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Abstract 

Flexible job-shop scheduling problem (FJSP) finds significant interest in the field of scheduling in dealing with 

complexity, solution methodology and, industrial applications. However, most of the studies on FJSP, consider the 

processing time of operations to be deterministic and known at priori while solving the problem. Since uncertainty 

is bound to occur in industries, deterministic approaches for solving FJSP may not yield good solutions. Schedules 

generated considering uncertainties may help the manufacturing firms to handle the uncertainties efficiently. The 

present work aims at solving FJSP in a realistic manner, considering uncertainty in the processing times. A modified 

version of optimization algorithms without tuning parameters such as teaching-learning-based optimization (TLBO) 

and JAYA is proposed to solve fuzzy FJSP (FFJSP) with less computational burden. Although there are enough 

challenging benchmark problems for deterministic FJSP problems, only limited benchmarks are available for a 

fuzzy variant of FJSP. The currently available FFJSP problems in the literature are small in size as compared to 

Brandimate data instances which are widely accepted for a deterministic variant of FJSP. Therefore, an attempt has 

been made in this paper to solve the instances of Kacem’s and Brandimarte’s by converting them into fuzzy FJSP. 

The present work also provides new challenging problems compared to the existing benchmark problems to study 

FFJSP.   
 

Keywords - Flexible job-shop scheduling problem; JAYA; processing time’s uncertainty; TLBO; triangular fuzzy 

numbers. 
 

INTRODUCTION 

Flexible job-shop scheduling problem (FJSP) attracts the attention of the researchers because it is one of the difficult NP-hard 

(non-deterministic polynomial-time hard) problems and poses difficulty in solving due to its complexity (Garey, Johnson, & 
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Sethi, 1976). A large number of methods have been proposed to solve FJSP and flexible flow-shop with the objective of 

minimization of makespan under deterministic conditions (Apornak, Raissi, & Pourhassan, 2021; Buddala & Mahapatra, 2016; 

Buddala, Mahapatra, & Singh, 2021; Dunke & Nickel, 2022; Gao et al., 2016; Raissi, Rooeinfar, & Ghezavati, 2019; Rooeinfar, 

Raissi, & Ghezavati, 2019; Singh & Mahapatra, 2016; L. Wang, Zhou, Xu, Wang, & Liu, 2012; Yuan, Xu, & Yang, 2013). In 

deterministic FJSP, it is assumed that processing times are known at priori and deterministic. In practice, uncertainties like 

uncertain processing times and machine failures are frequently encountered on a shop floor (Li, Gong, & Lu, 2022a, 2022b; 

Ourari, Berrandjia, Boulakhras, Boukciat, & Hentous, 2015; Subramaniam & Raheja, 2003).  

      In a job-shop environment, the uncertainties that arise can be categorized into two categories. They are (i) resource related 

and (ii) job related (Vieira, Herrmann, & Lin, 2003). Unavailability of machines or failure of tools, operator illness, loading 

limits and delay or shortage in the arrival of materials are known as resource related uncertainties. Unexpected cancellation of 

existing jobs or arrival of new jobs, changes in due dates, early arrival of jobs or delay in arrival of jobs and uncertainties in 

processing times are treated as job related uncertainties. If all these uncertainties are taken into account while solving a 

scheduling problem, the problem becomes too difficult to solve (Chaari, Chaabane, Aissani, & Trentesaux, 2014; Jin, Zhang, 

Wen, Sun, & Fei, 2021; K. Wang & Choi, 2012). It is to be noted that solution methodologies designed to solve deterministic 

scheduling problems cannot be applied to solve scheduling problems with uncertainty (He, Sun, & Liao, 2013). Probability 

distribution may be used to deal with the shop floor uncertainties (Bruni, Beraldi, Guerriero, & Pinto, 2011). It is found that 

estimating makespan distribution is intractable even when durations of operations are independent random variables (Ludwig, 

Möhring, & Stork, 2001). Therefore, an alternative approach to model the variations in processing times emphasizes the use of 

fuzzy intervals or fuzzy numbers (Dubois, Fargier, & Fortemps, 2003; Sowinski & Hapke, 2000). Adding flexibility to a job 

shop scheduling problem (JSP) makes the scheduling problem complex. Further, if fuzzy processing times are considered, the 

problem becomes too difficult to solve (Deming Lei, 2010a).  

