic charts, however, Knoth (2016) only considered one
type of synthetic chart and, it has been shown in Shongwe
and Graham (2017a), that there are actually four types of
synthetic charts and that the other three types outperform the
type considered by Knoth (2016). It is highly recommended
that the use of synthetic charts be investigated further, i.e. a
thorough investigation of the other three types of synthetic
charts should be done and compared to Knoth (2016)’s find-
ings. Thus, it is of our opinion that synthetic charts should
not yet be discarded, as recommended by Knoth (2016),
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Fig. 1 CRL values

@ Springer

and the abovementioned reasons are motivation to continue
developing synthetic monitoring schemes even after Knoth
(2016)’s warning not to do so.

Besides the basic design of the synthetic schemes, syn-
thetic schemes that are based on the sub-chart limits in
Eq. (1) can be classified into four principal types, which are
given as follows:

1. the NSS synthetic scheme gives an OOC signal when
two nonconforming points, out of H + 1 consecutive
points, plot beyond the threshold values given in Eq. (1)
no matter whether one (or both) of the nonconforming
points lie(s) above the UCL and the other (or both) lie(s)
below the LCL, which are separated by at most H — 1
conforming points that plot between the LCL and the
UCL (Wu and Spedding 2000a). The control charting
regions of the NSS scheme are shown in Fig. 2a. From
the operation of the NSS synthetic scheme, the CRL
value can be defined as the number of conforming points
that plot between the LCL and UCL in Fig. 2a that are
plotted in between the two successive nonconforming
points, irrespective of whether one (or both) fall above
the UCL and the other (or both) below the LCL.

2. The standard side-sensitive (SSS) synthetic scheme
gives an OOC signal when two nonconforming points,
out of H + 1 consecutive points, plot above (below) the
UCL (LCL) which are separated by at most H — 1 points
that plot below (above) the UCL (LCL), respectively
(Davis and Woodall 2002). The control charting zones
(or regions) of the SSS scheme are shown in Fig. 2b.
From the operation of the SSS synthetic scheme, two
different types of CRLs denoted CRL; and CRL; can
be defined. The CRL; value is the number of conform-
ing samples that fall above the LCL in Fig. 2b that are
plotted in between the two consecutive nonconforming
points below the LCL (i.e. in region L), including the
nonconforming point at the end, whereas the CRL; value
is the number of conforming samples that fall below
the UCL in Fig. 2b, that are plotted in between the two
consecutive nonconforming points above the UCL (i.e.
in region U), including the nonconforming point at the
end.

3. The revised side-sensitive (RSS) synthetic scheme gives
an OOC signal when two nonconforming points, out of
H + 1 successive points, plot above (below) the UCL
(LCL) which are separated by at most H — 1 conforming
points that plot between the LCL and the UCL (Machado
and Costa 2014). The control charting regions of the
RSS scheme are shown in Fig. 2b. From the operation
of the RSS synthetic scheme, two different types of CRLs
denoted CRL; and CRLy; can also be defined. The CRL;
is the number of conforming samples that fall within
region I in Fig. 2b that are plotted in between the two
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Fig.2 Different regions of the Burr-type XII X sub-chart

consecutive nonconforming points below the LCL (i.e.
in region L), including the nonconforming point at the
end, whereas the CRLy; is the number of conforming
points that within region [ in Fig. 2b that are plotted
in between the two consecutive nonconforming points
above the UCL (i.e. in region U), including the noncon-
forming point at the end.

4. The modified side-sensitive (MSS) synthetic scheme
gives an OOC signal when two nonconforming points,
out of H + 1 successive points, plot above (below) the
UCL (LCL) which are separated by at most H — 1 con-
forming points that plot between the CL and the UCL
(LCL), respectively (Shongwe and Graham 2016, 2018).
The control charting regions of the MSS scheme are
shown in Fig. 2c. From the operation of a MSS scheme,
two types of CRLs which are: the lower CRL (denoted
as CRL; ) and the upper (denoted as CRLy;) are needed.
A CRL,; is the number of lower conforming points (i.e.
conforming points that fall within region 3 in Fig. 2c)
that are plotted in between the two consecutive lower
nonconforming points (i.e. nonconforming points that
fall below the LCL, including the lower nonconform-
ing point at the end). However, a CRLy; is the number
of upper conforming points (i.e. conforming points that
fall within region 2 in Fig. 2c) that are plotted between
the two consecutive upper nonconforming points (i.e.
nonconforming points that fall above the UCL, includ-
ing the nonconforming point at the end). Note that the
absence of a conforming point implies that either the
CRL;; or CRL; equals one.

The classical NSS and SSS X synthetic schemes (i.e.
NSS and SSS X synthetic schemes for normal data) were
first proposed by Wu and Spedding (2000a, b) and Davis
and Woodall (2002), respectively. Later on, Machado and
Costa (2014) proposed a classical RSS X synthetic scheme.
More recently, several authors have pointed out the need to

develop synthetic schemes (Lee and Khoo 2017; Shongwe
and Graham 2017b, c, 2018). Lee and Khoo (2017) inves-
tigated the performance of the synthetic double sampling S
scheme, which was found to perform better than the exist-
ing double sampling S scheme for a wide range of shifts.
Shongwe and Graham (2017b, c) studied the zero-state and
steady-state run-length characteristics of synthetic and runs-
rules X schemes, respectively. Later on, Shongwe and Gra-
ham (2018) proposed the MSS synthetic scheme for moni-
toring the location parameter. The above-mentioned schemes
are called parametric (or classical) schemes since they are
based on the normality assumption. It is well known that
parametric schemes are not IC robust and they are relatively
inefficient under the violation of the normality assumption.
Therefore, there is a need of developing nonparametric
schemes and adaptive schemes based on flexible probability
distributions. The Burr-type XII distribution can be used for
this purpose since it can represent any type of unimodal dis-
tribution (Malela-Majika et al. 2018b; Wooluru et al. 2016).

In these last few decades, an important discussion
amongst SPM researchers is whether to monitor process
shifts using traditional monitoring schemes (in the form of
traditional control charts) or using support vector machines
(Du et al. 2012, 2013; Du and Lv 2013). Du and Lv (2013)
stated that “Support vector machine (SVM) has recently
become a new generation learning system based on recent
advances on statistical learning theory for solving a variety
of learning, classification and prediction problems”. They
proposed an enhanced minimal Euclidean distance scheme
for monitoring process mean shifts of auto-correlated pro-
cesses and made use of support vector regression (SVR) to
predict the values of a variable in time series. SVR is an
extension of SVM, and it is a regression method by introduc-
tion of an alternative loss function. SVMs have been shown
to be effective in minimising both Type I and Type II errors
for detecting shifts in auto-correlated processes (Chinnam
2002). SVMs are also very useful as classifiers to identify
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the source of a change in multivariate processes (Cheng and
Cheng 2008). However, since the focus of this paper is not
on multivariate or auto-correlated processes, SVMs are not
explore further in this paper.

In this paper, NSS, SSS, RSS and MSS X synthetic
schemes for non-normal data are introduced in the SPM
context. The Burr-type XII (BTXII) distribution is used in
the design of the proposed synthetic schemes because of its
simplicity and flexibility.

The remainder of this paper is organized as follows:
Sect. 2 introduces the basic design of the synthetic BTXII
X scheme. The proposed NSS and side-sensitive synthetic
BTXII X schemes are introduced in Sect. 3. The zero-state
and steady-state characteristics of the run-length distribution
are derived using the Markov chain approach. The IC and
OOC performances of the proposed schemes are discussed
in Sect. 4. The proposed schemes are also compared to their
parametric (or classical) counterparts. Section 5 presents a
real-life example demonstrating the design and implemen-
tation of the proposed synthetic schemes. A summary and
some concluding remarks are given in Sect. 6.

Operation and basic design of a BTXII X
synthetic scheme for non-normal data

Assume that {X;;; i > 1 }}’:1 is a sequence of independent and
identically distributed (iid) samples from a normal distribu-
tion with IC process mean p, and IC process standard devia-
tion o,. The cumulative distribution function (cdf) of the
BTXII distribution is given by Burr (1973), Malela-Majika
et al. (2018a)

Fy)=1- qforyZO )

_1
(I+y9)
where c and g are greater than one and represent the skew-
ness and kurtosis of the Burr distribution, respectively.
There is a relationship between a Burr variable, Y, and any
random variable X. For more details, see for example, Burr
(1942, 1973) and Chen (2003). Assuming that the random
variables X and Y have the same skewness and kurtosis, the
sample mean can be defined by

0y
sy 3)

where X and s, represent the sample mean and standard
deviation of the data set, respectively, and M and S represent
the mean and standard deviation of the corresponding BTXII
distribution with different shapes. Tables of the expected
mean, standard deviation, skewness coefficient and kurtosis

X=py+ ¥ -M)
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coefficient of the Burr distribution for various combinations
of BTXII parameters c and g are given in Burr (1942, 1973).
The basic synthetic BTXII X scheme signals when a non-
conforming sample plots above (or below) the UCL (LCL)
of the BTXII X sub-chart and CRL < H.
The basic synthetic BTXII X scheme operates as follows:

1. At the ith sampling time, take a sample of size n and
compute X;.

If LCL< X, < UCL then return to Step (1).

