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Abstract 

Sustainability in the integrated production system in supply chain networks has led to the creation of competitive 

advantage for companies. Therefore, companies should have proper management of their supply chain network to 

increase their market share. Therefore, companies with proper design of the integrated production system in the 

company can take steps to reduce the cost and also reduce the amount of pollution by properly planning production 

or outsourcing production. Therefore, in this paper, a bi-objective model of a sustainable integrated production system 

is presented, taking into account the simultaneous reduction of possible costs on the system, the amount of greenhouse 

gas emissions, and the application of discounts on the costs of outsourcing production under uncertainty and the 

control of parameters with the robust-fuzzy-probabilistic optimization method. The main goal in this problem is cost 

minimization of the entire production system and minimization of greenhouse gas emissions. Due to the NP-hard 

nature of the problem, the exact epsilon constraint method and MOPSO, NSGA II, and MOGWO have been used to 

solve the model. Also, to compare the solution methods, indices such as NPF, MSI, SM, MID, and CPU-Time have 

been used. The selection of the most efficient solution method has also been made with TOPSIS. The results of the 

calculations showed that the NSGA II is effective in obtaining the indicators of the number of effective solution and 

the distance index, and the MOPSO is also in obtaining the indicators of the most spread, the average computing time, 

and the distance from the ideal point, and the MOGWO is also in obtaining the averages of the first objective function 

and The second one has worked better than other algorithms. Also, the results of the implementation of the TOPSIS 

method for ranking the algorithms for solving the problem of a sustainable integrated production system included 

obtaining a desirability weight of 0.5882 for the MOPSO, obtaining a desirability weight of 0.1397 for the MOGWO, 

and obtaining a desirability weight of 0.7491 for the NSGA II. This article helps the integrated production system in 

the production units to use the discount in the production of outsourced parts. Also, the use of the new control method 

of uncertainty parameters helps managers in planning production correctly. Finally, the implementation of the model 

requires the development of solution methods, which is considered in this paper. 

Keywords- Sustainable Integrated Production System; Robust-Fuzzy-Probabilistic Optimization Method; MOGWO 
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INTRODUCTION 

Sustainability affects multiple links in the supply chain and is becoming increasingly important by all relevant 

stakeholders. Sustainability in supply chain management (SSCM) is becoming a necessity for businesses. With a 

significant increase in recent research, it is evident that the topic of sustainability in supply chain management is a 

topic of interest to academics and industrialists (Sharda & Banerjee, 2013). Specifically, the different goals that are 

proposed in the sustainability of the supply chain network are the simultaneous consideration of economic aspects 

such as system costs, environmental aspects such as carbon dioxide emissions, and social aspects such as human 

aspects (Chan et al., 2017). One of the most important members of the supply chain network are production centers, 

which are considered as the beating heart of the supply chain network. This member is responsible for the production 

of deliverable products along the supply chain network. The basic principle in production centers is to design an 

integrated production system to respond to customer demand (Ojstersek et al., 2020).  

      In manufacturing systems, mass customization is a method that provides the flexibility of process design systems 

such as job shop manufacturing systems with economic benefits in product design systems that include assembly lines 

or assembly production systems (Chu & Tsai, 1990). In the design of sustainable production systems, remanufacturing 

systems or combined remanufacturing-manufacturing systems can also be used due to the constructive social, 

economic and environmental effects. Sustainability in production systems means reducing production costs, using 

maximum returns and reproducing products, and increasing social responsibilities for increasing quality. The 

importance of sustainability in integrated production systems has led to the creation of various models and different 

solution methods in operations research problems. So far, countless researchers have turned to modeling such systems. 

Shirazi et al presented a mixed integer nonlinear programming model for mobile phone manufacturing system 

problem. This paper provides extensive coverage of important manufacturing features used in CMS design and 

increases the flexibility of the existing model in managing part demand fluctuations more economically by adding 

machine and PP stock decisions. The goals of the paper are to minimize the costs and balance the work load. AMOSA 

has been used to solve the problem (Shirazi et al., 2014). The most important topic of integrated production systems 

is presented to design the system model of the production system in stable conditions in this paper. The existence of 

different models that are not controlled in uncertainty with appropriate methods, cannot accurately show its results in 

the real world. Hence, this article is as follows: 

• Considering the sustainable in the integrated production system (economy and environmental aspects)  

• Using the machine to purchase returnable products  

• Considering a discount in the production of outsourced parts  

• Considering uncertainty in the model and using the new optimistic-pessimistic robust-fuzzy-probabilistic 

control method  

• Solving the model with different meta-heuristic algorithms 

As stated, the objective functions of this model is to minimize the costs of the total integrated production system and 

minimize the amount of greenhouse emissions. Important decisions that lead to the optimization of the objectives of 

the problem include determining the machines usage rate in each cell, determining the optimal level of discount, the 

optimal allocation of flow between the levels of the production system, the number of machines used in each cell and 

the number of outsourcing parts for production. 

LITERATURE REVIEW 

Bayram & Şahin designed a multi-period dynamic production system and designed a new mathematical model. The 

objective function of the mathematical model was the management of intracellular and extracellular materials, the cost 

of purchasing machines, reconfiguration of the plan, etc. In order to solve the problem, they used the SA and genetics 

and stated that the methods proposed by them are better than other solutions in terms of the quality of the answer and 

the solution time (Bayram & Şahin, 2016). Alhourani discussed the design of the cellular production system 
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considering the reliability of the machines as well as the routing of the production process. He stated that considering 

these factors, in addition to the sequence of operations and production volume, makes the problem more complicated 

but more realistic. As a result, mathematical methods were used to solve the designed model (Alhourani, 2016). 

Arampantzi & Minis proposed a new multi-objective mixed integer linear programming (MMILP) model to study the 

role of sustainability in supply chain network design (SSCND), as well as significant decisions in designing or 

redesigning high-performance sustainable supply chains. Adopted the cost objective includes investment, operating, 

and pollutant costs. The environmental objective takes into account the amounts of emissions and waste generation in 

each link of the supply chain. Social purpose considers employment opportunities, and prioritizes the development of 

social community and improvement of working conditions (Arampantzi & Minis, 2017).  

       Ćwikła & Foit presented the assumptions, concepts, relationships and hardware and software equipment of the 

laboratory of integrated production systems, which provided the possibility of research and training for the integration 

of production and trade (Ćwikła & Foit, 2017). Nujoom et al. to evaluate a sustainable production system design 

considering the measurement of energy consumption and CO2 emissions using different energy sources (oil as a direct 

energy source for thermal energy production and oil or solar as an indirect energy source for production Electricity) 

addressed these problems. For this purpose, they developed a multi-objective mathematical model including economic 

and ecological constraints with the aim of minimizing total cost, energy consumption and CO2 emissions for a 

production system design. 

        For the real-world scenario, the uncertainty in a number of input parameters was controlled through the 

development of a fuzzy multi-objective model (Nujoom et al., 2018). Golpîra et al. presented a non-deterministic 

planning model of the integrated production system with the aim of cost minimization. They used the robust method 

to control the uncertain parameter of demand and supply (Golpîra et al., 2018). Rabbani et al. presented a new multi-

objective mathematical model for dynamic coupled manufacturing system (DCMS) considering machine reliability 

and alternative process routes. In this dynamic model, the problem of integrated cellular production (cell/part/machine) 

as well as the assignment of operators to cells is modeled. The goals of the paper are to minimize the costs associated 

with DCMS, optimize the use of labor and minimize the amount of variance with work between different cells 

(Rabbani et al., 2019). Khezri et al. proposed an environmental multi-objective problem for a reconfigurable 

manufacturing system. The main goal of the problem was the simultaneous optimization of the total production time, 

hazardous environmental waste and the total costs of the problem. To solve the problem, they used multi-objective 

programming methods with GAMS software (Khezri et al., 2019).  

         Sadeghi et al considered the stages of design, control and production of blood sugar products in a three-level 

supply chain. The first step in their paper is to design a manufacturing system based on a layered cell manufacturing 

system (CMS), for which a mixed integer linear programming approach is proposed to minimize the number of cells 

required. They simulated their problem using the OptQuest feature. The results of the statistical analysis showed that 

the reorder point values obtained by OptQuest changed significantly compared to the ROP values estimated at the 

design stage (Sadeghi et al., 2020). Tirkolaee et al. discussed the prioritization of suppliers in a sustainable supply 

chain integrated production system using the Fuzzy Network Analysis Process (FANP) and Fuzzy Decision Evaluation 

(DEMATEL) methods. Prioritization of suppliers was done using TOPSIS method. After selecting the suppliers, a 

three-objective model of the supply chain with the objectives of quantifying the cost of the entire chain, maximizing 

the weighted value of the products by considering the suppliers' priorities, and maximizing the reliability of the supply 

chain was designed and solved using the WGP method (Tirkolaee et al., 2020). Lufika & Meutia presented an 

integrated green and lean production system. This study aims to analyze waste and measure energy consumption in 

the production process of peeled bread based on the concept of lean and green production. VSM and EVSM exist as 

a tool to describe the material and energy consumption flow of the production process. Research results show energy 

savings of up to 0.13 kWh (Lufika & Meutia. 2021). 