Uncertainty in processing times is one of the important uncertainties encountered on the shop floor. If vagueness in the 

operation times is considered, the problem is known as a fuzzy flexible job shop scheduling problem (FFJSP). Since large-

scale FFJSP is difficult to solve using traditional approaches, meta-heuristics are usually used to find a near-optimal solution 

with less computational burden. In this work, improved versions of teaching-learning-based optimization (TLBO) and JAYA 

algorithms are used to solve FFJSP because these algorithms do not require any tuning parameter. Also, finding the correct 

tuning parameters specific to the algorithm is a cumbersome process. The proposed solution methodologies lose their diversity 

as the iterations proceed. Therefore, a new local search method proposed by (Buddala & Mahapatra, 2018) is embedded into 

the basic TLBO and JAYA to improve the efficiency of the algorithm. 

LITERATURE REVIEW 

Fuzzy numbers are considered for job processing times to consider uncertainty in processing times for single machine 

scheduling problem (Chanas & Kasperski, 2003; Kasperski, 2007). Similarly, fuzzy processing times are considered for parallel 

machine scheduling problem by Peng (Peng & Liu, 2004) and Balin (Balin, 2011), Ishibushi (Ishibuchi & Murata, 1998) and 

Celano (Celano, Costa, & Fichera, 2003) have considered fuzzy processing times for flow shop scheduling problem whereas 

(Palacios, González-Rodríguez, Vela, & Puente, 2014) have considered for open shop scheduling problem. In job shop 

scheduling, fuzzy processing times are considered by many authors (Fortemps, 1997; Gonzalez-Rodriguez, Puente, Vela, & 

Varela, 2008; González Rodrıguez, Vela, Puente, & Varela, 2008; Deming Lei, 2008, 2010b; Niu, Jiao, & Gu, 2008; Petrovic, 

Fayad, Petrovic, Burke, & Kendall, 2008; Puente Peinador, Rodríguez Vela, & González Rodríguez, 2010; Sakawa & Kubota, 

2000; Tavakkoli-Moghaddam, Safaei, & Kah, 2008; Zheng & Li, 2012).  

      Lei (Deming Lei, 2010a) made an attempt to solve FJSP with an aim to tackle the uncertain processing times using fuzzy 

numbers (fuzzy processing times). Even though there were sufficient number of benchmark problems for FJSP to test the 

performance of an algorithm, sufficient number of benchmark problems for FFJSP are not readily available in the literature. 

Therefore, four test instances were proposed to conduct the experimental studies. Lei (Deming Lei, 2012) proposed additional 

new instance with size 15 jobs by 10 machines of 80 operations and applied co-evolutionary genetic algorithm to solve FFJSP. 

Wang (L. Wang, Zhou, Xu, & Liu, 2013) have proposed a hybrid artificial bee colony algorithm (HABC) to solve four instances 

proposed by Lei (Deming Lei, 2010a). Wang et. al. (S. Wang, Wang, Xu, & Liu, 2013) have proposed an estimation of 

distribution algorithm (EDA) to solve all the five instances proposed by Lei (Deming Lei, 2010a, 2012). Xu et al. (Xu, Wang, 

Wang, & Liu, 2015) have proposed a teaching learning-based optimization algorithm to solve all the five instances proposed 

by Lei (Deming Lei, 2010a, 2012). Wang et al. (X. Wang, Gao, Zhang, & Li, 2012) have proposed a new set of four FFJSP 

instances to test the efficiency of multi-objective genetic algorithm (MOGA). Wang et al. (X. Wang, Li, & Zhang, 2013) have 
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proposed an improved multi-objective genetic algorithm (IMOGA) and compared its efficiency with NSGA-II. It is observed 

that IMOGA is found to be superior to NSGA-II in solving FFJSP. Wang et al. (C. Wang, Tian, Ji, & Wang, 2017) have 

proposed a memetic algorithm (MA) to solve multi-objective FFJSP. It is indicated that the proposed MA outperforms MOGA 

and IMOGA. Since the test instances for FFJSP are limited in the literature, Palacios et al. (Palacios, González, Vela, González-

Rodríguez, & Puente, 2015) and (Palacios, Puente, Vela, & González-Rodríguez, 2016) emphasized on necessity of challenging 

benchmark problems for fuzzy scheduling problems. In case of deterministic FJSP, Kacem’s instances (Kacem, Hammadi, & 

Borne, 2002a, 2002b) and Brandimarte’s instances (Brandimarte, 1993) are most widely solved challenging benchmark 

problems. Brandimarte’s instances have a large number of operations per job (minimum 5 operations per job to maximum 12 

operations per job for different instances) as compared to Lei’s instances and Wang’s (X. Wang et al., 2012) instances (only 

three operations per job). In FJSP, Brandimarte’s instances are challenging problems but these are deterministic problems. If  

these Brandimarte’s instances can be converted into fuzzy instances, these problems serve as better challenging problems in 

FFJSP.  

