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Abstract 

The present study is a complex system with three subsystems connected in a series configuration. The first 
subsystem has n identical units and is ascribed to be operable by a k-out-of-n: G scheme, and the second subsystem, 
which has three indistinguishable parts, is capable of being operational if at least two of them are operable. The 
third subsystem has an independent unit and all subsystems are connected in a series in the sequence of subsystem 
1, subsystem 2, and subsystem 3. The units of subsystem 1 and subsystem 2 are controlled by the auto changeover 
switches and the switch failure led to the complete failed state. The units' failure rates of subsystems are constant 
and follow an exponential distribution, however, there are two types of repair facilities: general and copula repair. 
Minor repair dealt with the general repair but complete failure needs copula repair. Traditional reliability measures 
have been studied for different values of failure and repair through supplementary variable and copula approaches.  
 
Keywords – Availability; Cost Analysis; Gumbel- Hougaard family copula; MTTF, Reliability.  
 
 

INTRODUCTION: 

Every research project has a research methodology, research technique, and research output through analysis and for future 
implementations. The researchers have provided innovative research with their specific alternatives for improving the system 
performance, however, further work is needed to increase the system's performance. Transient availability modeling is an 
important process used to evaluate and improve the effectiveness of any industrial system where most units are set up as 
repairable. The involvedness of modern industrial systems, besides the need for genuine consideration, when modeling their 
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availability purifies analytical methods. Redundancy is a collective and essential technique to improve the system's 
performance, availability, and reliability. Numerous applications of redundancy have been observed in systems like aerospace, 
nuclear plants, automotive, streetlight system automatics parking systems, and many more. Further, the standby redundancy is 
typically categorized as active redundancy, worm and cold redundancy among the active redundancy is always ready to function 
the task whenever the primary unit got damaged. A system configuration k-out-of-n: G is a particular type of redundancy in 
which k units out of n need to be active all the time to be a system in operative.  Furthermore, failure is a natural phenomenon 
in system reliability analysis, and the nature of the failure and repair rate may be constant and variable also. If the system failure 
and repair rates both are constant and follow exponential distribution then Champmen Kolmogorov equation methodology is 
implemented to assess the system performance but if the system failure rates are constant and the repair rates are variable then 
the system performance is studied using the Markova method supplementary variable approach. A wide range of literature has 
been studied using Markova methods and Laplace transform implications. Researchers in the early 1990s assessed the 
performance of a repairable system with the idea of a single repair, which was not appropriate when the system be in completely 
broken down. Whenever the system is in complete shutdown mode it stops production which leads to a huge loss of 
manufacturers and the organization also may lose its market reputation hence it is necessary to restore the failed system as soon 
as possible. In many realistic situations, the complete damage state needs to be restored as soon as be possible, whenever such 
type of situation observed the system state must be repaired by employing copula,  
        Nelson, R. B. (2006). To cite a few works of literature with k-out-of-n: G/F operational scheme Singh & Rawal, (2011), 
Singh et al (2012, 2013), Monika et al. (2018, 2020), Poonia et al. (2020, 2021), and others studied the system performance 
under different types of failure and multi repair strategies. Singh and Ram (2014) investigated a three-state system with two 
subsystems in series under distinctive types of failure and two types of restoration.  G. Gokhan et al. (2016) developed a new 
technique for estimating the reliability of consecutive k-out-of-n: F systems using a logical approach. Ibrahim Yusuf et al. 
(2018) investigated the operational reliability metrics of linear sequential 2-out-of-4 systems coupled to a 2-out-of-4 supporting 
device. Singh et al. (2020) analyzed a complex system in a degraded state by the use of Laplace transform via supplementary 
variables, and the traditional reliability measures were computed for different types of failures and copula repair approaches. 
A computer-based test (CBT) model system was studied by Singh et al. (2020), via a copula linguistics repair approach thru 
computing performance for different values of system parameters. Praveen, P. K, (2021), examined the performance of 
multistate computer network systems in series configuration employing copula repair.  
         Dhruv Raghav et al. (2021) examined reliability measures of the complex system in combinations of two subsystems in 
a series configuration and a copula repair scheme. Singh et al. (2022) have analyzed a complex system with n degraded states 
with different types of failure and copula repair. Niaki and Yaghoubi (2021) used an exact technique and a closed-form to 
forecast the reliability and mean time to failure (MTTF) of a 1-out-of-n: G, cold standby system with imperfect switching. 
Recently Abbas Bin Jibril et al. (2022), and Singh et al. (2022) studied the performance of a complex system in combination 
with subsystems under the k-out-of-n: G scheme and copula repair approach. It has been shown analytically that when copula 
repair was employed the system performance was found better than general repair. 
 