         Liu et al. proposed a new predictive maintenance method (PDM) based on deep adversarial learning 

enhancement (LSTM-GAN). The decision-making model provided by them considers concepts such as maintenance 

and maintenance personnel. Finally, they presented a case study on predictive maintenance using LSTM-GAN in 

intelligent manufacturing system and stated that the error prediction accuracy of LTSM-GAN is up to 99.68% (Liu et 

al., 2021).  Goli et al. investigated the role of AGVs and human factors as indispensable components of automation 

systems in the cell formation and scheduling of parts under fuzzy processing time. The proposed objective function 

includes minimizing the makespan and intercellular movements of parts. Due to the NP-hardness of the problem, a 

hybrid genetic algorithm (GA/heuristic) and a whale optimization algorithm (WOA) are developed (Goli et al., 2021).  
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 Jauhari et al. considered a two-echelon inventory model for a closed-loop supply chain system containing a 

manufacturer and a retailer under a stochastic environment with carbon emission reductions. The results show that by 

controlling the collection rate and the production allocation, the system can minimize the cost and the emissions 

(Jauhari et al., 2021). Sarkar & Bhuniya developed a mathematical model of this flexible manufacturing–

remanufacturing system to improve the service and to maintain sustainability always. The global optimization is 

established theoretically and a proposition is developed (Sarkar & Bhuniya, 2022).  

      Utama et al. reviewed the Integrated Procurement Production (IPP) inventory model problem using a systematic 

review of 102 published papers from 1992 to 2021. The reviewed papers were based on complexity, type of model, 

data, time dynamics, optimization, solution, and paper (Utama et al., 2022). Ghahremani-Nahr & Ghaderi designed a 

lean supply chain under uncertainty and used Fuzzy-Robust optimization model to control the uncertainty parameters. 

The model’s objective functions are to minimize the total cost of designing LSC networks (economic aspect), to 

minimize waste in production units (environmental aspect), and to maximize the overall sustainability performance 

indicator (SPI) (social aspect). To achieve these objectives and to identify the Pareto front, we investigated both exact 

and meta-heuristic methods (Ghahremani-Nahr & Ghaderi, 2022).  

      Yu & Khan developed a three-level supply chain composed of plants, distribution centers, and retailers, and studied 

the location of distribution centers in the supply chain network and the carbon emissions during processing and 

transportation. In a random and fuzzy environment, the research objective is to minimize the supply chain’s cost and 

carbon emission (Yu & Khan, 2022). The importance of two economic and environmental aspects in production 

system problems has led to the modeling of a dual-objective problem of a sustainable integrated production system in 

which the return of products and the reproduction of products to reduce environmental effects are also considered in 

this paper. Be paid Also, the sustainable of the system has been discussed under the title of maximum use of returned 

products to reproduce new orders and apply discounts in the production of outsourced parts. In the following, in Table 

(1), a comparison of the published papers in the field of integrated production system and research gap has been 

discussed. 

      After examining the research gap of the problem, in this paper, a bi-objective model for a sustainable integrated 

production system with the bi-objective of minimizing system costs and minimizing the amount of greenhouse gas 

emissions and considering the sustainability of the system under the title of maximum use of returnable products It is 

provided to reproduce new orders and apply discounts in the production of outsourced parts. Therefore, according to 

the literature on the subject, so far, the discussion of the reduction in outsourcing production costs in a sustainable 

integrated production system under uncertainty has not been addressed. Optimistic-pessimistic robust-fuzzy-

probabilistic control method as a new method in controlling model parameters has led to its complexity. Also, the 

MOGWO is used to solve the problem and compare it with the NSGA II and MOPSO in this paper. 

As a result, the most important innovations of the article are as follows:  

• Integration of integrated production system with sustainability concepts 

• Using the Optimistic-pessimistic robust-fuzzy-probabilistic  

• Applying discounts in the production of outsourced products in the production system 

• Development of innovative methods 
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A SUMMARY OF THE LITERATURE REVIEW 
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Kia et al 2014 * - - * - - SA - 

Shirazi et al 2014 * - * - - - AMOSA - 

Bayram & Şahin 2016 * - - - * - 
SA 

GA 
- 

Tavakoli et al 2018 - - * * - - GAMS - 

Golpîra et al 2018 * - - - - Robust Cplex - 

Rabbani et al 2019 - * * * - - 
NSGA II 

MOPSO 
- 

Khezri et al 2019 * * - - * - Cplex - 

Dehnavi-Arani et al 2019 * - - * - - GAMS - 

Raoofpanah et al 2019 * - - * * - ICA - 

Ghanei et al 2020 * * - - * - GA - 

Tang et al 2020 * - - - * - Cplex - 

Assid et al 2020 * - - - * Fuzzy SA - 

Mohtashami et al 2020 * * - * - - NSGA II - 

Goli et al. 2021 * - - - - - WOA - 

Jauhari et al. 2021 * * - * - Stochastic GAMS - 

Ghahremani-Nahr & 

Ghaderi 
2022 * * * * * Robust-Fuzzy MOGWO - 

Yu & Khan 2022 * *  *  Fuzzy GAMS - 

Salehi-Amiri et al. 2022 *  *  * - GAMS - 

Rajak et al. 2022 * *  *  - GAMS - 

current paper 2022 * * - * - 
robust-fuzzy-
probabilistic 

NSGA II 

MOPSO 

MOGWO 

Discounts on 

production 

outsourcing 

PROBLEM DEFINITION 

Based on Fig. 1. The main goal of this research is optimal allocation of parts to machines for processing and also 

optimal allocation of machines to each cell. In this paper, some parts are produced in the production center and some 

parts are outsourced by paying a discounted production cost. Therefore, finding the amount of parts that can be 

processed inside the collection or outsourcing the process is also one of the most important goals of the research.  

 

 

 

 

 

 

 

FIGURE 1 

 SUSTAINABLE INTEGRATED PRODUCTION SYSTEM 

Correcting strategic and tactical decisions with the aim of optimizing the costs of the entire integrated production 

system and the amount of greenhouse gas emissions. Since in this paper the demand, operating costs, outsourced 

production cost, transportation, and processing time are considered probabilistically and under conditions of 

uncertainty, the Robust-fuzzy-probabilistic optimization method is used to control uncertainty parameters. 
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The assumptions of the sustainable integrated production system model are as follows: 

• It is a single-period and multi-product model. 

• The cost of production by foreign producers is considered by applying discounts. 

• Demand, operating costs, outsourced production cost, transportation and processing time are considered 

uncertainty and trapezoidal fuzzy numbers and in different scenarios. 

• The production capacity is certain and certain. 

• Each cell has a minimum and maximum limit on the allocation of machines. 

Based on the definition of the above problem, the set, parameters and decision variables of the sustainable integrated 

production system model are described as follows. 

Sets 

𝐼 Set of all kinds of parts 

𝑀 Set of machines 

𝐶 Collection of cells 

𝐽 Set of returned products 

𝑆 A set of scenarios 

𝐵 Set of discount levels 

 

Parameters 

�̃�𝑖
𝑠 Demand for segment i in scenario s 

�̃�𝑖 Production cost per unit of parts i 

�̃�𝑖 The cost of transporting materials inside the cell for each piece i 

�̃�𝑖𝑚 Processing time of each piece i on machine m 

𝜎𝑚 Machine maintenance cost m 

𝜀𝑚 The cost of buying a machine m 

𝛽𝑚 The cost of operation on the machine m 

𝜇𝑚 Machine capacity m 

𝐿𝑐 Lower cell size limit c 

𝑈𝑐 Upper cell size limit c 

𝜉𝑖 Average recycling rate of part i 

𝛾𝑖𝑚 If piece i is processed by machine m, it takes the value 1 and otherwise 0. 