In order to generate fuzzy processing times (fPijk) from the crisp processing times (Pijk) of a deterministic scheduling 

problem, different researchers have used different techniques in different scheduling problems. Here Pijk indicates processing 

time of jth operation for job i on machine k. In general, a triangular fuzzy processing time can be represented as fPijk = (Pijk1, 

Pijk2, Pijk3). The most likely time value Pijk2 of the fuzzy processing time is same as crisp processing time Pijk, Pijk1 is the minimum 

processing time and Pijk3 is the maximum processing time for an operation. The values of Pijk1 and Pijk3 are obtained randomly 

from [δ1Pijk, Pijk] and [Pijk, δ2Pijk] respectively. Lin (Lin, 2002) has considered δ1=0.5 and δ2=1.5. Rodriguez et al. (Gonzalez-

Rodriguez, Vela, & Puente, 2007) have considered δ1=0.7 and δ2=1.3. The fuzzy conversion method was first proposed by 

Fortemps (Fortemps, 1997). The same technique is used recently by Palacios et al. (Palacios et al., 2016) to propose some new 

standard benchmark problems for fuzzy JSP. Petrovic et al. (Petrovic et al., 2008) have considered δ1=0.9 and δ2=1.1. Ghrayeb 

(Ghrayeb, 2003) and Puente et al. (Puente Peinador et al., 2010) have considered δ1=0.85 and δ2=1.3. Lei (Demion Lei, 2011) 

has considered δ1 in the range [0.85Pijk, 0.95Pijk] and δ2 in the range [1.1Pijk, 1.9Pijk]. Rodriguez et al. (González-Rodríguez, 

Vela, & Puente, 2006) have considered δ1 in the range [(1/3Pijk), Pijk] and δ2 in the range [Pijk, (4/3Pijk)].  

    Out of many types of fuzzy conversion methods, it has been concluded by Palacios et al. (Palacios et al., 2016) that the 

fuzzy conversion method proposed by Rodriguez et al. (Gonzalez-Rodriguez et al., 2007) is superior in converting the 

deterministic processing times into fuzzy processing times. Palacios et al. (Palacios et al., 2016) have not only applied it for 

converting deterministic job shop scheduling (JSP) problems into fuzzy JSP but also proposed new standard fuzzy JSP 

benchmark problems to evaluate the performance of different algorithms. As FJSP and FFJSP are the extensions of JSP, the 

fuzzy conversion proposed by Rodriguez et al.  (Gonzalez-Rodriguez et al., 2007) can be conveniently applied with δ1=0.7 and 

δ2=1.3 to convert the deterministic FJSP into fuzzy FJSP for proposing new fuzzy FJSP benchmark problems using the 

deterministic FJSP problems. 

From the literature of scheduling problems, it is observed that performance of a method is not solely judged based on 

makespan criterion but also in terms of relative error (RE) from the lower bound (LB). Finding the lower bounds for 

unsymmetrical fuzzy numbered processing times is very difficult. However, it is pointed out that symmetrical fuzzy instances 

have same lower bounds as that of deterministic crisp scheduling problem (Fortemps, 1997). Based on this principle, Palacios 

et al. (Palacios et al., 2016) have generated symmetric triangular fuzzy processing times to convert the deterministic job shop 

scheduling problems into fuzzy job shop scheduling problems so that the lower bounds of deterministic job shop scheduling 

problems (JSP) can be readily used for the fuzzy job-shop scheduling problems for comparing the efficacy of solution strategies. 

As FJSP and FFJSP are the extensions of JSP, the above principle is incorporated in the present work to convert the 

deterministic FJSP into fuzzy FJSP (FFJSP) so that the lower bounds of deterministic FJSP can be readily used for FFJSP. The 

formula to find relative error (RE) with respect to a LB is given in the equation 1. 

𝑅𝐸 =
𝐸(𝐶𝑚𝑎𝑥)−𝐿𝐵

𝐿𝐵
     (1) 

where E(Cmax) is the expected most likely makespan of a FFJSP. 

FUZZY FJSP (FFJSP) 

I. FJSP with fuzzy durations 

A FFJSP is explained as follows: There a set of 𝑚 machines on which 𝑛 jobs need to be processed. All jobs are available at 

time zero to process them on mahcines. Each job 𝑖 has Oi sequence of operations (j=1, 2, 3, …., Oi). For any operation Oij, 
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there exists a machine Mijk such that Mijk 𝜖 m. The fuzzy processing time fPijk of any operation Oij on a given machine k is 

represented as a triangular fuzzy number (TFN) fPijk = (Pijk1, Pijk2, Pijk3) where, Pijk1 is the minimum processing time and Pijk3 

is the maximum processing time for an operation. Pijk2 is the most likely time value. Similarly, the completion time of any 

operation Oij on a given machine k is also represented as a TFN fCijk = (Cijk1, Cijk2, Cijk3) where, Cijk1 is the minimum completion 

time, Pijk2 is the most likely completion time and Pijk3 is the maximum completion time for an operation. The basic assumptions 

of a deterministic FJSP problem are also applicable to FFJSP. All machines are independent from each other. There are no 

machine breakdowns during the process and all jobs are independent from each other. The objective is to find a schedule with 

minimum makespan value (equation 2) with the uncertain fuzzy durations. 