However, if X, < CLorif X, > UCL go to Step (4).
If CRL<H go to Step (5), otherwise return to Step (1).
Issue an OOC signal, and then take necessary corrective
actions to find and remove the special cause(s). Then

return to Step (1).

woken

Thus, the CRL decreases as p increases, and increases as
the fraction nonconforming in a process, p, decreases. Note
that the CRL is a geometric random variable. Therefore, the
expected value of the CRL, i.e. E (CRL), and cdf of the CRL,
F (CRL), are given by

E (CRL) = 1

p
and 4)
Fy(CRL)=1-(1-p)**, CRL=1,2,3,...

respectively. To detect an upward shift in p, it is recom-
mended to set a LCL, say H, for the CRL. If CRL < H, then
there is sufficient evidence that p has increased. Therefore,
the CRL sub-chart gives an OOC signal when CRL < H. At
this stage, the average number of CRL required to detect an
OOC fraction nonconforming p is given by

1 1
Fy(H) 11— -p)t )

ARL, =

where p is the probability of declaring a sample noncon-
forming, which is given by

1
14
i (r=s(e-av) |
| ©)
+ v
[1 + <M+S<k+6\/ﬁ)) ]
When =0, the process is in-control.

Thus, the ARL of the basic synthetic scheme is computed
as follows

p=1-

px[1=1-pf

where p is given by Eq. (6).
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To measure the overall performance of the basic synthetic
scheme, the average extra quadratic loss (AEQL) is used.
Therefore, using Eqgs. (6) and (7), the AEQL of the basic
synthetic chart is defined by

dmax

1 1

2 ds.
px[1=1=p)"|

AEQL = ®

1)

max

When comparing the overall performance of two or sev-
eral monitoring schemes, the scheme with the smallest (or
minimum) AEQL value is considered to be the best.

Operation and design consideration
of the NSS and side-sensitive synthetic
schemes for non-normal data

In this section, necessary notations are introduced and math-
ematical foundations of synthetic schemes are presented
under the violation of the assumption of normality. These
mathematical foundations are later on used to derive the run-
length properties of the proposed synthetic schemes using a
Markov chain approach.

The operation of the proposed synthetic schemes is given
in Table 1.

Before we construct the transition probability matrices
(TPMs) of the synthetic BTXII X schemes, it is important
to define the probability that a plotting statistic falls in a

Table 2 Probability that a plotting statistic falls in a specific region of
the synthetic schemes

(a) NSS synthetic scheme

§=1- : + !
Po() [++5 (ko )l 045 (k=3 )1

1 1
[l+(M—S(k—5ﬁ))‘ o [l+(M+S(k+5ﬁ))‘ J

(b) SSS/RSS synthetic schemes

—_ X = - +
Pu(8)=P(X 2 UCL) = 1 R D

pi(6) =P(LCL<X < UCL) =

1 1

pi(d) =P(LCL< X < UCL) = (OIS (o) T (s {kroyi )T

— ¥ = +
pi(6) = P(X < LCL) - [1+(M—S(k—5ﬁ))‘lq
PO =P+ PO = I = ir T s(eayi)r
) 1
[1+(M—s(k—5\/5))"1" B [1+<M+s(k+6\/'7))‘1"

P4(6) =p(8) +p,(8) =

(c) MSS synthetic scheme

— X = - +
pl(ﬁ) = P(X > UCL) =1 [1+(M+S<k+§\/;))‘]q

1 1

p,(8) =P(CL <X < UCL)

T O+MASheE [1+(M+s(k+s\/ﬁ))t]4
8§)=P(LCL<X<CL) = L - L
P3(8) = P( sXsci) (45 (k=dv/m )l [+
§)=P(X <LCL) = P A —
P4(8) (X< ) [1+(M—s(k—5\/£))<'1«

Table 1 Operation of the different types of synthetic Shewhart-type schemes

(a) NSS synthetic scheme

(b) SSS synthetic scheme

1. On the next sampling time, take a sample of size n and compute the
sample mean X;

2.If LCL < )_(1 < UCL then return to Step (1), otherwise go to Step (3)

3.If X; < LCL (or X; > UCL) go to Step (4), otherwise return to Step
M
4. If CRL < H go to Step (5), otherwise return to Step (1)

5. Issue an OOC signal and then take necessary corrective action to
find and remove the assignable causes. Then return to Step (1)

1. On the next sampling time, take a sample of size n and compute the
sample mean X;

2.1f X; > LCL and X; < UCL then return to Step (1), otherwise go to
Step (3)

3.If X, > UCL go to Step (4) or if X; < LCL go to Step (5)

4.If CRLy < H go to Step (6), otherwise return to Step (1)
5.If CRL; < H go to Step (6), otherwise return to Step (1)

6. Issue an OOC signal and then take necessary corrective action to find
and remove the assignable causes. Then return to Step (1)

(c) RSS synthetic scheme

(d) MSS synthetic scheme

1. On the next sampling time, take a sample of size n and compute the
sample mean X;

2.1f LCL < X; < UCL then return to Step (1), otherwise go to Step (3)
3.If X; > UCL go to Step (4) or if X; < LCL go to Step (5)
4.If CRLy < H go to Step (6), otherwise return to Step (1)
5.If CRL; < H go to Step (6), otherwise return to Step (1)

6. Issue an OOC signal and then take necessary corrective action to find
and remove the assignable causes. Then return to Step (1)

1. On the next sampling time, take a sample of size n and compute the
sample mean X;

2.1f LCL < X; < UCL then return to Step (1), otherwise go to Step (3)
3.If X; < LCL go to Step (4), or X; > UCL go to Step (5)

4.1If CRL;, < H go to Step (6), otherwise return to Step (1)

5. If CRLy; < H go to Step (6), otherwise return to Step (1)

6. Issue an OOC signal and then take necessary corrective action to
find and remove the assignable causes. Then return to Step (1)
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specific region. Table 2 gives the probability that a sample
mean, X, falls in a specific region of two-sided NSS, SSS,
RSS and MSS synthetic BTXII Shewhart X schemes.

TPMs for the proposed synthetic schemes

To construct the TPMs of the proposed synthetic schemes,
the Markov chain approach is used to construct the com-
pound patterns that result in an OOC event. For instance,
each of the four digits 1, 2, 3 and 4 of a MSS synthetic
scheme indicates the state of a test sample. The symbol ‘+’
indicates that at time ¢ = 0, the first charting (or plotting) sta-
tistic lies either above the UCL or below the LCL. Therefore,
the sequence of charting statistics ‘423’ of a MSS synthetic
scheme indicates that in a sequence of three consecutive test
samples, the first is a lower nonconforming (i.e. the chart-
ing statistic of this sample falls on or below the LCL), the
second is an upper conforming (i.e. the charting statistic falls
between the CL and UCL) and the third is a lower conform-
ing sample (i.e. the charting statistic falls between the LCL
and CL). The sequence of charting statistics ‘+ 33’ indicate
that the first charting statistic falls either above the UCL
(region 1) or below the LCL (region 4), and the second and
third fall between the LCL and CL (region 3).

The compound patterns have @ sequences (or ele-
ment) having each H or H + 1 states. For instance, when
H = 2, the absorbing state of the NSS and MSS synthetic
schemes (denoted by A) are given by {OO, OIO} and
{121, 11, 44, 434, + 1, +4, + 21, + 34}, respectively.
The elements of the absorbing state are denoted by A, A,
... and (Aw) To evaluate the zero-state run-length (ZSRL)
properties of the proposed synthetic schemes, we decompose
the absorbing (or compound) pattern A into simple transient
sub-patterns, denoted by #, of size ¢ by removing the last state
of each element, which means # = {n;, n,,...,n_}. In our
example, the simple transient sub-patterns of the NSS and
MSS are given by {O,Ol}and {12, 1, 4, 43, +, + 2, + 3},
respectively. Afterwards, create dummy states denoted ¢,
which are defined by {I} and {2, 3} for the NSS and MSS,
respectively. Finally, the state space, denoted by £2, is the
set of all the components. The state space of the NSS and
MSS synthetic schemes is given by {¢, #;, 1,, OOC} and

Hence, ¢ = H(H + 2)

{ni, My, &, n3, ny, ns, 16, 17, OOC}, respectively, where
Ns =@ = {+}, 15 = @, = {+ 2} n; = p3 = {+ 3}. Thestate
space of the SSS and RSS synthetic schemes is constructed
in a similar way. Table 3 presents the decomposition of the
TPMs state space of the proposed synthetic schemes.

When H = 1 the TPM of the NSS synthetic scheme is
given by

¢ ny 0O0C
¢ | » 1-p O
VR pi 0 1-p; ©)
00C 0 0 1

The TPM of the SSS, RSS and MSS synthetic schemes
is given by

m ¢ 2 (4 00C
m 0 » m 0 Pu
¢ | i B 0 0
m | pu b 0 0 Dy (10)
¢ 0 p 0 0 pitpu
ooc| o 0 0 0 1

In Eq. (10), for the MSS scheme, the probabilities that
a charting statistic falls in a specific region are defined as
follows:

p, = p=probability that a charting statistic plots on or
above the UCL,

p; = P, + p;=probability that a charting statistic falls
between the LCL and the UCL, and

p; = p,=probability that a charting statistic plots on or
below the LCL.

Consequently, p, = p; = % Table 3 yields the TPMs in
Table 4 using a look forward approach when H = 2 and
3 where the probabilities are found using the equations in
Table 2.

The construction of the TPMs is similar for any values of
H. For any H> 0, the dimension of the TPMs in Table 4 is
equal to ¢ + 2 where ¢ is the number of sub-patterns in the
compound pattern. Therefore,

an

NSS scheme : ¢+2=(H+1)+1. Hence, c=H
SSSscheme : ¢+2=(H*+H+1D)+H+1.

RSS scheme : ¢+2=2H+1)+H+ 1. Hence, ¢ =3H
MSS scheme : ¢+2=QH+H-1)+H+1)+1.

Hence, ¢ =4H -1
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Table 4 TPM:s of the proposed synthetic schemes when H=2 and 3

Scheme H=2 H=3
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n, p, 0 0 s Ds 0O 0 0 0 0 0 0 Py
m 0 0 py+p3 pp O 0 0 0 121 s 0 p, 0 s P O 0 0 0 o0 0 0 »
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For instance, when H = 2, the TPMs of the NSS, SSS,
RSS and MSS synthetic schemes are of size 4 x 4,10 x 10,
8 x 8 and 9 x 9, respectively.