�̃�𝑖𝑏
𝑠  Outsourcing cost of part i in scenario s at discount level b 

𝐿𝑜𝑖𝑏
𝑠  The lower limit of the production discount interval of piece i in scenario s at the discount level b 

𝐵𝑗𝑖 Number of parts i used in product j 

∅𝑗 Unit cost to obtain return product j 

𝑘𝑗 Setup cost for disassembly of returned product j 

𝜏𝑗 The cost of dismantling the returned product j 

𝜒𝑗  The cost of destroying the returned product j 

𝑀𝑇𝐵𝐹𝑚 The average time between two consecutive failures of the machine m 

𝑀𝑇𝑇𝑅𝑚 The average time between two consecutive machine repairs is m 

𝑄𝑚 The cost of machine breakdown m 

𝑃𝑠 The probability of occurrence of scenario s 

𝐶𝑜𝑖𝑚𝑐 The amount of carbon dioxide emissions due to the processing of a piece i on machine m in cell c 

𝐶𝑗 The amount of carbon dioxide gas emitted during the disassembly of the product j 

𝐺𝑚𝑐  The amount of carbon dioxide gas emission in starting machine m in cell c 
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Decision variables 

𝜆𝑖𝑚𝑐
𝑠  Arrival rate of part i on machine m in cell c in scenario s 

𝑄𝑖
𝑠 The number of outsourced parts i in scenario s 

𝑍𝑖𝑚𝑐
𝑠  If piece i is processed on machine m in cell c in scenario s, the value is 1 and otherwise it is 0. 

𝑁𝑚𝑐 The number of machines m used in cell c 

𝜁𝑚 The number of machines m to be purchased. 

𝜌𝑚 machines usage rate m 

𝑑𝑗 The number of returned product j for disassembly 

𝑟𝑗 The number of return product j to be obtained 

𝛿𝑗 If the returned product j is disassembled, it takes the value 1 and otherwise 0. 

𝛼𝑚𝑐 If machines m is assigned to cell c, it gets 1 value and otherwise 0. 

𝑋𝑖𝑐 If the piece i is processed in cell c, it takes the value 1 and otherwise 0. 

𝑀𝑖𝑏𝑠 If part i is assigned at the discount level b for outsourcing in scenario s, it will be assigned a value 

of 1, and otherwise it will be 0. 

The integrated production system dual-objective problem is modeled as a mixed integer linear mathematical model 

under uncertainty conditions as below. 

 

 

 

(1) 

𝑚𝑖𝑛𝑍1 = ∑ ∑ ∑ ∑ 𝑃𝑠. �̃�𝑖𝑚 . 𝜆𝑖𝑚𝑐
𝑠 . 𝛽𝑚. (1 +

𝑀𝑇𝑇𝑅𝑚

𝑀𝑇𝐵𝐹𝑚

)

𝑐𝑚𝑖𝑠

+ 

∑ ∑ ∑ ∑ 𝑃𝑠 . �̃�𝑖𝑚 .
𝜆𝑖𝑚𝑐

𝑠

𝑀𝑇𝐵𝐹𝑚

. 𝑄𝑚

𝑐𝑚𝑖𝑠

+ ∑ ∑ ∑ 𝑃𝑠. �̃�𝑖𝑏
𝑠 . 𝜓𝑖𝑏

𝑠

𝑏𝑠𝑖

+ 

∑ ∑ ∑ ∑ 𝑃𝑠 . �̃�𝑖 . 𝜆𝑖𝑚𝑐
𝑠

𝑐𝑚𝑖𝑠

∑ ∑ ∑ �̃�𝑖 . 𝛾𝑖𝑚. 𝑋𝑖𝑐

𝑐𝑚𝑖

− ∑ ∑ ∑ �̃�𝑖. 𝛾𝑖𝑚 . 𝐹𝑖𝑐𝑚

𝑐𝑚𝑖

+ 

∑ ∑ 𝜎𝑚. 𝑁𝑚𝑐

𝑐𝑚

+ ∑ 𝜀𝑚. 𝜁𝑚

𝑚

+ ∑ ∅𝑗 . 𝑟𝑗

𝑗

+ 𝑘𝑗 . 𝛿𝑗 + 𝜏𝑗 . 𝑑𝑗 + ∑ ∑(1 − 𝜉𝑖). 𝜒𝑗 . 𝐵𝑗𝑖 . 𝑑𝑗

𝑖𝑗

 

(2) 𝑚𝑖𝑛𝑍2 = ∑ ∑ ∑ ∑ 𝑃𝑠. 𝐶𝑜𝑖𝑚𝑐 . 𝜆𝑖𝑚𝑐
𝑠

𝑐𝑚𝑖𝑠

+ ∑ 𝐶𝑗. 𝑑𝑗

𝑗

+ ∑ ∑ 𝐺𝑚𝑐 . 𝑁𝑚𝑐

𝑐𝑚

 

 𝑠. 𝑡.: 

(3) ∑ 𝑄𝑖𝑏
𝑠

𝑏

+ ∑ ∑ 𝜆𝑖𝑚𝑐
𝑠

𝑐𝑚

= �̃�𝑖
𝑠,      ∀𝑖, 𝑠 

(4) 𝑍𝑖𝑚𝑐
𝑠 ≤ 𝛾𝑖𝑚 ,    ∀𝑖, 𝑚, 𝑐, 𝑠 

(5) 𝜆𝑖𝑚𝑐
𝑠 ≤ 𝐵𝑖𝑔𝑀. 𝑍𝑖𝑚𝑐

𝑠 ,    ∀𝑖, 𝑚, 𝑐, 𝑠 

(6) ∑ 𝑇𝑖𝑚 . 𝜆𝑖𝑚𝑐
𝑠

𝑖

≤ 𝜇𝑚. 𝑁𝑚𝑐 ,    ∀𝑚, 𝑐, 𝑠 

(7) 𝐿𝑐 ≤ ∑ 𝑁𝑚𝑐 ≤ 𝑈𝑐 ,    ∀𝑐

𝑚

 

(8) ∑ 𝑁𝑚𝑐

𝑐

≤ 𝜁𝑚,    ∀𝑚 

(9) ∑ ∑ ∑
𝜆𝑖𝑚𝑐

𝑠

𝜇𝑚
𝑠𝑐𝑖

= 𝜌𝑚,    ∀𝑚 

(10) 𝜌𝑚 ≤ 1,    ∀𝑚 

(11) ∑ ∑ ∑ 𝜆𝑖𝑚𝑐
𝑠

𝑠𝑐𝑚

≤ 𝜉𝑖 ∑ 𝐵𝑗𝑖

𝑗

. 𝑑𝑗 ,     ∀𝑖 

(12) 𝑟𝑗 ≥ 𝑑𝑗 ,     ∀𝑗 

(13) 𝑑𝑗 ≤ 𝐵𝑖𝑔𝑀. 𝛿𝑗,     ∀𝑗 

(14) 𝑁𝑚𝑐 ≤ 𝐵𝑖𝑔𝑀. 𝛼𝑚𝑐 ,     ∀𝑚, 𝑐 

(15) 𝛼𝑚𝑐 ≤ 𝑁𝑚𝑐 ,     ∀𝑚, 𝑐 
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(16) ∑ ∑ 𝑍𝑖𝑚𝑐
𝑠

𝑠𝑚

≤ 𝐵𝑖𝑔𝑀. 𝑋𝑖𝑐 ,     ∀𝑖, 𝑐 

(17) ∑ ∑ 𝑍𝑖𝑚𝑐
𝑠

𝑠𝑚

≥ 𝑋𝑖𝑐 ,     ∀𝑖, 𝑐 

(18) 𝐹𝑖𝑐𝑚 ≤ 𝑋𝑖𝑐 ,     ∀𝑖, 𝑚, 𝑐 

(19) 𝐹𝑖𝑐𝑚 ≤ 𝛼𝑚𝑐 ,     ∀𝑖, 𝑚, 𝑐 

(20) 𝑋𝑖𝑐 + 𝛼𝑚𝑐 − 𝐹𝑖𝑐𝑚 ≤ 1,     ∀𝑖, 𝑚, 𝑐 

(21) ∑ 𝑍𝑖𝑚𝑐
𝑠

𝑠

= 𝐹𝑖𝑚𝑐 ,     ∀𝑖, 𝑚, 𝑐 

(22) 𝑀𝑖𝑏𝑠𝐿𝑜𝑖𝑏
𝑠 ≤  𝑄𝑖𝑏

𝑠 ,     ∀𝑖, 𝑏, 𝑠 

(23) ∑ 𝑀𝑖𝑏𝑠

𝑏

= 1,     ∀𝑖, 𝑠 

(24) 𝜓𝑖𝑏
𝑠 ≤ 𝑄𝑖𝑏

𝑠 𝑀𝑖𝑏𝑠,     ∀𝑖, 𝑏, 𝑠 

(25) 𝜓𝑖𝑏
𝑠 ≤ 𝐵𝑖𝑔𝑀. 𝑀𝑖𝑏𝑠,     ∀𝑖, 𝑏, 𝑠 

(26) 𝜓𝑖𝑏
𝑠 ≥ 𝑄𝑖𝑏

𝑠 − 𝐵𝑖𝑔𝑀. (1 − 𝑀𝑖𝑏𝑠),     ∀𝑖, 𝑏, 𝑠 

(27) 𝜆𝑖𝑚𝑐
𝑠 , 𝑄𝑖𝑏

𝑠 , 𝑁𝑚𝑐 , 𝜁𝑚 , 𝑑𝑗 , 𝑟𝑗 ≥ 0   𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