𝐶𝑚𝑎𝑥 = max(min 𝐶𝑖) ∀ 𝑖𝜖 𝑛   (2) 

where Ci is the completion time of job 𝑖  and Cmax is the maximum completion time (makespan). 

II. Operations on fuzzy durations 

In a fuzzy shop floor environment, few operations (BORTOLAN & DEGANI, 1993) on fuzzy numbers are necessary to 

generate a schedule. These fuzzy operations consist of addition operation to determine the fuzzy completion time, maximum 

operation to calculate the fuzzy beginning time of an operation and rank method to find the makespan or maximum completion 

time (Xu et al., 2015). For example, let us assume that there are two triangular fuzzy numbers (TFN) B = (b1, b2, b3) and C = 

(c1, c2, c3). Then, the addition operation between the two TFN’s B and C is given by B+C = (b1 + c1, b2 + c2, b3 + c3). In the 

present work, the criterion proposed in Lei (Deming Lei, 2012) is used to find the maximum of a TFN. That is if B>C, B˅C = 

B; else B˅C = C. From literature review (Deming Lei, 2010a, 2010b; Xu et al., 2015), it is found that the rank method proposed 

by Sakawa and Kubota (Sakawa & Kubota, 2000) is most widely used for its simplicity and efficiency when compared to 

Sakawa and Mori (Sakawa & Mori, 1999). It is explained as follows. 

Criterion 1: The first criterion to rank the greatest number among two TFN’s is given by U1 (B) = (b1 + b2 + b3)/4.   

Criterion 2: If 𝑈1 value of the two TFN’s is same, then U2 (B) = b2 is used as the second criterion to decide the greatest number. 

Criterion 3: If U1 and U2 values of the two TFN’s is same, then U3 (B) = b3 - b1 is chosen as the third criterion to decide the 

greatest number. 

PROBLEM MAPPING MECHANISM 

TABLE 1 

EXAMPLE PROBLEM 

Job Operation Machine 

1 

Machine 2 Machine 3 

 

1 

O11 1.4,2,2.6 0.7,1,1.3 2.1,3,3.9 

O12 2.8,4,5.2 4.2,6,7.8 2.1,3,3.9 

 

2 

O21 0.7,1,1.3 0.7,1,1.3 1.4,2,2.6 

O22 1.4,2,2.6 0.7,1,1.3 1.4,2,2.6 

O23 3.5,5,6.5 2.8,4,5.2 4.2,6,7.8 

 
3 

O31 0.7,1,1.3 2.1,3,3.9 0.7,1,1.3 

O32 1.4,2,2.6 2.1,3,3.9 0.7,1,1.3 

 

In this work, real number encoding system proposed by Niu et al.(Niu et al., 2008) is used to solve fuzzy flexible job-shop 

scheduling problem. A real number consists of two parts. They are the integer part and the fractional part. In this encoding 

system, integer part is used to assign an operation to a machine whereas to sequence the operations allotted to a machine the 

fractional part is used. A brief explanation of the same is done using the example problem given in the table 1. In table 1, it is 

clear that the processing times are symmetric triangular fuzzy numbers. Here, the most likely time is the deterministic 

processing time of a general ‘deterministic FJSP’ problem. Based on this deterministic processing times, a priority order matrix 

is obtained with the increase of processing times for an operation as shown in the table 2. 

 

 



Journal of Industrial Engineering International, 18(4), December 2022 

 

 

106 

 J     I     E     I  

 

TABLE 2 
PRIORITY MATRIX 

Job Operation Priority 

1 

Priority 

2 

Priority 

3 

 
1 

O11 2 1 3 

O12 3 1 2 

 

2 

O21 1 2 3 

O22 2 1 3 

O23 2 1 3 

 
3 

O31 1 3 2 

O32 3 1 2 

 

Using this priority order matrix, the integer part is used to allot the machine. If there is a tie in processing times, the machine 

with lower index number is given priority. For example, the operation O21 has same processing times on machine 1 and machine 

2. In this case, machine 1 is given priority. A brief explanation of values representation (student’s in TLBO / population in  