Table 5 gives the number of sub-patterns in the com-
pound pattern and the dimension of the TPMs (in brackets)
of the NSS, SSS, RSS and MSS synthetic schemes for H=1,
2,3, 4 and 5. It can be observed that when H=1, the SSS,
RSS and MSS synthetic schemes have the same number of
sub-patterns in the compound pattern which means that the
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TPMs of the SSS, RSS and MSS synthetic schemes have the
same dimension. The larger the value of H, the higher the
dimension of the TPMs.

Run-length characteristics of the NSS
and side-sensitive synthetic schemes

Once the TPM has been formulated, we may easily calcu-
late any of the following run-length properties (see Fu and
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Table 5 Number of sub-patterns (¢) and dimension of the TPMs of
the NSS, SSS, RSS and MSS synthetic schemes for H=1, 2, 3, 4 and
5

Table 6 Optimal k£ values and (AEQL in brackets) of the synthetic
BTXII X scheme when the nominal ARLy=2370.4, 500 and 1000 for

different value of H (basic design)

h  NSS SSS RSS MSS

1 1 (3x3) 3(5x5) 3(5x5) 3(5x5)
2 2 (4x4) 8 (10 10) 6 (8x8) 7 (9%9)
3 3(5x5) 15 (17%x17) 9(11x11) 11 (13x13)
4 4(6x6) 24 (26%26) 12 (14 14) 15 (17x17)
5 5(7x7)  35(37x37) 15 (17%17) 19 21x21)

Lou 2003). Therefore, the expected value, probability mass
function, cdf and the variance of the run-length distribution
are given by

E(N) = &1 - ARL(11)(6) 12)

H

Nominal ARL,

370.4

500

1000

W AW N~

1.94757 (39.23)
2.08858 (35.72)
2.16722 (34.49)
2.22137 (33.90)
2.26243 (33.58)

2.01131 (43.45)
2.14929 (39.21)
2.22635 (37.68)
2.27945 (36.90)
2.31975 (36.46)

2.15251 (57.21)
2.28379 (50.73)
2.35732 (48.10)
2.40803 (46.80)
2.44663 (45.95)

The &, = S|4, is the row vector of initial probabilities
associated with the steady-state case and its elements are
non-zero. There are a number of method used to compute
the s, and this study focuses on one of the steady-state

P(N = ]) = Elxr : 2(6)é-,;_><1-[) : (I(‘[Xr) - 2(6)(1')(1')) : 1(T><1) fOI‘j =1,2,3,... (13)

P(N <)) =1 = &yr  Z08) ey * Loy forj = 1,2,3, “

Var(N) = &4 - ((I(rxr) + Z(‘s)(rxr)) 'ARerl(a)) - (E(N))zr

15)
respectively, WhereARL‘rxl(6) = (Ixzr — err(é‘))_l gy et
and &, is the initial probability vector that depends on
whether a zero-state or a steady-state mode analysis is of inter-
est. I,y is a7 X 7 identity matrix and 1, ;yis a 7 X 1 column
vector of ones.

Note that the zero-state and steady-state modes of analysis
are used to characterize the short-term and long-term run-
length characteristics of a monitoring scheme. Koutras et al.
(2007) analysed the run-length of the runs-rules schemes
based on probability-generating functions, whereas Low
et al. (2012) designed runs-rules schemes using Eq. (14).
Note that the E(N) defined in Eq. (12) is typically the most
used metric on the performance of a monitoring scheme in
SPM, and it is denoted by ARL in this study.

Initial probabilities vectors

The &, = q;, =(0 10 ... 0)is the row vector of initial
probabilities associated with the zero-state case and it has a
one in the component corresponding to the state in which the
monitoring scheme begins and each of the other components
of the vector are equal to zero. For the SSS, RSS and MSS
synthetic schemes, the initial state corresponds to the ele-
ment of the TPM equal to ‘+’ (i.e. @), whereas for the NSS
synthetic scheme, it corresponds to the element with ‘O’.

probability vector (SSPV) methods proposed by Champ
(1992), which is defined by

s=(1'2)" -z (16)

where z is the 7Xx 1 vector with z.,,, = (G — Q’)_lej
and the matrix G in Champ (1992) can be generalized as
G =e¢;- I’ +1,,, where ¢, is the jth unit vector correspond-
ing to e, for the one-sided as well as the two-sided NSS syn-
thetic scheme and j corresponds to the element of the TPM
equal to ‘%’ for the two-sided SSS, RSS and MSS synthetic

schemes. For more details, see “Appendix”.

Performance study

Performance of the two-§ided NSS
and side-sensitive BTXII X synthetic schemes
for different values of H

A monitoring scheme is designed such that when the process
is IC, the ARL, is set at some desirable level (or equiva-
lently, the significance level is set at some standard value).
For instance, a significance level of size 0.0027, 0.0020
and 0.0010 (or equivalently, the ARL;, = 370.4, 500 and
1000), the k-sigma limits of the basic design of the two-
sided BTXII X synthetic schemes are as given in Table 6
when h=1, 2, 3, 4 and 5. For instance, when the (M, S, ¢, q)
combination is given by (0.6447, 0.162, 4.8737, 6.1576) we
found k = 1.94757, 2.01131 and 2.15251 so that the basic
synthetic scheme yields an attained ARL, value of 370.4,
500 and 1000, respectively. It can be observed that the value
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Table7 IC and OOC zero-state and steady-state performance
of the synthetic BTXII X scheme for different value of H when
ARL,=370.4 (basic design)

Shift () H
1 2 3 4 5

0.0 370.40 370.40 370.40 370.40 370.40
0.2 165.35 150.41 142.70 137.74 134.17
0.4 44.19 36.80 33.39 31.35 29.17
0.6 13.56 10.88 9.79 9.20 8.85
0.8 5.33 4.30 3.95 3.79 3.73
1.0 2.68 225 2.14 2.12 2.14
1.2 1.69 1.50 1.48 1.50 1.52
1.4 1.28 1.20 1.21 1.22 1.24
1.6 1.11 1.08 1.08 1.09 1.10
AEQL 39.23 35.72 34.49 33.90 33.58

of k increases as H value increases. Moreover, for a given
H value, the value of k increases as the nominal ARL, value
increases. For a given nominal ARL, value, the larger the
value of H, the more efficient the BTXII X synthetic scheme.

The design parameters found in Table 6 are used to assess
the OOC performance of the proposed scheme for a nomi-
nal ARL, of 370.4. In Tables 7, 8, 9 and 10, the results of
the best scheme are in italic. When two or several columns
are in italic, the schemes under consideration perform simi-
larly. Table 7 gives the IC and OOC zero-state and steady-
state performance of the proposed synthetic scheme when
H=1,2,3,4 and 5 as well as the overall performance with
Omin = 0 and 6ax = 2.5. Table 6 shows that the proposed
synthetic scheme is efficient for large values of H (Fig. 3a).
The bigger (smaller) the magnitude of a shift, the more (less)
sensitive the proposed scheme is. For large shift, the ARL

value converges towards 1. Figure 3b shows that the per-
formance of the proposed synthetic scheme depends on the
magnitude of the shifts and many other factors such as the
choice of the design parameters. The design parameters are
subject to minimum AEQL. The smaller the AEQL, the more
reliable the design parameters. Regardless of the magnitude
of the shift, the higher the value of H, the more efficient the
scheme becomes (see Fig. 3a, b).

Tables 8, 9 and 10 present on one hand the zero-state and
steady-state performance of the NSS, SSS, RSS and MSS
BTXII X synthetic schemes with 6 =0 (0.2) 2 for H=1, 2
and 3, respectively, when (M, S, n, ¢, ¢) =(0.5951, 0.1801, 5,
4, 6) referred to as “design 1” and (M, S, n, ¢, q) =(0.6447,
0.162, 5, 4.8737, 6.1576) referred to as “design 2”. On
the other hand, Tables 8, 9 and 10 give the overall perfor-
mance of the proposed synthetic schemes for 6,,;,, = 0 and
Omax = 2.5. From Table 8 it can be seen that when H=1,
the zero-state and steady-state performance of the SSS, RSS
and MSS synthetic schemes are equivalent. This can also
be shown by the TPMs, which are similar (see Eq. 10). For
both design 1 and 2, the side-sensitive schemes perform best.
In terms of the overall performance, the proposed schemes
perform better under design 1. From Tables 9 and 10 it can
be observed that when H=2 and 3, for both zero-state and
steady-state mode, the MSS scheme performs better from
small to moderate mean shifts (0 < 6 < 1.5). However, from
large shifts onwards (6 > 1.5), under the zero-state mode, all
four schemes are equivalent (ZSARL; = 1) for both designs,
whereas under the steady-state mode, for all four schemes,
the ZSARL; values are closer to 2. In terms of the AEQL
values, in zero-state mode, the MSS scheme performs best
followed by the SSS scheme for H=2, whereas when H=3,
the MSS scheme performs best followed by the RSS scheme.