(28) 𝑍𝑖𝑚𝑐
𝑠 , 𝜌𝑚, 𝛿𝑗, 𝛼𝑚𝑐 , 𝑋𝑖𝑐 , 𝑀𝑖𝑏𝑠 ∈ {0,1} 

 

Equation (1) shows the first objective function of the problem and includes minimizing the costs of the entire 

integrated production system, including production costs, purchase of machines, processing costs, transportation and 

outsourcing. Equation (2) shows the second objective function of the problem and includes minimizing the amount of 

greenhouse gas emissions caused by the production and reproduction of products and parts. Relationship (3) shows 

that the demand of each piece in each scenario will be met by production in the complex or outsourcing. Equation (4) 

guarantees that the processing of parts by machines is based on the processing capability of each machine. The relation 

(5) shows that the parts will be processed by the machine if the machine is assigned to the part processing. Equation 

(6) guarantees that the processing of parts should not exceed the capacity of the machines. Equation (7) guarantees 

that the total number of machines allocated to each cell should not exceed a lower and upper bound. Equation (8) 

guarantees that the total number of machines in the cell must be less than the total number of purchased machines. 

Equation (9) calculates and shows the productivity of each machine.  

       Equation (10) guarantees that the utilization rate of machines must be less than 1. Equation (11) shows the total 

number of returned products. Equation (12) calculates the number of products that must be disassembled. Equation 

(13) guarantees that a product must be disassembled that is already selected. Equation (14) and (15) shows how to 

allocate machines to each cell. Equation (16) and (17) shows how to assign each part to the corresponding machine 

and cell. Relations (18) to (21) are the limitations related to the linearization of the model. Relations (22) and (23) 

show the restrictions related to the application of discounts. Relations (24) to (26) show the linearization of discount 

limits. Relationships (27) and (28) show the type and gender of decision making variables. 

      Due to the dynamic and fluctuating nature of some important parameters (including demand, operating costs, 

production outsourcing cost and processing time) that are beyond planning, as well as the unavailability and even 

unobtainability of the required historical data at the design stage, these parameters are mainly It is estimated based on 

the opinions and subjective experiences of experts; Therefore, the above fuzzy parameters are formulated as 

uncertainty data in the form of trapezoidal fuzzy numbers. It is worth noting that for long-term decisions, it is difficult 

and sometimes impossible to evaluate demand, operational costs and processing time. Even if one can estimate a 

probability distribution function for these parameters, it is possible that these parameters do not behave the same as 

the past data. Therefore, these parameters that change in a long-term planning horizon are considered as fuzzy data. 

According to the uncertainty parameters, the model controlled by the robust-fuzzy-probabilistic optimization method 

is as follows: 
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(29) 

𝑚𝑖𝑛𝑍1 = 𝐸[𝑍] + 𝜉(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 𝜔 ∑ 𝑃𝑠{𝐸[𝑍] − 𝐸[𝑍𝑠] + 2𝜃𝑠}

𝑠

 

+𝜂 ∑ ∑ 𝑃𝑠 [𝐷𝑖
𝑠−4 −

(𝛼𝑠 − 𝜆)𝐷𝑖
𝑠(3)

+ (1 − 𝛼𝑠)𝐷𝑖
𝑠(3)

1 − 𝜆
]

𝑠𝑖

 

(30) 𝑚𝑖𝑛𝑍2 = ∑ ∑ ∑ ∑ 𝑃𝑠. 𝐶𝑜𝑖𝑚𝑐 . 𝜆𝑖𝑚𝑐
𝑠

𝑐𝑚𝑖𝑠

+ ∑ 𝐶𝑗. 𝑑𝑗

𝑗

+ ∑ ∑ 𝐺𝑚𝑐 . 𝑁𝑚𝑐

𝑐𝑚

 

 𝑠. 𝑡.: 

(31) 

∑ 𝑄𝑖𝑏
𝑠

𝑏

+ ∑ ∑ 𝜆𝑖𝑚𝑐
𝑠

𝑐𝑚

= 

[(1 − 𝜈)[(1 − 𝛼𝑠)𝐷𝑖
𝑠(3)

+ 𝛼𝑠𝐷𝑖
𝑠(4)

] + (𝜈)[(1 − 𝛼𝑠)𝐷𝑖
𝑠(1)

+ 𝛼𝑠𝐷𝑖
𝑠(2)

]] , ∀𝑖, 𝑠 

(32) 

𝑍𝑚𝑖𝑛 = ∑ ∑ ∑ ∑ 𝑃𝑠 . 𝑇𝑖𝑚
1 . 𝜆𝑖𝑚𝑐

𝑠 . 𝛽𝑚. (1 +
𝑀𝑇𝑇𝑅𝑚

𝑀𝑇𝐵𝐹𝑚

)

𝑐𝑚𝑖𝑠

+ 

∑ ∑ ∑ ∑ 𝑃𝑠 . 𝑇𝑖𝑚
1 .

𝜆𝑖𝑚𝑐
𝑠

𝑀𝑇𝐵𝐹𝑚

. 𝑄𝑚

𝑐𝑚𝑖𝑠

+ ∑ ∑ ∑ 𝑃𝑠. 𝑂𝑖𝑏𝑠
1 . 𝜓𝑖𝑏

𝑠

𝑏𝑠𝑖

+ 

∑ ∑ ∑ ∑ 𝑃𝑠 . 𝐸𝑖
1. 𝜆𝑖𝑚𝑐

𝑠

𝑐𝑚𝑖𝑠

+ ∑ ∑ ∑ 𝑊𝑖
1. 𝛾𝑖𝑚. (𝑋𝑖𝑐 − 𝐹𝑖𝑐𝑚)

𝑐𝑚𝑖

+ 

∑ ∑ 𝜎𝑚. 𝑁𝑚𝑐

𝑐𝑚

+ ∑ 𝜀𝑚. 𝜁𝑚

𝑚

+ ∑ ∅𝑗 . 𝑟𝑗

𝑗

+ 𝑘𝑗 . 𝛿𝑗 + 𝜏𝑗 . 𝑑𝑗 + ∑ ∑(1 − 𝜉𝑖). 𝜒𝑗 . 𝐵𝑗𝑖 . 𝑑𝑗

𝑖𝑗

 

(33) 

𝑍𝑚𝑎𝑥 = ∑ ∑ ∑ ∑ 𝑃𝑠. 𝑇𝑖𝑚
4 . 𝜆𝑖𝑚𝑐

𝑠 . 𝛽𝑚. (1 +
𝑀𝑇𝑇𝑅𝑚

𝑀𝑇𝐵𝐹𝑚

)

𝑐𝑚𝑖𝑠

+ 

∑ ∑ ∑ ∑ 𝑃𝑠 . 𝑇𝑖𝑚
4 .