JAYA) is given in the table 3. The values in table 3 also give the initial best solution of the population. Initially, values of the 

population are generated at random. The values are positive real numbers where the maximum value ranges up to total number 

of available machines (tam) while the minimum value is 1.  
TABLE 3 

STOCHASTIC VALUE REPRESENTATION 
Operation O11 O12 O21 O22 O23 O31 O32 

Value 1.42
16 

1.42
56 

1.59
90 

1.77
58 

1.82
19 

1.55
84 

1.56
34 

Priority 1 1 1 1 1 1 1 

Machine 

allotment 

2 3 1 2 2 1 3 

 

 
FIGURE 1A 

INITIAL GANTT CHART SCHEDULE FROM DATA IN TABLE 3 WITHOUT FUZZY DURATIONS 

 

 
FIGURE 1B 

INITIAL FUZZY GANTT CHART SCHEDULE FROM DATA IN TABLE 3 
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Figures 1a and 1b show the initial Gantt chart of the schedule obtained from the data in table 3. Figure 1a is without the 

consideration of fuzzy durations while the figure 1b is under the consideration of fuzzy durations. The double digit number 

inside the colored boxes (rectangular box in figure 1a and triangular box in figure 1b) represents the operation numbers of jobs. 

Example ‘21’ means first operation of job 2 (O21).  

In the recent years, several meta-heuristic techniques have been proposed to tackle several real world complex challenging 

problems. But all the meta-heuristics except TLBO and JAYA algorithms have algorithm specific tuning parameters. The 

special feature of TLBO and JAYA algorithms alleviate the drawback of time consuming process of tuning algorithmic 

parameters. Moreover, these algorithms are simple and easy to apply. Therefore, in the present research work, TLBO and JAYA 

algorithms are chosen for the study. 

TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM 

Teaching-learning-based optimization (TLBO) is a nature inspired meta-heuristic technique. It is proposed on the basis of the 

general teaching-learning process that occurs in day to day life. A teacher strives to bring his/her students’ knowledge to his/her 

level. The increased knowledge of the students can be measured in terms of the grades obtained by them in the exams. The 

meta-heuristic technique is proposed by Rao et al. (R. V. Rao, Savsani, & Vakharia, 2011) explain the two ways of learning 

process. They are (i) teacher phase (i.e. via teacher) and (ii) student phase (i.e.; discussing with the fellow co-students). At any 

iteration in the proposed algorithm, number of students (or learners) present in the class represent the population and the student 

with best knowledge is considered as the teacher. Implementation of TLBO is explained as follows 

I. Teacher phase 

Even though, a teacher wishes to bring his/her students’ knowledge to his/her level, the increased knowledge of the students 

depends on the capability of the students to learn. Therefore, all students cannot gain full knowledge in one go. But, during this 

teaching learning process, all students learn something from their teacher. Therefore, the average knowledge of the class 

increases. Let Smean indicate the average knowledge of the students in a class and Steacher indicate the teacher of the class. Then 

the improved student’s knowledge at any iteration is given by the equation 3 as follows 

Snew i = Sold i + r × (Steacher – (Tf × Smean))   (3) 

where ‘Tf’ is the teaching factor. Its value is randomly set to 1 or 2 and ‘r’ is a uniformly distributed random number between 

(0,1). Here, ‘Tf’ is a parameter of TLBO. But tuning of this ‘Tf’ is not required. This is the main advantage in this algorithm. 

Snew i and Sold i are the new and old knowledge values of the student i. Snew i is accepted if it provides an improved value. 

II. Student phase 

As all students cannot gain full knowledge in one go. They discuss among themselves after a class is taught by the teacher. 

During this process again students’ knowledge increases. Let Sa and Sb denote two students who discuss among themselves, 

a≠b. Then the new improved knowledge of the learner student from the teaching student is given by the equations 4 and 5 as 

follows 

Snew a= Sold a + r × (Sa - Sb) if F(Sa) <= F(Sb)  (4) 

Snew a= Sold a + r × (Sb – Sa) if F(Sb) < F(Sa)  (5) 

where ‘r’ is a uniformly distributed random number between (0,1), Sold a is the old knowledge of the student ‘a’ and Snew a is the 

new knowledge of the student ‘a’. Snew a is accepted if it provides an improved value. 

JAYA ALGORITHM 

Rao (R. Rao, 2016) proposed Jaya algorithm very recently. In Sanskrit language, JAYA means victory. Therefore, the algorithm 

is named JAYA. The design of this algorithm is based on the strategy that any solution of a given population tends to escape 

from the worst solution and also tries to approach towards the best solution. In order to get optimal solution, Jaya do not possess 

any algorithm specific tuning parameters. Moreover, it contains only one equation. The specialty of this algorithm is its 

simplicity and ease to understand. This makes the algorithm very easy to apply. Therefore, it is clearly different from any other 

algorithms in a unique manner. The mathematical formulation of JAYA is explained as follows. Let f(x) denote the objective 

function that should be optimized. Out of the total population, let Sworst and Sbest denote the worst and best solutions. Then the 

equation to modify a solution is as follows 

Snew i = Sold i + r1 × (Sbest - | Si |) – r2 × (Sworst - | Si |)    (6) 
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where r1 and r2 are the two uniformly distributed random numbers between (0,1). In equation 6, the term “– r2 * (Sworst  - | Si |)” 

represents the inclination of the solution to escape from the worst solution and the term “r1 * (Sbest - | Si |)” represents the 

inclination of solution to approach towards the best solution. The new solution is accepted if it provides an improved value. 