Table 8 IC and OOC zero-state

Shift Zero-state mode Steady-state mode
and steady-state performance of
the synthetic BTXII X schemes NSS SSS=RSS=MSS NSS SSS=RSS=MSS
when H=1
0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40
0.2 165.98 165.35 124.03 118.82 170.80 170.58 128.85 123.80
0.4 41.67 44.19 28.44 29.78 46.32 48.98 32.36 33.71
0.6 12.44 13.56 9.08 9.75 15.44 16.67 11.65 12.37
0.8 4.94 5.33 3.92 4.15 6.94 7.40 5.71 5.98
1.0 2.56 2.68 2.19 2.25 4.04 4.19 3.57 3.64
1.2 1.66 1.69 1.51 1.52 2.86 2.90 2.67 2.68
1.4 1.28 1.28 1.21 1.21 2.35 2.35 2.27 2.25
1.6 1.12 1.11 1.09 1.08 2.12 2.10 2.09 2.07
1.8 1.05 1.04 1.03 1.03 2.02 2.00 2.01 2.00
2.0 1.02 1.01 1.01 1.01 1.97 1.97 1.98 1.97
AEQL 3834 39.23 33.21 33.51 59.76 60.76 54.34 54.57
k 1.93555 1.94758 1.79608 1.80231 1.92519 1.92519 1.78016 1.78613
Design  Design1 Design2 Design1 Design2 Design1 Design2 Design1  Design 2
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Table 9 IC and OOC zero-state Shift Design 1 Design 2

and steady-state performance of

the synthetic BTXII X schemes NSS SSS RSS MSS NSS SSS RSS MSS

when H=2
Zero-state mode
0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40
0.2 156.94 102.95 117.62 109.70 150.40 103.84 106.94 109.69
04 35.31 22.92 24.36 22.38 36.80 25.22 25.00 23.21
0.6 10.01 7.20 7.46 6.88 10.88 8.07 7.97 7.33
0.8 3.98 3.16 3.24 3.03 4.30 3.46 3.43 3.19
1.0 2.14 1.85 1.88 1.80 2.25 1.95 1.94 1.84
1.2 1.47 1.35 1.36 1.32 1.50 1.38 1.38 1.34
1.4 1.19 1.15 1.15 1.14 1.20 115 115 1.13
1.6 1.08 1.06 1.06 1.05 1.08 1.06 1.06 1.05
1.8 1.03 1.02 1.02 1.02 1.03 1.02 1.02 1.02
2.0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
AEQL 35.21 31.24 31.09 30.16 35.72 31.05 31.08 30.24
k 2.07274 193044  1.94569  1.88295  2.08858 1.95923 1.95328 1.89052
Steady-state mode
0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40
0.2 163.45 108.95 124.05 115.72 157.66 110.10 113.67 109.16
0.4 41.22 27.62 29.31 26.89 42.87 30.08 29.94 27.95
0.6 13.58 10.13 10.51 9.68 14.59 11.15 11.08 10.33
0.8 6.23 5.11 5.26 4.91 6.65 5.50 5.49 5.20
1.0 3.73 3.29 3.37 3.20 3.89 343 3.44 3.33
1.2 2.72 2.52 2.58 2.48 2.77 2.57 2.59 2.55
14 2.28 2.18 2.22 2.16 2.28 2.19 2.21 2.20
1.6 2.08 2.03 2.06 2.02 2.07 2.02 2.05 2.06
1.8 1.99 1.96 2.00 1.96 1.98 1.96 1.98 2.00
2.0 1.95 1.93 1.97 1.94 1.95 1.93 1.95 1.98
AEQL 57.09 51.10 52.69 50.86 57.76 52.05 52.54 51.97
k 2.05894  1.90969  1.92456  1.86471 2.07441 1.93837 1.93184 1.87104

Remarks 1 based on the Box—Cox and Johnson transformations would

e Unlike runs-rules, synthetic schemes perform better in
zero-state mode compared to steady-state mode.

e For large shifts, in zero-state mode, the ZSARL val-
ues converge towards 1, whereas the SSARL values are
slightly smaller than 2.

Performance comparative study

In this section, the proposed schemes, that is, the NSS and
side-sensitive synthetic BTXII X schemes, are compared to
the traditional (or classical) Shewhart-type X counterparts
using similar synthetic and runs-rules schemes (cf Shongwe
and Graham 2017a, 2018; Malela-Majika et al. 2018a, b). For
a fair comparison, the competitive schemes are investigated
under symmetric (here we use the normal) and heavy-tailed
distributions with a sample of size 5, (6iin> dmax) =0, 2)
and H=3. Sherill and Johnson (2009) reported that schemes

perform better when using non-normal data. Kilinc et al.
(2012) showed that the Johnson Sy (i.e. unbounded form)
distribution presents attractive properties in building mod-
els. Therefore, the proposed BTXII X synthetic schemes are
also compared to the well-known X schemes for non-normal
data based on the Box—Cox and Johnson Sy transformation
under both heavy-tailed and symmetric distributions when
H=3. Moreover, the proposed BTXII X synthetic schemes
are also compared to memory-type control schemes such as
the cumulative sum (CUSUM) and exponentially weighted
moving average (EWMA) monitoring schemes.

The comparison of the proposed synthetic schemes and
the well-known classical Shewhart X, X-CUSUM and X
-EWMA schemes as well as the BTXII X-CUSUM and
X-EWMA schemes is displayed in Fig. 4. To challenge
Knoth (2016)’s claim about the NSS synthetic scheme, the
proposed NSS, SSS, RSS and MSS synthetic schemes are
compared to the classical and BTXII X-CUSUM and X-
EWMA schemes. The comparison is done under symmetric
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Table 10 IC and OOC

zero-state and steady-state
performance of the synthetic NSS SSS RSS MSS NSS SSS RSS MSS
BTXII X schemes when H=3

Shift Design 1 Design 2

Zero-state mode

0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40
0.2 153.12 116.12 115.60 101.47 142.70 101.75 101.14 94.31
04 32.48 22.81 22.67 19.46 33.39 23.04 22.88 20.10
0.6 9.05 6.90 6.87 5.95 9.79 7.33 7.29 6.30
0.8 3.66 3.05 3.04 2.72 3.95 322 321 2.84
1.0 2.04 1.83 1.82 1.69 2.14 1.89 1.88 1.73
1.2 1.45 1.36 1.36 1.30 1.48 1.38 1.37 1.31
1.4 1.20 1.16 1.16 1.13 1.21 1.16 1.16 1.13
1.6 1.09 1.07 1.07 1.05 1.08 1.06 1.06 1.05
1.8 1.04 1.03 1.03 1.02 1.03 1.02 1.02 1.02
2.0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
AEQL 34.23 30.60 30.55 28.99 34.49 30.39 30.32 28.98
k 2.14941 2.03249  2.03004 191429  2.16722  2.04035  2.03767 1.92241
Steady-state mode
0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40
0.2 160.80 123.69 123.13 108.47 151.41 109.78 109.12 101.33
0.4 39.23 28.50 28.32 24.47 40.33 28.69 28.49 25.11
0.6 12.97 10.28 10.23 8.97 13.88 10.76 10.70 9.40
0.8 6.07 5.22 5.20 4.71 6.46 5.44 5.41 4.88
1.0 3.70 3.39 3.38 3.16 3.86 3.46 3.45 3.22
1.2 2.73 2.60 2.60 2.50 2.78 2.61 2.61 2.51
14 2.29 2.24 2.24 2.20 2.30 2.23 222 2.19
1.6 2.08 2.07 2.07 2.06 2.07 2.05 2.05 2.04
1.8 1.98 1.99 1.99 2.00 1.98 1.97 1.97 1.98
2.0 1.94 1.96 1.96 1.97 1.94 1.94 1.94 1.96
AEQL 56.35 52.50 52.42 50.59 56.81 52.07 51.99 50.48
k 2.13309  2.00791 2.00508 1.89442  2.01547  2.01547  2.01241 1.90248
4001 Variable 401 Variable
T N (et
H=3 \ \\ 0 < shiff <=2.0
—A-H=4 K1 AT — - Oveall Perbrmance
3001 H=3
361
=
3 200 %
344
1001 24
304
0-
0.0 0.2 04 0.6 0.8 1.0 12 14 1.6 1 2 3' 4 5
Shift -
(a) ARL values of the Synthetic BTXII X (b) AEQL values of the Synthetic BTXII X
scheme for different values of H. scheme for different values of H.

Fig. 3 Performance of the Synthetic BTXII X scheme for different values of H (basic design)
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Variable
—8— Syn BTXILNSS_ZS
—— Trad Syn NSS 7S

4004 Syn BTXILMSS_7$
. —A - Trad Syn MSS 78

S o Syn BTXII_SSS_ZS
S~ —4— Trad Syn SSS 78

3754 S~ —¥— Syn BTXII RSS_ZS

~ _ |-~ Trad Syn RSS_ZS

-

3501

AEQL

3251

30.01

(a) Zero-state when H=1,2 and 3 when 8,4, = 2.5 and
n=35

400+ Variable
—8— NSSSyn (H=2)
—B= SSSSyn (H=2)
RSS Syn (H=2)
—A - MSSSyn (H=2)
NSS Syn (H=1)
—4— Syn (H=1) SSS-RSS-MSS
—W¥— Xbar CUSUM
==~ Xbar EWMA_0.1

3001

é 200 —X - Xbar EWMA 0.5
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—&— BTXIIEWMA 0.1
BTXII Xbar EWMA 0.5
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0 P ey .
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Shift

(¢) Comparison under symmetric distribution

Fig.4 Synthetic BTXII X, classical and BTXII X, X-EWMA and X
-CUSUM schemes performance comparison: a AEQL comparison of
the synthetic BTXII and classical Shewhart X schemes under zero-
state mode, b AEQL comparison of the synthetic BTXII and classical
Shewhart X schemes under steady-state mode, ¢ ZSARL comparison

and heavy-tailed distributions. Under symmetric distribu-
tions, and more precisely under the standard normal distri-
bution, when the smoothing parameter 4 of the classical X
-EWMA scheme is equal to 0.1 and 0.5, it is found that the
optimal parameter L=2.698 and 2.977 so that the attained
ZSARL(=369.90 and 368.90, respectively, for a nominal
ZSARL,, value of 370.4. Under heavy-tailed distributions,
and more specifically under the GAM (1,1) distribution, the
optimal parameters 2.698 and 2.977 yield ZSARL,, values of