𝜆𝑖𝑚𝑐
𝑠

𝑀𝑇𝐵𝐹𝑚

. 𝑄𝑚

𝑐𝑚𝑖𝑠

+ ∑ ∑ ∑ 𝑃𝑠. 𝑂𝑖𝑏𝑠
4 . 𝜓𝑖𝑏

𝑠

𝑏𝑠𝑖

+ 

∑ ∑ ∑ ∑ 𝑃𝑠 . 𝐸𝑖
4. 𝜆𝑖𝑚𝑐

𝑠

𝑐𝑚𝑖𝑠

+ ∑ ∑ ∑ 𝑊𝑖
4. 𝛾𝑖𝑚. (𝑋𝑖𝑐 − 𝐹𝑖𝑐𝑚)

𝑐𝑚𝑖

+ 

∑ ∑ 𝜎𝑚. 𝑁𝑚𝑐

𝑐𝑚

+ ∑ 𝜀𝑚. 𝜁𝑚

𝑚

+ ∑ ∅𝑗 . 𝑟𝑗

𝑗

+ 𝑘𝑗. 𝛿𝑗 + 𝜏𝑗 . 𝑑𝑗 + ∑ ∑(1 − 𝜉𝑖). 𝜒𝑗 . 𝐵𝑗𝑖 . 𝑑𝑗

𝑖𝑗

 

(34) 

𝐸[𝑍𝑠] = ∑ ∑ ∑ [(
1 − 𝜆

2
) (𝑇𝑖𝑚

1 + 𝑇𝑖𝑚
2 ) + (

𝜆

2
) (𝑇𝑖𝑚

3 + 𝑇𝑖𝑚
4 )] . 𝜆𝑖𝑚𝑐

𝑠 . 𝛽𝑚. (1 +
𝑀𝑇𝑇𝑅𝑚

𝑀𝑇𝐵𝐹𝑚

)

𝑚𝑖𝑐

 

+ ∑ ∑ ∑ [(
1 − 𝜆

2
) (𝑇𝑖𝑚

1 + 𝑇𝑖𝑚
2 ) + (

𝜆

2
) (𝑇𝑖𝑚

3 + 𝑇𝑖𝑚
4 )] .

𝜆𝑖𝑚𝑐
𝑠

𝑀𝑇𝐵𝐹𝑚

. 𝑄𝑚

𝑚𝑖𝑐

+ 

∑ ∑ [(
1 − 𝜆

2
) (𝑂𝑖𝑏𝑠

1 + 𝑂𝑖𝑏𝑠
2 ) + (

𝜆

2
) (𝑂𝑖𝑏𝑠

3 + 𝑂𝑖𝑏𝑠
4 )] . 𝜓𝑖𝑏

𝑠

𝑏𝑖

+ 

∑ ∑ ∑ [(
1 − 𝜆

2
) (𝐸𝑖

1 + 𝐸𝑖
2) + (

𝜆

2
) (𝐸𝑖

3 + 𝐸𝑖
4)] . 𝜆𝑖𝑚𝑐

𝑠

𝑚𝑖𝑐

+ 

∑ ∑ ∑ [(
1 − 𝜆

2
) (𝑊𝑖

1 + 𝑊𝑖
2) + (

𝜆

2
) (𝑊𝑖

3 + 𝑊𝑖
4)] . 𝛾𝑖𝑚 . (𝑋𝑖𝑐 − 𝐹𝑖𝑐𝑚)

𝑐𝑚𝑖

+ 

∑ ∑ 𝜎𝑚. 𝑁𝑚𝑐

𝑐𝑚

+ ∑ 𝜀𝑚. 𝜁𝑚

𝑚

+ ∑ ∅𝑗 . 𝑟𝑗

𝑗

+ 𝑘𝑗 . 𝛿𝑗 + 𝜏𝑗 . 𝑑𝑗 + ∑ ∑(1 − 𝜉𝑖). 𝜒𝑗 . 𝐵𝑗𝑖 . 𝑑𝑗

𝑖𝑗

,      ∀𝑠  

(35) 

𝐸[𝑍] = ∑ ∑ ∑ ∑ 𝑃𝑠 . [
𝑇𝑖𝑚

1 + 𝑇𝑖𝑚
2 + 𝑇𝑖𝑚

3 + 𝑇𝑖𝑚
4

4
] . 𝜆𝑖𝑚𝑐

𝑠 . 𝛽𝑚. (1 +
𝑀𝑇𝑇𝑅𝑚

𝑀𝑇𝐵𝐹𝑚

)

𝑐𝑚𝑖𝑠

+ 

∑ ∑ ∑ ∑ 𝑃𝑠 . [
𝑇𝑖𝑚

1 + 𝑇𝑖𝑚
2 + 𝑇𝑖𝑚

3 + 𝑇𝑖𝑚
4

4
] .

𝜆𝑖𝑚𝑐
𝑠

𝑀𝑇𝐵𝐹𝑚

. 𝑄𝑚

𝑐𝑚𝑖𝑠

+ 

∑ ∑ ∑ 𝑃𝑠. [
𝑂𝑖𝑏𝑠

1 + 𝑂𝑖𝑏𝑠
2 + 𝑂𝑖𝑏𝑠

3 + 𝑂𝑖𝑏𝑠
4

4
] . 𝜓𝑖𝑏

𝑠

𝑏𝑠𝑖

+ 
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∑ ∑ ∑ ∑ 𝑃𝑠 . [
𝐸𝑖

1 + 𝐸𝑖
2 + 𝐸𝑖

3 + 𝐸𝑖
4

4
] . 𝜆𝑖𝑚𝑐

𝑠

𝑐𝑚𝑖𝑠

+ 

∑ ∑ ∑ [
𝑊𝑖

1 + 𝑊𝑖
2 + 𝑊𝑖

3 + 𝑊𝑖
4

4
] . 𝛾𝑖𝑚 . (𝑋𝑖𝑐

𝑐𝑚𝑖

− 𝐹𝑖𝑐𝑚) + ∑ ∑ 𝜎𝑚. 𝑁𝑚𝑐

𝑐𝑚

+ ∑ 𝜀𝑚. 𝜁𝑚

𝑚

 

+ ∑ ∅𝑗 . 𝑟𝑗

𝑗

+ 𝑘𝑗 . 𝛿𝑗 + 𝜏𝑗 . 𝑑𝑗 + ∑ ∑(1 − 𝜉𝑖). 𝜒𝑗 . 𝐵𝑗𝑖 . 𝑑𝑗

𝑖𝑗

 

(36) Constraint (4) to (28) 

In the above relationships, 𝛼𝑠 shows the minimum degree of certainty of establishing an uncertain limit with an 

optimistic-pessimistic combined decision-making approach. 𝜈 is a parameter of zero and one, and if ν takes a value of 

1, the combined fuzzy model turns into an optimistic fuzzy model, and if ν takes a value of 0, the combined fuzzy 

model turns into a pessimistic fuzzy model. Also, if 𝜈 takes a value of 0.5, the combined fuzzy model becomes a 

moderate fuzzy model. 𝜂 also represents the penalty cost of not estimating the demand for fuzzy levels of numbers. 

Due to the NP-Hard and bi-objectiveness of the integrated production system problem under uncertainty conditions, 

NSGA II, MOPSO and MOGWO have been used to solve larger sample size problems. Therefore, in the following, 

the design of the initial solution of the problem as well as the comparison indicators of multi-objective algorithms are 

discussed. 

 SOLUTION METHODS 

• Initial Solution design 

In this section, the initial solution design of the problem for MOPSO, NSGA II and MOGWO is discussed. According 

to Fig. 2, suppose 3 types of parts, 4 types of machines and 2 cells are considered in each scenario for the production 

of products. Table. 2, shows the initial solution of the problem. 

TABLE 2 

THE INITIAL SOLUTION OF THE SUSTAINABLE INTEGRATED PRODUCTION SYSTEM PROBLEM 

Machine 
Cell Part 

4 3 2 1 

10 0 5 0 1 
1 

0 20 0 15 2 

5 6 0 0 1 
2 

0 0 7 10 2 

6 0 0 6 1 
3 

0 12 18 0 2 

In the above figure, a matrix of random numbers is created, which is defined as the rate of arrival of parts to each 

machine and in each cell. If the intersection of the row and column of the matrix is 0, it means that the machine is not 

assigned to that cell to process parts in each scenario. After assembling the parts and based on the customer's demand, 

the difference between the demand and the produced parts is ordered to the foreign manufacturer as outsourced parts. 

• Comparison indices of multi-objective meta-heuristic algorithms 

The following indicators are defined in order to compare meta-heuristic algorithms in the production of efficient 

solutions by MOPSO, NSGA II and MOGWO. Calculation time (CPU-Time): An algorithm that has less calculation 

time will be more desirable. The number of solutions in Pareto (NPF): shows the number of non-defeated solutions in 

the Pareto set obtained for each problem, and the higher the number of these points, the more effective the algorithm. 

Maximum expansion: This criterion shows how much of the solutions of a Pareto set in the distributed solution space 

is calculated from equation (37). The larger value of this criterion indicates the appropriate diversity of solutions of 

the Pareto set. 
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(37) 𝑀𝑆𝐼 = √ ∑ (𝑚𝑎𝑥𝑖=1:|𝑄|𝑓𝑚
𝑖 − 𝑚𝑎𝑥𝑗=1:|𝑄|𝑓𝑚

𝑗
)

2
𝑀

𝑚=1

 

Spacing: indicates the level of placement of the solution uniformly together, which is calculated from equation (38). 