LOCAL SEARCH 

Although both the algorithms appear to be elegant from computational point of view, they lose diversity after few iterations 

and may get trapped at the local optima. In order to improve the efficiency of algorithms, local search techniques have been 

used by the researchers in the past (Buddala & Mahapatra, 2016; Singh & Mahapatra, 2016; Xu et al., 2015). Therefore, to 

increase the efficiency of TLBO and JAYA algorithms to reach the near optimal solution, the current meta-heuristics also 

requires some improvement to the basic algorithm. To enhance the solution quality of FFJSP, a new local search proposed by 

Buddala and Mahapatra (Buddala & Mahapatra, 2018)for flexible flow-shop scheduling problem is incorporated to FFJSP in 

the present work. This local search is done in three steps. (i) Sequence swap, (ii) Machine swap and (iii) Mutation strategy. 

I. Sequence swap 

Critical operations are very crucial to apply this local search. Therefore, critical operations are to be found first. There is 

possibility of critical operations being assigned to a same machine. On each machine, the critical operations which are assigned 

adjacent to each other are swapped and makespan of the new schedules are to be found. If the swapped schedule provides a 

better makespan value, then old schedule is replaced by this new schedule.  

II. Machine swap 

In FJSP, flexibility exists to choose one machine among several machines. By using the priority order matrix, each critical 

operation is assigned to each of the first three priority machines from priority order matrix separately and check whether the 

new schedule gives better makespan value. This method is named as machine swap technique. If the swapped schedule provides 

an improved value of makespan, then old schedule is replaced by this new schedule. It is observed that there is a quicker rate 

of convergence in both TLBO and JAYA techniques. But, it should be noted that the diversity in solutions is lost. Also, solutions 

get struck at the local optima. Therefore, in order to preserve the diversity in the solutions, mutation phenomenon (taken from 

genetic algorithm) is embedded to TLBO and JAYA techniques. This mutation strategy is previously implemented in Singh 

and Mahapatra (Singh & Mahapatra, 2016). The next section gives a brief description of the proposed mutation strategy. 

II. Mutation strategy 

When TLBO and JAYA are directly applied to the FFJSP, it is observed that they show a tendency to get trapped at the local 

optima. As the iterations proceed, all population converge towards the local optima. This is due to loss of diversity in the 

population. This leads to no improvement in optimal solution in later iterations. Therefore, to maintain the diversity, mutation 

strategy from genetic algorithm is embedded to TLBO and JAYA algorithms to alleviate this drawback. During an evolution 

process the sudden variation that happens in the genes of an off spring is called mutation. In the present work, if the best 

solution does not improve up to a specified iteration count, then mutation technique is applied to create some diversity in the 

population. Thus the convergence of population towards the local optima is prevented and diversity in population is maintained. 

It is found that the implementation of mutation strategy enhanced the performance of TLBO and JAYA algorithms. 

PROPOSED ALGORITHMS 

I. TLBO 

1. Initialize the problem with input data like number of machines, jobs, machines available for each operation and their 

respective processing times. 

2. Initialize the students (population). Initial subject values of the students are generated randomly within the range Sij = 

min Sij + r × (max Sij – min Sij) where Sij is the subject value of ith job’s jth operation, min Sij =1, max Sij = 1+tam and 

‘r’ is a random number between (0,1). 

3. Generate the schedules with the real number encoding system and with the problem mapping mechanism discussed 

above. 

4. Now calculate the makespan using the population (knowledge of the students). 

5. Now evaluate the mean of students’ knowledge of the class. 

6. Update the students’ knowledge using the equations 3,4 and 5 in teacher phase and student phase. 

7. Update the population using local search technique. 
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8. Now best student of the class is identified and it should be replaced with the teacher of the class (only if the best 

student functional value is better than the teacher). 

9. Repeat the cycle to step 3 until the termination criteria is met. 

10. End. 

 

II. JAYA 

1. Initialize the problem with input data like number of machines, jobs, machines available for each operation and their 

respective processing times. 

2. Initialize the population. Initial subject values of the population are generated randomly within the range Sij = min Sij 

+ r × (max Sij – min Sij) where the value of ith job’s jth operation, min Sij =1, max Sij = 1+tam and ‘r’ is a random 

number between (0,1). 