Variable
—8— Syn BTXII_NSS_SS
—B— Trad Syn NSS_SS
62.51 Syn BTXIL MSS_SS
—A - Trad Syn_MSS_SS
. Syn BTXIL SSS_SS
600 ~ - —4— Trad Syn_SSS_SS
-~ —¥— Syn BTXILRSS_SS
~ |~ - Trad Syn RSS_SS
S

5751 -

H

(b) Steady-state when =1, 2 and 3 when Sy = 2.5
andn=>5

400 Variable

—8— NSSSyn (H=2)

—B= SSSyn (H=2)
RSS Syn (H=2)

—A- MSSSyn (H=2)
NSSSyn (H=1)

—4— Syn (H=1) SSS=RSS-MSS

—¥- Xbar CUSUM

==+~ Xbar EWNMA 0.1

—X - Xbar EWMA 0.5
BTXII CUSUM

—8— BTXIIEWMA 0.1
BTXII Xbar EWMA 0.5

0.00 020 040 0.60 0.80 1.00 120 140 1.60

Shift
(d) Comparison under heavy-tailed distribution

of the synthetic BTXII X with both classical and BTXII X-EWMA
and X-CUSUM schemes under symmetric distribution and d ZSARL
comparison of the synthetic BTXII X with both classical and BTXII
X-EWMA and X-CUSUM schemes under heavy-tailed distribution

271.40 and 77.20 when A=0.1 and 0.5, respectively. These
results show that the X-EWMA chart is not IC robust (which
is what we expected to find) because the attained ZSARL,
values of 271.40 and 77.20 are far different from the nomi-
nal ZSARL, value of 370.4. For the classical X-CUSUM
scheme, we found that the UCL value is equal to 13.26 so
that the attained ZSARL,, value under the N (0,1) distribu-
tion is equal to 369.5. However, under the GAM (1,1) dis-
tribution, when UCL =13.26, the X-CUSUM scheme yields
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an attained ZSARL,, value of 301.27, which shows that the
classical X-CUSUM scheme is not IC robust as well (which
is what we expected to find).

Table 11 shows that in zero-state mode, under heavy-
tailed distributions, both the proposed MSS BTXII X syn-
thetic scheme (introduced in this paper) and MSS BTXII
runs-rules X schemes [proposed by Malela-Majika et al.
(2018b)] outperform all other competing charts from small
to moderate shifts. For large shifts, the proposed BTXII X
synthetic scheme and BTXII X improved runs-rules scheme
as well as the Johnson Sy X synthetic scheme perform better
regardless of the type of design (i.e. NSS, SSS, RSS and
MSS designs). In steady-state mode, from small to moderate
shifts, the MSS BTXII X synthetic and MSS BTXII X runs-
rules schemes outperform all competing charts. For large
shifts, the SSS, RSS and MSS BTXII X improved runs-rules
schemes are superior to all other competing charts.

Under symmetric distributions (see Table 12), for both
zero-state and steady-state modes, the classical MSS
Shewhart X runs-rules and MSS synthetic X scheme com-
bined with an X chart [proposed by Shongwe and Graham
(2016)] outperform all other charts from small to moderate
shifts. For large shifts, in zero-state mode, these charts are
equivalent to the proposed BTXII X synthetic schemes, the
classical synthetic X schemes [proposed by Shongwe and
Graham (2017a)], the Johnson S synthetic schemes as well
as the Box—Cox X synthetic schemes. However, in steady-
state mode, the control charts proposed by Shongwe and
Graham (2017a) outperform the competing charts.

From Fig. 4a, b, we can draw the following conclusions:

The proposed synthetic BTXII X schemes outperform the
traditional X schemes.

The synthetic schemes are more sensitive in zero-state
(small values of the AEQL).

The proposed NSS scheme is less sensitive when com-
pared to other schemes.

In general, when the value of H increases, the sensitivity
of synthetic BTXII X scheme increases as well. After
investigating the sensitivity of the proposed synthetic
schemes, it is observed that increasing the value of H
does not always increase the sensitivity of the schemes.
For instance, for the NSS scheme, from H =2 to 3, the
sensitivity of the proposed NSS synthetic BTXII X
scheme decreases. The latter is shown by the AEQL value
increasing from 33.13 to 34.83. Therefore, it is important
to investigate the optimal value of H that increases the
sensitivity of synthetic schemes.

e In zero-state mode, the proposed synthetic BTXII X
schemes perform best under the SSS and MSS schemes

@ Springer

when H=2. Under the steady-state mode, the MSS
scheme performs best for H=3.

Figure 4c, d yields the following findings:

e Under symmetric distributions, when H=1 and 2, the
classical and BTXII X-EWMA scheme outperforms the
NSS synthetic scheme for small values of A under small
and moderate shifts (see for instance, Fig. 4c for A=0.1).
When 4 increases, the NSS synthetic scheme outperforms
both the classical and BTXII X-EWMA scheme regard-
less of the size of the mean shifts (Fig. 4c when 1=0.1).

e Under heavy-tailed distributions, when H=1 and 2, both
classical and BTXII X-EWMA and X-CUSUM schemes
outperform the NSS synthetic scheme regardless of the
values of A for small and moderate shifts (Fig. 4d). For
large shifts, the NSS X synthetic scheme performs bet-
ter than classical and BTXII X-EWMA and X-CUSUM
schemes.

e Under symmetric distributions, when H=1, the SSS,
RSS and MSS synthetic schemes are equivalent and per-
form better than the classical and BTXII X-EWMA and
X-CUSUM schemes regardless of the size of the shifts.

e Under heavy-tailed distributions, the SSS, RSS and MSS
synthetic schemes outperform the classical X-EWMA
and X-CUSUM schemes for two reasons, (1) they are
IC robust and (2) yield small OOC ARL values. It can
also be observed that the proposed SSS, RSS and MSS
synthetic schemes are more sensitive than the BTXII X
-EWMA and X-CUSUM schemes.

e Under symmetric and heavy-tailed distributions, when
H=2, the proposed SSS, RSS and MSS X synthetic
schemes perform better than the classical X-EWMA and
X-CUSUM schemes. In this case, the MSS scheme per-
forms better than the SSS scheme and slightly better than
the RSS scheme.

e The BTXII X-EWMA and X-CUSUM schemes per-
form uniformly better than the classical X-EWMA and
X-CUSUM schemes under symmetric and heavy-tailed
distributions regardless of the size of the shift in the loca-
tion parameter.

lllustrative example

In this section, a real-life example is given to illustrate
the design and implementation of the proposed synthetic
schemes using the dataset from Mahmoud and Aufy (2013)
(see Table 13). The data represent the shaft diameter which
is expected to be around 7.995 millimetres (mm). To assess
the production process, measurements of twenty-five
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Fig.5 NSS and MSS synthetic BTXII X schemes of the measurements of shaft diameter for both zero-state and steady-state modes

samples have been taken, each consist of five items from
the final production stage for which a goodness of fit test for
normality is rejected.

When H=1, for both zero-state and steady-state modes,
the control limits of the NSS and side-sensitive synthetic
BTXII X schemes are given by (LCL, UCL)=(0.374, 0.6)
and (0.38, 0.59), respectively. A plot of the charting sta-
tistics for H=1 is shown in Fig. 5 (a). It can be seen that
both NSS and side-sensitive schemes signal for the first time
on the fourth subgroup. When H =2, the control limits of
the NSS and MSS synthetic BTXII X schemes are given
by (LCL, UCL)=(0.37, 0.61) and (0.38, 0.6), respectively.
A plot of the charting statistics for H=3 is shown in Fig. 5
(b). It can be seen that the MSS scheme signals for the first
time on the seventh subgroup while the NSS scheme does
not issue a signal. This shows the superiority of the MSS
scheme over the NSS scheme.

Summary and recommendations

In this paper, synthetic X schemes for non-normal data were
proposed as alternatives to the classical Shewhart-type and
synthetic X schemes when the assumption of normality
fails to hold. It was observed that the proposed schemes
outperform the classical ones in many cases, and present
very interesting run-length characteristics under normal and
non-normal distributions. It is highly recommended that
practitioners, in the industries, and researchers make use of
the proposed schemes instead of the classical schemes when
the process is not stable or when there are doubts about the
nature (or the shape) of the underlying process distribution.
For the steady-state mode, when small and moderate shifts

Table 13 Measurements of the shaft diameter

LCL=0.38 (ZS&SS MSS)

Subgroup X, X, X3 X, X5
number

1 7.985 7.989 7.989 7.987 7.985
2 7.988 7.988 7.985 7.989 7.993
3 7.986 7.998 7.987 7.992 7.984
4 7.989 7.991 7.997 7.995 7.994
5 7.987 7.984 7.988 7.987 7.987
6 7.984 7.989 7.984 7.984 7.991
7 7.995 7.997 7.991 7.985 7.993
8 7.989 7.985 7.986 7.985 7.984
9 7.985 7.985 7.984 7.990 7.995
10 7.996 7.989 7.987 7.988 7.985
11 7.989 7.986 7.991 7.989 7.99
12 7.995 7.996 7.989 7.996 7.989
13 7.988 7.987 7.989 7.984 7.993
14 7.987 7.992 7.992 7.987 7.992
15 7.989 7.986 7.986 7.988 7.993
16 7.993 7.989 7.984 7.987 7.988
17 7.987 7.985 7.985 7.988 7.993
18 7.986 7.984 7.990 7.998 7.990
19 7.986 7.987 7.989 7.995 7.994
20 7.993 7.991 7.995 7.989 7.986
21 7.986 7.991 7.99 7.991 7.987
22 7.987 7.989 7.984 7.984 7.989
23 7.986 7.986 7.988 7.990 7.993
24 7.988 7.989 7.987 7.986 7.993
25 7.987 7.994 7.994 7.989 7.992
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are of interest, the recommendation is to use side-sensitive
synthetic schemes regardless of the size of the sample and
H value. For the zero-state mode, for small and moderate
shifts, the recommendation is to use side-sensitive synthetic
schemes regardless of the value of H.