(38) 𝑆𝑀 = √
1

|𝑄|
∑(𝑑𝑖 − �̅�)

2

|𝑄|

𝑖=1

 

In the above relation, |Q| It represents the size of the Pareto archive and the value of d ̅ can be calculated from equation 

(39). An algorithm with a lower value of this criterion will be more desirable. 

(39) �̅� = ∑
𝑚𝑖𝑛𝑘∈𝑄∩𝑘≠𝑖 ∑ |𝑓𝑚

𝑖 − 𝑓𝑚
𝑘|𝑀

𝑚=1

|𝑄|

|𝑄|

𝑖=1

 

Distance from the ideal point: This criterion is used to measure the degree of closeness to the real Pareto optimal level, 

which is calculated from equation (40). The algorithm that has the lowest value of this index has a higher efficiency. 

(40) 𝑀𝐼𝐷 =
∑ √(𝑓1𝑖 − 𝑓1

∗)2 + (𝑓2𝑖 − 𝑓2
∗)2 + ⋯ + (𝑓𝑚𝑖 − 𝑓𝑚

∗ )2𝑛
𝑖=1

𝑛
 

In this relation, n is the number of solutions in the Pareto optimal set. 

• Parameter tuning of meta-heuristic algorithms 

In this section, the parameter tuning of the proposed meta-heuristic algorithms in solving the bi-objective model of 

the integrated production system using the Taguchi method has been discussed. In this method, for each parameter of 

meta-heuristic algorithm, three proposed levels are considered, and based on Taguchi table, relevant tests are 

performed using relations (41) and (42). The results of the tests after the analysis show the best parameter value of the 

mentioned algorithm. In relation (41), 𝑆𝑖  is the index value obtained from each Taguchi test and 𝑆𝑖
∗ is the best index 

value among all Taguchi tests. 

(41) 𝑆𝑖 = |
𝑁𝑃𝐹 + 𝑀𝑆𝐼 + 𝑆𝑀 + 𝑀𝐼𝐷 + 𝐶𝑃𝑈_𝑡𝑖𝑚𝑒

5
| 

(42) 𝑅𝑃𝐷 =
𝑆𝑖 − 𝑆𝑖

∗

𝑆𝑖
∗  

Table (3) shows the recommended and optimal parameter levels of NSGA II, MOPSO and MOGWO. 

TABLE 3 

SUGGESTED PARAMETER LEVELS FOR PARAMETER TUNING OF META-HEURISTIC ALGORITHMS USING TAGUCHI METHOD 

Algorithm parameter symbol Level 1 Level 2 Level 3 
Optimal 

level 

MOGWO 

Number of population NWolf 100 200 500 500 

Maximum number of iterations Max it 100 200 300 200 

crossover rate A 1 2 4 4 

Mutation rate C 1 2 4 1 

NSGA II 

Maximum number of iterations Max it 100 200 500 500 

Number of population Npop 100 200 300 200 

crossover rate Pc 0.1 0.3 0.5 0.5 

Mutation rate Pm 0.1 0.3 0.5 0.1 

MOPSO 

Maximum number of iterations Max it 100 200 500 500 

Number of ppapers Nparticle 100 200 300 200 

Individual recruitment coefficient C1 1 1.5 2 2 

Coefficient of collective learning C2 1 1.5 2 2 

Gravity coefficient W 0.6 0.6 0.7 0.5 
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EXPERIENCE AND ANALYSIS OF EXPERIMENTS 

After tuning the parameters and presenting the comparison indices of the algorithms, in this section, the analysis of 

sample problems in different sizes has been done. Therefore, 15 sample problems are designed in three sizes, small,  

medium and large according to Table (5) and based on the random data provided according to the uniform distribution 

function according to Table (4). Due to the bi-objective of the mathematical model, NSGA II, MOPSO, MOGWO 

and epsilon constraint methods have been used to solve the sample problems. It should also be mentioned that due to 

the use of the combined robust-fuzzy-probabilistic optimization method, the values related to the control method of 

the problem parameter are considered as 𝜆 = 0.5, ∑ 𝛼s𝑠 = 1. 
TABLE 4 

 INTERVAL LIMITS OF PROBLEM PARAMETERS BASED ON UNIFORM DISTRIBUTION FUNCTION 

parameter Interval boundaries parameter Interval boundaries parameter Interval boundaries 

𝜎𝑚 ~𝑈[5,10] 𝐵𝑗𝑖 ~𝑈[1,2] 𝜇𝑚 ~𝑈[30,40] 

𝜀𝑚 ~𝑈[30,60] ∅𝑗 , 𝑘𝑗 , 𝜏𝑗 ~𝑈[100,500] 𝐿𝑐 2 

𝛽𝑚 ~𝑈[1,2] 𝜒𝑗 ~𝑈[7,9] 𝑈𝑐 10 

𝐺𝑚𝑐 ~𝑈[100,190] 𝑀𝑇𝐵𝐹𝑚 ~𝑈[20,30] 𝜉𝑖 0.3 

𝑀𝑇𝑇𝑅𝑚 ~𝑈[10,20] 𝑄𝑚 ~𝑈[120,230] 𝛾𝑖𝑚 ~𝑈[0,1] 
  𝐶𝑗 ~𝑈[120,180] 𝐶𝑜𝑖𝑚𝑐 ~𝑈[150,200] 

�̃�𝑖𝑏
𝑠  ~𝑈[(2000,2500), (2500,2800), (2800,3000), (3000,3200)] 

�̃�𝑖𝑚 ~𝑈[(2,4), (4,6), (6,8), (8,10)] 

�̃�𝑖
𝑠 ~𝑈[(50,60), (60,70), (70,80), (80,90)] 

�̃�𝑖 , �̃�𝑖 ~𝑈[(1,2), (2,3), (3,4), (4,5)] 

TABLE 5 

THE SIZE OF SAMPLE PROBLEMS IN SMALL, MEDIUM AND LARGE SIZES 

Sample 

problem 
size Part cell Machine product scenario 

Discount 

level 

1 

small 

2 5 6 2 2 3 
2 3 5 7 2 2 3 
3 4 6 7 2 2 3 
4 5 6 8 3 2 3 
5 6 7 8 3 3 3 

6 

medium 

8 8 9 4 3 3 
7 10 8 9 4 4 4 
8 12 10 10 6 4 4 
9 14 10 12 6 5 4 
10 16 12 15 8 5 5 

11 

large 

20 15 18 10 6 5 
12 25 18 21 12 6 5 
13 30 21 24 14 8 6 
14 35 24 28 16 8 6 
15 40 28 30 20 10 6 

After designing the sample problems, in order to compare the results, the averages of the first objective function and 

the second objective function of the problem as well as the average computing time obtained from 3 repetitions of the 

algorithm are shown in Table (5). According to the results obtained from table (6), it can be seen that the epsilon 

constraint method is only able to solve small sample size problems up to the 5th sample problem. Therefore, to solve 

other sample problems in medium and large sizes, NSGA II, MOPSO and MOGWO have been used. Also, by 

comparing the averages of the first and second objective functions in small sample problems between the exact 

solution method and meta-heuristic methods He stated that there is no significant difference between the averages of 

the three mentioned indicators and therefore these algorithms can be used to solve problems in other sizes. Fig. 4, 

shows the averages of the first objective function, the second objective function, and the computational time obtained 

from solving sample problems in small, medium, and large sizes by epsilon constraint methods, NSGA II, MOPSO,  
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TABLE 6 

 AVERAGE OBJECTIVE FUNCTIONS AND COMPUTATIONAL TIME OBTAINED FROM SOLVING SAMPLE PROBLEMS 

Sample 

proble

m 

NSGA II MOPSO MOGWO Epsilon Constraint 

MOBF1 MOBF2 
Cpu 

time 
MOBF1 MOBF2 

Cpu 

time 
MOBF1 MOBF2 

Cpu 

time 
MOBF1 

MOBF

2 

Cpu 

time 

1 6948.82 2080.08 18.64 6840.49 2085.40 26.34 6789.72 2074.17 27.64 6809.24 
2090.6

7 
146.24 

2 7344.16 2234.89 26.18 7449.75 2262.20 34.28 
7330.59 2228.85 40.16 7393.56 2247.0

3 
233.16 

3 8872.83 2607.91 37.20 8900.06 2574.83 45.68 
8988.29 2564.46 53.63 8915.31 2580.5