3. Generate the schedules with the real number encoding system and with the problem mapping mechanism discussed 

above. 

4. Update the population using local search technique. 

5. Now calculate the makespan using the population. 

6. Update the population using the equation 6. 

7. Repeat the cycle to step 3 until the termination criteria is met. 

8. End. 

RESULTS AND DISCUSSION 

For illustration purpose, optimized makespan result of the example problem is explained briefly. Figures 2a and 2b show the 

final Gantt chart schedule obtained for the data shown in table 4. Figure 2a is without the consideration of fuzzy durations while 

the figure 2b is under the consideration of fuzzy durations. In all the four figures 1a, 1b, 2a and 2b, yellow color represents first 

job, blue color represents second job and the green color represents third job. In figures 1b and 2b, each machine consists of 

two rows (i.e.; top row and bottom row). The bottom row shows the range for starting time of an operation and the top row 

shows the range for completion time of an operation. 
 

TABLE 5 

Stochastic value representation 

Operation O11 O12 O21 O22 O23 O31 O32 

Value 1.3570 1.3997 1.1498 1.4102 1.4858 1.3922 1.43

77 

Priority 1 1 1 1 1 1 1 

Machine 

allotment 

2 3 1 2 2 1 3 

 

 
 

FIGURE 2A 

FINAL GANTT CHART SCHEDULE FROM DATA IN TABLE 4 WITHOUT FUZZY DURATIONS 
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FIGURE 2B 
FINAL FUZZY GANTT CHART SCHEDULE FROM DATA IN TABLE 4 

 

To evaluate the efficiency of proposed TLBO and JAYA algorithms, experiments have been conducted on Kacem’s and 

Brandimarte’s fuzzy FJSP data instances. Each problem has been solved for 30 number of runs and the best results are tabulated 

in table 5 and the average of results for 30 runs in given table 6. Also, by using the most likely time values from the results, the 

relative error percentage (RE%) from lower bound (LB) has been calculated in columns 5 and 7 of tables 5 and 6 respectively. 

The formula to find the relative error percentage is given in the equation 7. Experiments have been conducted using MATALB 

software running at 3.40GHz on a 4 GB ram, windows 7 platform with an i7 processor.   

The relative error percentage (RE%) with respect to a LB is defined as 

𝑅𝐸 =
𝐸(𝐶𝑚𝑎𝑥)−𝐿𝐵

𝐿𝐵
× 100   (7) 

TABLE 6 

BEST RESULTS OF PROPOSED TLBO AND JAYA 
SI. No. LB Problem 

Size 

TLBO RE% JAYA RE% 

1 
11 4 × 5 7.7,11,14.3 

0 
7.7,11,14.3 

0 

2 
12 8 × 8 9.8,14,18.2 

16.667 
10.5,15,19.5 

25 

3 
11 10 × 7 7.7,11,14.3 

0 
7.7,11,14.3 

0 

4 
7 10 × 10 4.9,7,9.1 

0 
5.6,8,10.4 

14.286 

5 
10 15 × 10 8.4,12,15.6 

20 
9.8,14,18.2 

40 

6 

MK01 

36 10 × 6 28,40,52 

11.111 

30.1,43,55.9 

19.444 
7 

MK02 

24 10 × 6 19.6,28,36.4 

16.667 

21.731,40.3 

29.167 

8 
MK03 

204 15 × 8 142.8,204,265.2 
0 

142.8,204,265.2 
0 

9 

MK04 

48 15 × 8 44.1,63,81.9 

31.25 

46.9,67,87.1 

39.583 
10 

MK05 

168 15 × 4 120.4,172,223.6 

2.381 

122.5,175,227.5 

4.1667 

11 
MK06 

33 10 × 15 45.5,65,84.5 
96.97 

48.3,69,89.7 
109.09 

12 

MK07 

133 20 × 5 100.8,144,187.2 

8.2707 

104.3,149,193.7 

12.03 
13 

MK08 

523 20 × 10 366.1,523,679.9 

0 

366.1,523,679.9 

0 

14 
MK09 

299 20 × 10 217.7,311,414.7 
4.0134 

220.5,315,419.9 
5.3512 

15 

MK10 

165 20 × 15 149.8,214,278.2 

29.697 

158.9,227,295.1 

37.576 

Average RE% 
15.802 

 
22.38 
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TABLE 7 

AVERAGE RESULTS OF PROPOSED TLBO AND JAYA 
SI. 
No. 