It must be noted that the use of synthetic schemes for
large values of H is not recommended in practice because,
in most of the cases, the dimension of the TPM increases
exponentially as H increases. The design (or construction)
of such schemes becomes cumbersome and sometimes unre-
alistic. Therefore, the recommendation is to use small values
of H (say H < 3) for which the schemes perform better.

The comparison of the proposed synthetic schemes with
the X-EWMA and X-CUSUM schemes reveals that the SSS,
RSS and MSS synthetic schemes outperform both classical
and BTXII X-EWMA and X-CUSUM schemes regardless
of the size of the shift in the location parameter. The NSS
synthetic scheme is inferior when compared to the classical
and BTXII X-EWMA and X-CUSUM schemes for small
and moderate shifts in the location parameter. However,
for large shifts, the proposed NSS synthetic scheme per-
forms better than the classical and BTXII X-EWMA and
X-CUSUM schemes. Therefore, we do not support Knoth
(2016)’s claims of discarding synthetic schemes since the
three schemes, namely the SSS, RSS and MSS synthetic
schemes have very interesting ARL and AEQL properties
over the classical Shewhart X, X-EWMA and X-CUSUM
schemes.

It must also be observed that the classical Shewhart X
schemes are not IC robust and present some weakness in
many situations. To fix this problem, flexible schemes such
as BTXII Shewhart X and nonparametric schemes may be
used.

In future, we will consider the design non-side-sensitive
and side-sensitive synthetic Shewhart-type X schemes com-
bined with a basic X for non-normal data using the BTXII
and Weibull distributions.
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Appendix: TPMs, zero-state and steady-state
probability vectors of the NSS
and side-sensitive synthetic schemes

This appendix explains how the markov chain approach
is used to construct the TPMs of the proposed synthetic
schemes. Moreover, the appendix also explains how to
found the initial probability vectors of the proposed syn-
thetic schemes by giving the steps that lead to the obtention
of the zero-state and steady-state probability vectors denoted
ZSPV and SSPV, respectively.

TPMs of the synthetic schemes
TPMs of the SSS synthetic schemes

Let+, U, I and D represent the state of four different test
samples of a SSS synthetic scheme. The symbol “+” indi-
cates that at time ¢ = 0, the plotting statistic of the first sam-
ple falls either above the UCL or below the LCL (Fig. 2b).
The second is an upper nonconforming (i.e. the plotting
statistic of this sample plots above the UCL), the third is a
conforming (i.e. the plotting statistic of plots between the
LCL and UCL) and the fourth is a lower nonconforming (i.e.
the plotting statistic of this sample plots on or below LCL).
The compound (or absorbing) patterns of the SSS synthetic
schemes for H = 1, 2 and 3 are obtained as follows:

Step 1 List all the absorbing patterns, A, given by

A={A; = {UU}, Ay={LL}, Ay = {+U}, A, = (xL}} forH=1
A={A, = {ULU}, A, = {UIU}, A; = {UU}, A, = {LL}, A5 = {LIL}, Aq = {LUL}, A, = {+U}, Aq

={xL}, Ag = {£IU}, Ay ={#IL}} forH=2

A7)

A={A, ={UIIU}, A, = {UILU}, Ay = {ULIU}, A, = {ULU}, As = {UIU}, A; ={UU}, A, ={LL}, Aq
= (LIL}, Ay = {LUL}, A,y = (LUIL}, A, = {LIUL}, A, = {£lIL}, Ay = {LIIL}, A}, = {£U}, A5
={*L}, Ajg = {+IU}, Aj; = {#IL}, Ajg = {#IIU}} for H=3
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Table 14 Construction of the 00C
TPMs of the SSS synthetic MM M b M s M P @
scheme for H=2 M 0 0 0 0 p; 0 0 Pu +D;
| 0 0 pp p» O 0O 0 O Pu
mlee w0 0 0 0 0 0 0 Pu
o) 0 0 Pu D 1 0 0 0 0 0
mf{o o o o 0 p p 0 O P
s 0 0 p. p O 0 0 0 0 i
N 0 i 0 0 0 0 0 0 0 Py T
)] 0 0 0 0 0 0 0 0 Di Pyt 01
@; 0 0 0 Di 0 0 0 0 0 Py T 1
00C 0 0 0 0 0 0 0 0 0 1

Step 2: Create the dummy state ¢ which is defined by the
single IC state given by {I} for any value of H. Thus, the
dummy state is defined by

¢p=n={I}forH=1
¢p=n,={I}forH=2
¢p=n,={I}forH=3

(18)

Therefore, ¢ = {I} for any value of H.

Step 3 Decompose each element in the absorbing pat-
terns given in Eq. (17) into its basic states by removing
the last state.

A={n ={U}, ns={L},p={x}} forH=1

A={n ={UL}, n, ={Ul},n; = (U}, ns = {L}.ng = {LI}, n, = {LU}, @ = {x}, ¢, = {I}} forH=2

Step 6 Construct the TPMs of the proposed SSS synthetic
schemes. For instance, when H = 2 the TPM of the SSS
synthetic scheme is constructed as follows (Table 14):

TPM:s of the MSS synthetic schemes

Considering the MSS synthetic scheme, let Y; (where i > 1)
be a sequence of iid random variable taking values in the set
0 =1{1,2,3,4} and let P(Yi = 9) =py(forl1 <0 <4). Let
digits 1 and 4 denote the upper and lower nonconforming
states, respectively, while digits 2 and 3 denote the upper

19)

A = {’71 = {UII}9 7]2 = {U[L}s 7’]3 = {ULI}7 ’74 = {UL}s 775 = {UI}9 7]6 = {U}s 778 = {L}’ ’79 = {Ll}s ’110
= (LU}, ny, = {LUI}, nyy = (LI}, ny3 = (LI}, @ = {%}, @, = (%]}, @, = {=I}} for H =3

Step 4 Denote the OOC states as “O0OC” given by
Eq. (17). For example, for H = 2, the set of the OOC
states is given by
00C ={UuLU, UIU, UU, LL, LIL, LUL, +U, +L,

+ IU, £ 1IL}.

Step 5 Combine the states in Step 2 to 4 to get the state
space £2. Therefore, the state space of the SSS synthetic
schemes is given by

{n1:¢b: 13.9:00C}  for H =1
{’71, Moy M35 D5 Mss Ng> M7 @5 P OOC}} for H =(30)

and lower conforming states (see Fig. 2¢c). Moreover, let the
symbol “+” indicates that at time ¢ = 0, the first plotting
statistic falls either above the UCL or below the LCL.

Let now consider the case where H=1, 2, and 3 for a
MSS synthetic scheme using a forward approach. The
Markov chain states of the proposed MSS synthetic scheme
are obtained as follows:

{’71, Moy M3> gy Ms> N> D5 Ng> Mos Migs M11s M12s M13s @ P (Pu;OOC}} forH=3
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Table 15 Construction of the 00C
TPM of the MSS synthetic il 12 ¢ M O RL
scheme for H=2 T 0 0 P2 +Dp3 Pa 0 0 0 0 P1
M2 P2 0 p3 Pa 0 0 0 0 (21
¢ 0 D1 P2 + D3 P4 0 0 0 0 0
M3 0 D1 D2 0 p3 0 0 0 Pa
N4 0 P1 P2+ s 0 0 0 0 0 D4
@ 0 0 0 0 0 0 p p3 P11 Ds
P2 0 0 P2+ 3 Ps 0 0 0 0 Py
@3 0 P1 P2 T D3 0 0 0 0 0 P4
00C 0 0 0 0 0 0 0 0 1
Step 1 List all the absorbing patterns, A, given by
A={A ={11}, Ay = {£1}, Ay = {44}, A, = {x4}} forH=1
A={A, = {121}, Ay = (11}, Ay = (44}, A, = (434), As = (21}, Ag = (24}, A, = {£21}, Ag = {£34)} for H =2
(21

A={A = {1221}, Ay = {121}, Ay = {11}, A, = (44}, A5 = (434), Ag = {4334}, A, = (1}, A,

= (24}, Ay = (21}, Ay = (£34), A, = (2221}, A, = {£334}} forH =3

Step 2 Create the dummy state ¢ which is defined by the
single IC state given by {2, 3} for any value of H. Thus,
the dummy state is defined by

¢ =nyy =1{2,3}VH (22)
Step 3 Decompose each element in the absorbing pat-
terns given in Eq. (21) into its basic states by removing
the last state.