1 
479.15 

4 9990.10 3549.59 49.63 9886.18 3604.47 66.47 
9843.51 3503.22 77.81 9901.49 3656.4

4 
719.20 

5 
11254.8

0 
4246.54 72.24 

11042.6
1 

4244.82 91.10 
11205.7

0 
4302.83 106.86 11136.4

3 
4259.7

5 
1057.6

6 

6 
12759.9

5 
4820.19 103.60 

12590.4
6 

4912.48 124.33 
12914.7

9 
4735.45 146.09 - - - 

7 
14935.3

3 
5532.13 155.44 

15062.4
0 

5532.23 178.67 
14875.1

5 
5538.08 210.26 - - - 

8 
15433.5

8 
7558.71 237.13 

15415.7
3 

7425.56 256.64 
15382.2

2 
7606.14 312.92 - - - 

9 
17238.1

0 
7960.45 327.99 

17362.5
7 

7814.75 368.82 
17326.3

4 
7894.21 434.40 - - - 

10 
19326.9

1 
8267.58 420.54 

18995.6
0 

8274.74 476.15 
19274.0

7 
8107.35 560.66 - - - 

11 
20092.1

0 
9382.97 547.17 

19768.0
0 

9502.38 610.07 
20481.1

3 
9258.05 718.77 - - - 

12 
25855.3

2 
11382.9

7 
691.34 

26183.7
3 

11484.2
5 

776.53 
25448.0

6 
11324.8

8 
914.63 - - - 

13 
26319.0

1 
14002.0

1 
826.64 

25950.4
0 

14091.4
0 

964.49 
26001.2

0 
13996.2

3 
1134.4

2 
- - - 

14 
29107.4

4 
15316.9

6 
1010.1

5 
29129.0

9 
15606.7

4 
1144.2

0 
28920.5

6 
15593.6

6 
1347.2

7 
- - - 

15 
29241.9

5 
20348.2

4 
1247.6

4 
29416.2

2 
20592.6

9 
1386.4

7 
29733.6

0 
19984.1

5 
1633.7

1 
- - - 

Averag

e 
16981.3

6 
7952.75 384.77 

16932.8
9 

8000.60 436.68 
16967.6

6 
7914.12 514.62    

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2 

COMPARISON OF AVERAGES OF OBJECTIVE FUNCTIONS AND COMPUTATIONAL TIME BETWEEN DIFFERENT SOLUTION 

METHODS IN SMALL TO LARGE SIZE PROBLEMS 
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According to Fig. 2., it can be seen that with the increase in the size of the problem, due to the increase in the number 

of parts and products for production or outsourcing, the costs related to the integrated production system, as well as 

the amount of greenhouse gas emissions due to production, reproduction, etc., have increased. Also, according to Fig. 

4, it can be seen that with the increase in the problem size, the problem solving time by the epsilon constraint method 

up to sample problem 5 was much higher than other meta-heuristic algorithms. This is despite the fact that the averages 

of the first and second objective functions between the meta-heuristic and epsilon constraint solving methods are close 

to each other without significant differences. Also, the exponentiality of the problem solving time in larger sizes shows 

that the problem of the sustainable integrated production system designed in this paper is NP-hard. 
TABLE 7 

COMPARISON INDICES OF META-HEURISTIC ALGORITHMS IN SMALL TO LARGE SAMPLE SIZE PROBLEMS 

Sample 
problem 

NSGA II MOPSO MOGWO 

NPF MSI SM MID NPF MSI SM MID NPF MSI SM MID 

1 47 22033.25 37528.19 0.51 54 31617.83 32249.03 0.68 73 35276.88 42055.46 0.80 
2 57 20785.35 34250.97 0.49 62 30805.16 44184.28 0.61 68 36110.20 39476.36 0.54 
3 74 38664.58 45863.14 0.53 63 34108.82 42770.83 0.48 46 22085.06 37154.13 0.48 
4 52 39431.84 32908.87 0.58 59 20100.58 41883.66 0.68 65 29395.18 39511.57 0.67 
5 73 27218.56 39722.85 0.69 62 35650.32 39722.45 0.42 70 24381.24 43420.44 0.79 

6 85 32884.11 30256.91 0.60 80 38537.19 41357.05 0.47 48 38454.16 49192.90 0.65 
7 45 21658.95 33732.24 0.55 66 20164.91 38530.09 0.42 52 26406.45 31781.69 0.43 
8 73 24158.24 39704.61 0.76 79 36492.57 31527.79 0.75 74 37150.88 45954.85 0.55 
9 78 20792.08 46764.52 0.79 62 35346.72 35711.73 0.74 96 25196.93 41815.51 0.47 

10 62 29387.19 32820.14 0.65 60 39942.74 41226.70 0.45 76 37561.26 48243.94 0.49 

11 75 23001.93 44644.34 0.45 72 34553.06 42666.67 0.56 78 23765.35 32032.59 0.42 
12 49 39826.15 43821.34 0.65 71 38390.84 48615.52 0.45 45 35183.88 35865.89 0.76 
13 72 28541.25 30689.85 0.55 60 32839.99 49555.38 0.63 58 20633.79 30321.76 0.72 
14 78 39107.40 39777.15 0.80 46 22106.60 31871.93 0.78 51 32846.78 40082.56 0.55 
15 74 34484.94 49427.81 0.51 48 25363.22 43234.70 0.50 64 31337.41 45367.52 0.73 

Average 66.27 29465.05 38794.20 0.61 62.93 31734.70 40340.52 0.57 64.27 30385.70 40151.81 0.60 

 

 

FIGURE 3 

COMPARISON INDICES OF META-HEURISTIC ALGORITHMS IN SMALL TO LARGE SAMPLE SIZE PROBLEMS 

According to the results of Table (6) and (7) and the examination of the overall averages of the comparison indices of 

meta-heuristic algorithms, it can be concluded that the NSGA II has obtained better results than other algorithms in 

obtaining the indices of the number of efficient solution and the spacing index. Also, the MOPSO has performed better 

in obtaining the indicators of the greatest expansion, the average computing time and the distance from the ideal point. 

Finally, the MOGWO has performed better than other algorithms in obtaining the averages of the first and second 
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objective function. Due to the fact that different algorithms have shown their efficiency in obtaining different indices, 

TOPSIS method has been used to rank the algorithms. 
TABLE 8 

INDICES USED TO RANK ALGORITHMS 

Algorithm MOBF1 MOBF2 NPF MSI SM MID Cpu time 

NSGA II 16981.36 7952.75 66.27 29465.05 38794.20 0.61 384.77 
MOPSO 16932.89 8000.60 62.93 31734.70 40340.52 0.57 436.68 
MOGWO 16967.66 7914.12 64.27 30385.70 40151.81 0.60 514.62 
Preferred 

weight 
0.25 0.25 0.1 0.1 0.1 0.1 0.1 

The results of the implementation of the TOPSIS method for ranking algorithms for solving the problem of sustainable 

integrated production system include obtaining a desirability weight of 0.5882 for the MOPSO, obtaining a desirability 

weight of 0.1397 for the MOGWO, and obtaining a desirability weight of 0.7491 for the NSGA II. Therefore, the 

NSGA II can solve the problem of the designed integrated production system more efficiently than other proposed 

algorithms. In the following, the first problem of the designed sample is examined and the output variables of the 

problem are examined with the epsilon method of limitation. Therefore, before solving the problem, the best value of 

the first and second objective functions of the problem has been obtained by the individual optimization method. In 

this method, the optimal value of the first objective function is 5436.68 in a period of 67.15 seconds and the optimal 

value of the second objective function is 1080 in a period of 45.26 seconds. 
TABLE 9 

THE SET OF EFFICIENT SOLUTIONS RESULTING FROM SOLVING THE PROBLEM OF EXAMPLE 1 

Efficient 

solutions 

NSGA II MOPSO MOGWO Epsilon Constraint 

OBFV1 OBFV2 
Cpu 
time 

OBFV1 OBFV2 
Cpu 
time 

OBFV1 OBFV2 
Cpu 
time 

OBFV1 OBFV2 
Cpu 
time 

1 5599.72 2213 

18.64 

5777.11 2230 

26.34 

5590.25 2212 

27.64 

5474.93 2226 

246.24 

2 6664.01 2190 5857.13 2214 5604.30 2200 5493.87 2212 
3 6085.72 2147 5984.51 2190 5642.19 2176 5512.81 2190 
4 6123.66 2143 5996.10 2173 5828.28 2159 5541.97 2188 
5 6308.02 2129 6099.04 2164 5988.93 2156 6695.95 2109 
6 6557.17 2110 6207.78 2145 6095.07 2140 7136.41 2085 
7 6949.16 2087 6310.42 2107 6195.82 2127 8155.36 1967 
8 7380.31 2040 6542.79 2087 6233.26 2124 8174.30 1949 
9 7516.28 2037 6689.48 2074 6256.07 2118 9097.55 1890 