LB Problem 
Size 

TLBO RE% JAYA RE% 

1 11 4 × 5 7.7,11,14.3 0 7.7,11,14.3 0 

2 12 8 × 8 10.08,14.4,18.72 20 10.715,15.3,19.89 27.5 

3 11 10 × 7 7.98,11.4,14.82 3.6364 8.12,11.6,15.08 5.455 

4 7 10 × 10 5.39,7.7,10.01 10 5.88,8.4,10.92 20 

5 10 15 × 10 8.78,12.57,16.33 25.7 10.01,14.3,18.59 43 

6 

MK

01 

36 10 × 6 28.68,40.97,53.26 13.806 30.54,43.63,56.73 21.19 

7 

MK

02 

24 10 × 6 20.23,28.9,37.57 20.417 21.19,31.7,41.21 32.08 

8 

MK

03 

204 15 × 8 143.22,204.6,265.98 0.2941 143.55,205.067,266.59 0.523 

9 

MK

04 

48 15 × 8 44.99,64.27,83.55 33.896 47.55,67.93,88.31 41.52 

10 

MK

05 

168 15 × 4 121.12,173.03,224.94 2.994 123.03,175.77,228.52 4.625 

11 

MK

06 

33 10 × 15 46.55,66.5,86.45 101.52 48.62,69.47,89.84 110.5 

12 

MK

07 

133 20 × 5 101.62,145.16,188.08 9.1429 104.83,149.77,194.7 12.61 

13 

MK

08 

523 20 × 10 366.38,523.4,680.42 0.0765 366.52,523.6,680.68 0.115 

14 

MK

09 

299 20 × 10 218.47,312.1,416.13 4.3813 221.06,315.86,421.03 5.639 

15 

MK

10 

165 20 × 15 150.85,215.5,280.15 30.606 159.6,228,296.4 38.18 

Average RE% 18.431  24.2 

 

Even though there is a lot of research work carried out on these benchmark problems in deterministic form, no research work 

is carried out on the above benchmark problems in fuzzy duration form. Therefore, to compare the obtained results of TLBO 

and JAYA, there are no other results available from the literature. Moreover, the present work shows a path to the future 

researchers to solve these complex benchmark fuzzy FJSP problems. Tables 5 and 6 consist of seven columns. First column 

represents the serial number. Second column shows the lower bound value of that particular problem. Third column gives the 

size of the problem. Fourth and sixth columns show the obtained fuzzy makespan values of the TLBO and JAYA algorithms 

respectively. Fifth and seventh columns show the relative error percentage of the obtained makespan from the lower bound 

values of TLBO and JAYA algorithms respectively. From the best results (table 5), it is clear that, TLBO attained lower bound 

values to five problems and the JAYA attained lower bound values to four problems. The average relative error percentage of 

all the problems of TLBO is 15.802 and that of JAYA is 22.38. From the average results (table 6), it is clear that, TLBO and 

JAYA attained lower bound values to one problem each. The average relative error percentage of all the problems of TLBO is 

18.431 and that of JAYA is 24.2. By comparing the fuzzy makespan and relative error percentage values from tables 5 and 6, 

it is clear that the TLBO gives better results than JAYA. Therefore, we can say that TLBO clearly outperforms JAYA. 
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CONCLUSIONS 

In this work, an effort has been made to solve fuzzy flexible job-shop scheduling problems using TLBO and JAYA algorithms. 

A new local search method is embedded to the basic algorithms to enhance the efficiency the algorithms. Based on the Kacem’s 

and Brandimarte’s benchmark problems of deterministic FJSP, a new complex and challenging problems for fuzzy FJSP 

(FFJSP) have been proposed by successfully by converting them into fuzzy FJSP. There are many methods to convert a 

deterministic FJSP into fuzzy FJSP in the literature. The problem to find a best method to convert deterministic FJSP to fuzzy 

FJSP still persists. To address this issue, an effort has been made and some new challenging benchmark problems have been 

proposed in this work. This new set of benchmark problems are larger in size and are more complex than the existing benchmark 

problems that are available in the literature of fuzzy FJSP. Therefore, the new benchmark problems, proposed in this work, are 

very much useful in determining the efficiency of different algorithms in solving different fuzzy FJSP problems in the future. 

Computational experiments have been carried out on the proposed fuzzy FJSP problems to test the performance of the proposed 

TLBO and JAYA algorithms. From results and discussion, it is clear that the TLBO gives better results than JAYA both in 

terms of best makespan and average makespan values. Even in terms of deviation from the lower bound (RE%), TLBO is 

superior to JAYA. Also, an example problem is discussed for the ease of understanding to the readers.  

FUTURE WORK 

In future, the work can be extended to study the performance of different algorithms that are available in the literature to solve 

FFJSP proposed in this paper. Also the work can be extended to study the multi-objective optimization of different uncertainties 

like machine breakdown, involved in FJSP using the TLBO and JAYA algorithms.  
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