A={m =1}, i ={4}o={x}} forH=1

A={n =12}, ;= {1}, ny = {4}, 15 = {43}, @ = {£}, ¢, = {£2}, @3 = (£3}}} forH =2
’13 = {1}9 7]5 = {4}’ ’76 = {43}’ ’77 = {433}7 Q= {i}’ @2 = {iz}» (P3

A= {n = (122}, n, = {12},

= {43}, @y = {£22}, @33 = (£33} forh =3

Step 5 Construct the TPMs of the proposed MSS syn-
thetic schemes. For instance, when H = 2 the TPM of
the MSS synthetic scheme is constructed as follows
(Table 15):

Note that the RSS and NSS synthetic schemes can also
be constructed in a similar way. However, for the NSS

(23)

Step 4 Denote the OOC states as “OOC” given by
Eq. (21). For example, for H = 2, the set of the OOC
states is given by

00C = {121, 11, 44, 434, + 1, + 4, + 21, + 34}.
Step 5 Combine the states in Step 2 to 4 to get the state
space £2. Therefore, the state space of the MSS synthetic
schemes is given by

{n1:¢; 13, 9;00C}} for H =1

{n .m; & 4. 15, @, @2, 933 00C} for H =2

{n. mo. 133 b: 115, N6, M7, @, @2, @3, Py, @333 00C}  for H =3
(24

@ Springer

synthetic scheme, we do not consider the state at time r = 0,
66+”'

Zero-state probability vector (ZSPV)

The &y, = q;y, = (010...0) is the row vector of initial
probabilities associated with the zero-state mode, and it has
a one in the component associated with the state in which
the chart begins and each of the other components of the
vector are equal to zero. For the NSS synthetic scheme, it
corresponds to the element of the TPM equal to ‘O’ (i.e. ;)
(Fig. 2a).
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ZSPV of the NSS synthetic scheme

The ZSPV of the NSS scheme for H=1, 2 and 3 are deter-
mined as follows:

Step I Define the state space

é; ny; OOC} for H=1
d)? nls ’12 OOC} fOr H=2 (25)
{: my; my; m3; OOC} for H =3

Step 2 From Eq. (25) remove the last state of the state
space corresponding to the OOC state to find the essential
TPM

{¢:m} forH=1
{¢3ﬂ1aﬂz} forH=2 26)
{¢;ﬂ1§ﬂ2;ﬂ3} for H =3

Step 3 Substitute one into Eq. (26) for n7; and zero else-
where to find the initial probability vectors q;,, which
are given by

(01)forH=1
(010)forH=2 (27)
0O100)forH=3

From Eq. (27) we can see that for any value of H, the
ZSPV of the NSS scheme is given by

(010 ...00) (28)

ZSPV of the side-sensitive synthetic schemes

For the SSS, RSS and MSS schemes, the initial state corre-
sponds to the element of the TPM equal to ‘+’ (i.e. @). Thus,
the ZSPV of the SSS, RSS and MSS scheme is determined
as follows:

Step 1 Define the state space. For instance, for the RSS
scheme, the state space for H=1, 2 and 3 is given by

{111; b; 1y, q)} forH=1

{m. m: i nziny @, @3 O0C}  for H=2

{1, my: m3; & ngs ns. mg, @, 9, @ O0C}  for H =3
(29)

Step 2 From Eq. (29) remove the last state of the state

space corresponding to the OOC state to find the essential
TPM

{n;: s my, @} forH=1
{n, ms dsny, ny@, @} for H=2 (30)
{m. my 33 &3 ngs ns, Mg, @05 @y for H=3

Step 3 Substitute one into Eq. (30) for @ and zero else-
where to find the initial probability vectors q,,, which
are given by

©0001) forH=1
0000010) forH=2 31)
©0000000100) forH =23

From Eq. (31) we can see that for any value of H, the
ZSPV of the RSS scheme is given by

000...10... 0) (32)

Note that the number of zero after the element corre-
sponding to the initial state (i.e. one) for the NSS, SSS and
RSS schemes is equal to “H — 17, whereas for the MSS
scheme, the number of zero after the element correspond-
ing to the initial state is equal to “2H — 2”

Following the same procedure, the ZSPV of the SSS and
MSS scheme is given as follows:

e For the SSS scheme, the ZSPV is given by

0001) forH=1
000000010) forH=2 (33)
(0000000000000100) forH =3

e For the MSS scheme, the ZSPV is defined by

©0001) forH=1
00000100) forH =2 (34)
000000010000) forH =3

Steady-state probability vector (SSPV)

The &,, = s;, is the row vector of initial probabilities
associated with the steady-state mode and its elements are
non-zero. Moreover, the sum of all its elements is equal to
one (i.e. ). s; = 1). There are a number of method used to
compute the s, ., and in this study, we focus on one of the
steady-state probability vector (SSPV) methods proposed by
Champ (1992), which is defined by

s=(1'2)" -z (35)

where z is the 7 x 1 vector with z.,,, = (G—Q')_lej
and the matrix G in Champ (1992) can be generalized as
G =e¢;- I’ +1,,, where ¢, is the jth unit vector correspond-
ing to e, for the one-sided as well as the two-sided NSS
scheme and j corresponds to the element of the TPM equal
to ‘+’ for the two-sided SSS, RSS and MSS schemes.
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SSPV of the NSS synthetic scheme

The SSPV of the NSS scheme for H=1, 2 and 3 is deter-
mined as follows:

Step 1 Define the jth unit vectors corresponding to e,
which are given by

1
1 ! 0
<O>forH=1, O|forH=2 and 0 for H =23
0 0
(36)

Step 2 Compute G, which is defined by: e, - 1’ + I .. For
H=1, 2 and 3, G is given by

G=((1)>(1 1)+<é?>=<§i> for H =1

1 100 211
G=[0|(111)+[010f=f010| forH=2

0 001 001

1 1000 2111

0 0100 0100
G= O(1111)+ oot10l=looiol| ford=3

0 0001 0001

(37)

Therefore, for any value of H, G is given by
211...11

010...00

001...00

- (3%
000...10

000...01

Step 3 Compute z, which is defined by: (G — Q') ™' ¢;. For
H=1, 2 and 3, z is given by

o .
21 " 1 o
z:[( )—( Pi p,)] ( ): ”tz]i’;’” for H=1
01 1-p; 0 0 p—
. -1 1
211 pi 0 p 1 P} =20} -pi+3
1—p,
z=[lo10]|-|1-p 00 0=\ popm | for=2
) pi(1-p;)
A A AN Ve (39)
—1 1
2111 pi 0 0 p; 1 P20} —p+3
1-p;
_|[oroo] [1-pooo o| |/=om o3
- - = _p(-p) =
0010 0 p; 00 0 R
0001 0 0p 0 0 p(1=pi)
pi=2p}—pi+3

@ Springer

Step 4 Compute the SSPV, s, using Eq. (3.53). Thus, for
H=1,2 and 3, s is given by

1 -1 1
T O
oo[z=] =
Pr=3p;+3 Pr=3p;+3
1
= L for H=1
2-p;\ 1-p;

1 -1 1

Pi-2p2-pi+3 PI-2p2—pi+3
s 1
s=|(111 Pi-2p2-pi+3 PI-2p2-pi+3
ri(1-p)) ri(1-p))
3 2 3 2
P;=2p;—pi+3 P;=2p;—pi+3
. 1
2_2—]72 1-p forH=1 (40)
i _
Pi(l Pi)
S Y I A
pr-2p3—pi+3 pr-2p3—p;+3
—pi 1-p;
pr-2p}—pi+3 pr-2p)—pi+3
s = 11r11)- pi(1-pi) pi(1-pi)
p[4 721)? —p;i+3 pf 721)? —pi+3
2 2
p;(1-pi) p;(1-pi)
Pi=2p3—p;i+3 p=2p3—p;i+3
1
1 1 —p,
=— ! for H= 3
2-p}| pi(1=p,)
2
p,' (1 _pi)

Therefore, for any value of H, the SSPV is defined by

1
1-p;
1 Pi(l_ i)
2—p’.’ 41)
P(1-p)
P?_l(l _Pi)

SSPV of the side-sensitive synthetic schemes

The SSPV of the SSS, RSS and MSS synthetic scheme for
H=1, 2 and 3 are determined as follows:

Step 1 Define the jth unit vectors, €, corresponding to one
if n={x} (i.e. @). For instance, for the SSS scheme, the

e; vectors are given by
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- o O O

8 9!
(9]
s = 43
0 <o ¢ (43)
0 0 C4
0
0
0 0 where
0
0 0 1
for H =1, O|forH=2 and 0 for H=73 g():l ,glzpbpi(l+pl),
0 — PiPu
0 8 & =pi(1+pp,), ¢ =pwpi(1+p,) and
1 0 4 =1 =i = Pubi = PuP1 = PiPi = PuPiPu-
0 0 When H=2,
1
0 1. The SSPV of the SSS synthetic scheme is given by
0
9
(42) g;
The e; vectors of the RSS and MSS schemes can be find ¢
in a similar way. ¢
Step 2 Compute G, which is defined by: e; - 1" + I, for s=c¢o| ¢s (44)
H=1, 2 and 3 [see for example Eq. (37)]. Co
Step 3 Compute z, which is defined by: (G — Q’)_lej for &
H=1, 2 and 3 [see for example Eq. (39)] G
Step 4 Compute the SSPV, s, using Eq. (3.53). Thus, for S

H=1,2 and 3, SSPV of the SSS, RSS and MSS synthetic
schemes are given by where
For H=1, SSS = RSS = MSS synthetic scheme. Thus,

1

PP = Pip, + 2P0t = 2p2p3 — 2p2p2 + 3p2p,, + pypS — 2pipt + Apip2 — 2pyp, + p3 — p2 + 1
¢ =pipr(1+pi—p; = 2pp,+ P+ PiPy)

& =pu; (1+2p, = p; = pip, — PP, + Pip, + D)D)

& =pup; (1+pi =P} =2ppu+Pipy +PiPu)

So

1
or ¢z = —¢;

¢ =pi¢!

s =pp; (1 +p, = 2p, +p, —pip.+DPi0y)

S =P} (P + Py + Pipu — PP, — PP, + PPy — PPy + D)D)
¢ = (1 +p, =20, + P, = pipu +PiPs)

1
org; = —¢s

s =P, +2p; =P, +pp, + 4w, = 200, — dpp, + 4pip, — ppS + 3pip,
— 8p;p = 2p;p, + 8pipy — 3pi P, — 4p)p, + 3PP, + 4pp, = 3p P + DD,
-pp,

So =P, +2p; =P, —3p) +pip, + 200, — 6pp, = 2pipsy + 8pip, — Sppl + pip)
- 15p12pi + Splzpz + 14p12p3 — 15p12p2 + 4p,2p2 - 6pl3pu + 15pl3p5 + Sp?pi