10 7937.23 1983 6766.37 2060 6319.93 2110 - - 
11 8408.87 1952 7231.93 2018 6458.00 2088 - - 
12 8555.64 1930 7507.42 2008 6856.27 2040 - - 
13 - - 8205.40 1956 7483.74 1993 - - 
14 - - 8484.71 1940 7892.29 1973 - - 
15 - - 8950.08 1915 8058.43 1950 - - 
16 - - - - 8250.81 1943 - - 
17 - - - - 8370.35 1930 - - 
18 - - - - 8991.02 1896 - - 

Average 6948.82 2080.08 18.64 6840.49 2085.40 26.34 6789.72 2074.17 27.64 6809.24 2090.67 246.24 

Fig. 4, and Table (8) also show the Pareto front obtained from solving the first sample problem and the set of efficient 

solutions obtained from solving this sample problem with the NSGA II, MOPSO, MOGWO and epsilon method. 
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FIGURE 4 

THE PARETO FRONT OBTAINED FROM SOLVING PROBLEM EXAMPLE 1 

According to Fig. 4, it can be seen that with the increase in the costs of the entire production system, the amount of 

greenhouse gas emissions has decreased due to outsourcing. Also, based on this, the Epsilon method has 8 effective 

solution in 246.24 seconds, the MOGWO has 18 effective solution in 27.64 seconds, the MOPSO has 15 effective 

solution in 26.34 seconds, and finally the NSGA II has 12 effective solution in 18.64 seconds. Table (9) shows the 

total number of machines and the number of machines allocated to each cell. Table (10) also shows the level of 

discount applied for production outsourcing. 

TABLE 10 

 THE NUMBER OF MACHINES ASSIGNED TO EACH CELL 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Total number of 

machine 
Usage rate 

Machine 1 - - - 2 - 2 0.967 
Machine 2 - - 1 - - 1 0.974 
Machine 3 - - 1 - 2 3 0.923 
Machine 4 2 2 - - - 4 0.561 

TABLE 11 

THE LEVEL OF DISCOUNT APPLIED TO THE PRODUCTION OF OUTSOURCED PARTS 

Parts 
Scenario 1 Scenario 2 

Discount level 1 Discount level 2 Discount level 3 Discount level 1 Discount level 2 Discount level 3 

Parts 1   * *   
Parts 2   *  *  

 

According to the results of Table (10), it can be seen that in the first scenario for the outsourced production of the first 

and second parts, the discount level is 3, and in the second scenario, the discount level is 1 for the first part and the 

second discount level is applied for the second part. In this paper, according to the use of the robust-fuzzy-probabilistic 

optimization method to control the uncertainty parameters, the effect of the uncertainty rate on the values of the 

problem's objective functions in the fuzzy optimistic, fuzzy probable and fuzzy pessimistic states has been 

investigated. Table (11) shows the values of the objective functions in different rates of uncertainty. According to the 

results obtained from the sensitivity analysis, it can be seen that with the increase of the uncertainty rate in three 

optimistic, probable and pessimistic states, the amount of demand has decreased and therefore the value of the first 

objective function, which includes the costs of the entire production system, has decreased. . On the other hand, due 
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to the effect of this problem on the amount of greenhouse gas emissions in the production and reproduction of products, 

the value of the second objective function has also decreased. 

TABLE 12 

 THE TREND OF CHANGES OF THE FIRST AND SECOND OBJECTIVE FUNCTION IN DIFFERENT RATES OF UNCERTAINTY IN DIFFERENT STATES OF 

ROBUSTNESS 

α1 α2 ϑ = 0 ϑ = 0.5 ϑ = 1 

Objective 
function 1 

Objective 
function 2 

Objective 
function 1 

Objective 
function 2 

Objective 
function 1 

Objective 
function 2 

0.1 0.9 10724.26 3471 10006.82 3471 9343.27 3471 

0.2 0.8 9514.17 3360 8956.65 3360 8443.43 3360 

0.3 0.7 6860.94 2614 6493.30 2614 6154.39 2614 

0.4 0.6 5684.56 2226 5474.93 2226 5284.82 2226 

0.5 0.5 4945.12 1533 4019.57 1533 3963.77 1533 
0.6 0.4 2964.92 1118 2532.92 1118 2116.92 1118 

0.7 0.3 2822.92 1118 2248.92 1118 1826.41 1118 

0.8 0.2 1680.92 1118 1564.92 1118 1240.36 1118 

0.9 0.1 1538.92 1118 1380.92 1118 1138.14 1118 

Fig. 5. also shows the change process of the objective functions of the problem in different states of robustness 

(optimistic-probable and pessimistic) in different rates of uncertainty. 

 

FIGURE 5 

THE CHANGE PROCESS OF THE OBJECTIVE FUNCTIONS OF THE PROBLEM IN DIFFERENT STATES OF ROBUSTNESS 

Comparing the results of different numerical examples solved with NSGA II, MOPSO, MOGWO and Epsilon 

constraint show that due to the NP-Hardness of the mathematical model, exact methods are not very effective in 

solving numerical examples.  While the use of meta-heuristic methods has the ability to search the solution space of 

the model in a shorter time. The difference between the results obtained between different solution methods shows 

that the maximum GAP between these methods is less than 1%. While the time to solve the problem in exact methods 

is very high. Also, various comparisons have been made between different algorithms and their efficiency has been 

measured in terms of various indicators. In this comparison, NSGA II has the highest NPF and the lowest CPU-Time. 

MOPSO has been efficient in MSI and MID indices and finally MOGWO has won the best SM. Comparing all 

indicators at a glance shows that NSGA II is the most suitable solution method. 

CONCLUSION 

In this paper, a dual-objective model of a sustainable integrated production system was presented, taking into account 

the simultaneous reduction of possible costs on the system, the amount of greenhouse gas emissions, and the 

application of discounts on production outsourcing costs under uncertainty. Therefore, the robust-fuzzy-probabilistic 

optimization method (optimistic-pessimistic) was used to control the integrated production system model. The main 

goal in designing the model was to minimize the costs of the entire production system and minimize the amount of 
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greenhouse gas emissions. To solve the model, the exact epsilon constraint method and MOPSO, NSGA II and 

MOGWO were used. To check the efficiency of the solution methods on the bi-objective model, 15 sample problems 

in small, medium, and large design sizes were used, and meta-heuristic algorithms comparison indices including the 

number of efficient solutions, maximum expansion, spacing, and distance from the ideal point were used.  

         As a result of the investigations, it was found that the exact method does not have a high efficiency in solving 

medium and large sample problems. However, the meta-heuristic algorithms of the average of the first and second 

objective function are closer than the averages of the epsilon method. According to the results and the analysis of the 

average indices of meta-heuristic algorithms comparison, it was concluded that the NSGA II has obtained better results 

than other algorithms in obtaining the indices of the number of efficient solution and the spacing index. Also, the 

MOPSO has performed better in obtaining the indicators of the greatest expansion, the average computing time and 

the distance from the ideal point. Finally, the MOGWO has performed better than other algorithms in obtaining the 

averages of the first and second objective function. The results of the implementation of the TOPSIS method for 

ranking algorithms for solving the problem of sustainable integrated production system included obtaining a 

desirability weight of 0.5882 for the MOPSO, obtaining a desirability weight of 0.1397 for the MOGWO, and 

obtaining a desirability weight of 0.7491 for the NSGA II. 

         The results of this article show that managers should choose high-tech machines in order to reduce the costs of 

their production unit and also to reduce the amount of harmful effects on the environment. Also, the influence of the 

uncertainty rate on the costs and environmental effects is shown in this article, and it leads to determine the minimum 

and maximum costs of setting up the production unit. On the other hand, creating an integrated production system 

network with countless decisions requires the use of special solution tools, which in this article, meta-heuristic 

algorithms have been developed for this purpose. The following are proposed as future proposals: considering the 

mathematical model in several periods and several products due to its closeness to the real world, considering different 

production technologies to reduce environmental effects, using innovative combined methods to achieve Favorable 

results in a short period of time, considering the reliability in the production system. 
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