—15p;p} + 6p,p. +p} + 5pip, — 4p,P} = 5p,pP, + 4p)p} — P)PW + D)D)
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2. The SSPV of the RSS synthetic scheme is given by

9
9]
¢3
S = 6ol S4 (45)
Cs
S6
S7

where

1
So =

PP+ 20102 — 4pip, — pipd — 4pp2 +4pp, — 1
¢ =puo; (1+2p,—pw, — p})
¢ =puor(1+2p, = pw, — p})

or ¢, = llg 1
G =pis;!
¢ =pw;(1+2p, —pip, —P})
¢s =pw; (1+2p, —pip, —P})
Or ¢5 = PGy
Co =2p; +2p% —p; — )+ i, +30,PE — 4p)p,
+3pp, — 8p;ip. +3pip, + Py — 4pip), + 3piD;
¢ =p+pl+2p +2p2 = 3p; = 3p> — plp, — 4p/p + 5p;p,
— 6p;p, + 15p,p. — 6p,p, — 4p;ps + 15p}p,
+ 14pip% + pip, — P, + Sppt — 6pip’, + PP’
3. The SSPV of the MSS synthetic scheme is given by

¢
s
S3
s=af o (46)
S6
&7
¢

@ Springer

where
S = !
1= p1paps = 2p1Pap> = P1Pa
1 =P1P§(1 +2P2)(1 + P4 +P4P2)
& =12 (1+2py) (14 py +papy)
org, = [JLZGI

3 =D5(P1 + P2+ 2102 = 20104 + 2P4p2 — 2P1Papy + 4)
¢y =pap2(1+2p:) (1 +py +pipy)
¢s = pap3 (14 2p) (1 +p, +pip,)
Or C5 = Py&y
6 =1=2p, = 2p\p; — 2p5ps — PiPy — P14
— PaPy = 3P1PoPs — 2P1PaPs — 2P1PaPa
§7=D2— 21’% —P1p§ - 217117; —P4P§
- 2173174 -2p 1P§P4 - 3[’1[73174 -2p 1P3P4 — P1P2P4
S8 =Py — 205 — P15 — 2P\P> — PaPs
- 2[’;]’4 - 2P1P§P4 - 3171173174 - 2P1P3P4 — P1P2Ps
or gg = g7
When H=3

1. The SSPV of the SSS synthetic scheme is given by

S
9)
S3
C4
Ss
S6
&7
s=af 2 (47)
€10
S
S12
S13
Cl4
ST
S16
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where

1
1+ 2p3p?p2 + 2ptp2p? — plpip, — ptpiw? — pipip, — 20 P, — 307PID,
¢, =p0) (L +pp;+pp})
¢ =pupip; (14 pipi + piv?)

So

P
or ¢, = —¢
i

¢ =ppipi (1+pp,— pioip, — P2PPL)

]
co =pupip; (1 +pip = Pipip, — PopiPL) = o6

,-
¢s =pup; (L +pp; +pp;) = I%Qz
So = pup; (1 + 7P = PipiP, = Popip) = %@
¢ =p; (1= p;pip, — 20;Pipu — PPIP)
¢y =i} (1 +pip, =PIy — PopiPu)
o =pipt (14 pupi + pup?)
S10 = PP (1 + DIy = PiPiPu = PoPiPu) = PuSs
¢ =pwpip; (1+pip, — Pipip, — PUPPL) = PiSio
1o = PP (1 + pupi + PuP}) = PuSo
i3 =} (L +pupi + pud}) = PiSo
Sia =1 =p;i=pip = pip, — PP, — P{P. — P;PD. — PiDIP. — PiPIP,
—3pipip, + 20, PP} + pipip}
Sis = Di =P} = DiPy = PPy = PiPiPu — PiPiDy = PP, = P;PiPu — PiPiPu
= 3ppip. + 20pip + 207P) P,
Si6 =D =D} = PP = P;Pu = P[PiPu — DD, Pu — P{PIP, — D{PiPy = DIPIPs

= 3p!pp, +2p]pip% + 20%p; P’

2. The SSPV of the RSS synthetic scheme is given by

€1
9
S3
C4
s=af )
&7
cg
S9
S10
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where

1
L= pip, = pipw. + 20} Py = 30; P00 = 200D,
¢ =pup; (1+p +pp; +ppy)

So

1
S =ppi(L+p +ppi+pp;) = pxd

i

1
& =pp, (1 +p +ppi+pp;) = 76

i
¢ =pg’
=pp} (1 +p, +puo; +pp7)
s =pp; (14 P, +pup; + P}
6 =pupi (1+py +pupi+pub7) = Piss
¢ =pp; (1+py +pupi +0.P;) = DPiSs
Sy = 1= p; = PP, = PIPy = PiPu = PiPIPu = P;PPu — PPIPu — PiPIPY = PiPiPw
So =p;— P = PiP; = P}Py — PiPiPy — PIPIPy — P,PiPy — PiPiPy — PPIPu — PPID,
2 3 5 5 2 3 4 5 6
Cl0 =D} =P} — PPy — PPy — PiDiPy — PiPiPy — PiPiPy — P.PPu — PoPiPw — PPIP,

3. The SSPV of the MSS scheme is given by

$ =< 49)
where

1

1- gg
Gy = PiP4 + P1P3Ps + P1P3Ps + P1PaPs + P1P3P4 + P1PaP3Pa — PiPaP3P4 — PiPaP3Pa — P1PaPiP4
1 = P13 (P3 + D5 + D33 + P3Pa + PaPa + PPy + Pab3 + PaPa + Pab3Ps + PoPaPa + PabiPs

+D3P3Ps + D3P3P4 + D3PAPs + PAP3P4 + P1P2Ds)
1
6= p—2€ 1
$3 = PP + P1P3 + PiDaPs + PiPaPs + PiD3Ps + PiDsPs + PiDaPs + PiDaPs
+ P1DaP3P4s + P1PaP3Ps + PiPoP3Ps + PiPaPAPs + PiPAP3Pas + P1PaP3Pa + PiPoP3Ps + PiPPIP4
4 = D3 + Py + 0105 + PiDs + 2Dap3 + Do + P33 + Popa + Papa + PiPaps
+ P\PaD + PiPAP3 — PAPaPs — PiPAPs + PaP3Pa + P3PAPs + PapsPa + PapPapy

+ Pap3Ps + P1PIPs + PiPIPs + PiPIPs + PaP3Ps — P1PaPaPa — PiPaP3Ps — P1PaPaPa — P1PaPiPs

So

@ Springer
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Cs = P3P+ PaPy + PiD3Ps + PaD3Ps + PiDyPs + PiD3Ps + PiD3Ps + PaD3Py
+ PIPaD3Py + P1PaD3Pa + PiP3P3Ps + PiPaDAPs + PiPaP3Pa + PiP3P3Pa + PiP3PIPs + PiPaP3Ps
S6 = P3P4 (P2 + Py + P1P3 + iP5 + PaDs + PiPs + PiP3 + PaDy + PiPaps + PipaD;
+PiD3Ps + PiPaP; + PADIPs + PiPaP; + PiDIP; + PiPAP3)
¢7 = P3%6
s = | =Py = Py = P\Py = PaPa = PiP3 — PiPa — PaPa — PiPaP3 — PiPaPa — PiP3Ps
— PaPsPs — P\PSPs — P1PaPa — P1PaPs — P1PaPa — P1P3Ps — PalP3Pa
— P\PaP3Ps = P1P2P3Pa = PiP3PPs — PiPaPaPa — P1PaP3Pa — PiP3P3Ps
— P\P5PAPs — PiPAP3Pa
So =Py = D3 = P\Ps — PaPa — PaPs — PiPaP3 — PiPaPs — PiPaP3 — PiPaP3 — PiPaPa
— P\P>Ps — PiP3Ps — PaP3Pa — PaP3Ps — PaP3Pa — PiPaP3Ps — PiPaP3Ps
— P\PAP3Ps = P1PaP3Ps — PiPaP3Ps — PiPaP3Pa — P1P3P3Pa — PiP3PAPa
— PAPP3P4 — PiPAPAPs — P1P3P3Ps
S0 = P3 = D3 = PiP3 — P3Pa — PaP3 — PiP3Ps — PaP3Pa — PiPaPs — PiPP3
— P\P3Ps — PiPAPs — P\PAPa — PaP3Ps — PaPaPa — PiPaPs — PiPaP3Ps
— P\PaP3Ps = P1P3P3Pa — PiPaPAPs — PAPaP3Ps — P1PaP3Pa — PiP3PAPs
— PAP>PAPs — PiPAP3Pa — P1PaP3Ps — PAPaPAPs
S = P% —pi - plpi - P§P3 - P§P4 _P1P§P3 _P1P§P3 - P1P§P4 - P1P§P3
- P1P2P4 4 1173174 4 1P§P4 - P3P3P4 - P%P;Pzt - P;ngzt 4 1P§P3P4
— PAP>P3P4 — PiP3P3Pa — PiPaP3Pa — PAPSPAPs — PiP3PAPs — P1PaP3Pa
— P\PAPAPs — P1P3P3Pa — PiP3P3Ps — PiPaP3Pa
C1y = P53 — Py — P1P3 — PaPs — P3P4 — P1PaPy — PAP3P4 — P1P3Ps — PiP3P4
— PaD3Ps = PiP3P4 — PaPAPa — PaPsPs — PiPaP; — PiP3Ps — PiPaP3Pa
— PAP2PAP4 — P1PaP3Ps — PiPaPPa — PAPSPIPs — PiP3PAPs — P1PaP3Pa
— P\PAPIPs — PiP3PAPa — PAPAPPs — PAPAPIPs
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