• Description of the model 
There is widespread literature on system performance evaluations thru the traditional measures for repairable systems, in which 
most of the five units are taken into the studies. Treating the above discussion in view, in this paper, the authors have examined 
the performance of a complex system having three subsystems in a series arrangement. The first subsystem consists of n units 
and employs the k-out-of-n: G policy. The second subsystem comprises three indistinguishable units and operates on a 2-out-
of-3: G scheme, whereas the third subsystem only has one unit. A switching device controls the first two subsystem units, and 
a switching failure is viewed as a complete failure. There will be four different types of states in the system: perfect, minor 
degraded, major degraded, and entirely failed. To restore failed states, two distinct types of repairs are used: general repair 
together with copula repair. This paper is divided up into six sections for organization purposes.  
         In the first section of the paper, referenced "Introduction," the related research work and background knowledge on the 
k-out-of-n: G/F systems, as well as the state transition assumptions and notations used for mathematical formulation, are 
reviewed. Section two is mathematical modeling and solution of the system by use of supplementary variable approach. Third 
section of this paper is analytical part in which availability and reliability measures are deliberated. Fourth section is cost 
analysis and the fifth section is MTTF assessment corresponding to failure rates of the subsystem. The final section six 
encompasses a conclusion, results discussion and behavior of system for future studies. 
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• State Transition Diagram of Model: 

 
FIGURE 1 

STATE CONVERSION DIAGRAM OF THE MODE. 

By the probability arguments, the following states are possible as; {S0, S1, S2, S3, ......, S10, presented in the state transition 
diagram, can be categorized as the set of states A, B, C, D, denoted as; 
A= Set of perfect states = "S0",  
B= Set of minor degraded states = {S1, S2, S5}, 
C= Set of major degraded states= {S3, S6}, 
D= complete failed states= {S4, S7, S8, S9, S10}. 

State Description in detail 
State State description 

S0 
The state S0 is a perfect state in which the system is in operational mode with 
all subsystems and switching devices in a perfectly working state with 
probability P0(0) =1. 

S1 
The state S0 is a minor degraded state with good working efficiency due to the 
working policy imposed on it.  

S2 
In-state S2 the system is also a minor degraded state after failure of (k-1) unit 
of subsystem 1, as work policy is k-out-of-n: G have imposed on it. The state 
is under repair via general repair. 

S3 
This state is a major degraded state of system operation due to the failure of 
the k unit of subsystem 1. General repair is employed to repair the failed unit. 

S4 
 Due to the failure of the (k+1) unit in subsystem 1, it is in a completely failed 
state. The copula repair is used to fix the problem. 

S5 
Under the operational scheme implemented as 2-out-of-3: G, this signifies a 
minor degraded state due to the failure of one unit in subsystem 2.  

S6 
It is a major degraded state due to the failure of two units of subsystem 2 under 
the work policy for the subsystem. 

S7 
Due to the complete failure of subsystem 2, state S7 is a complete failure state. 
The system is being repaired, and the Gumbel-Hougaard family copula repair 
policy is being used to do it. 

S8 

 Due to the complete failure of subsystem 3, state S8 is a failed state.                                                                                             

𝑆𝑆9& 𝑆𝑆10 

 
Due to switch failure in subsystem 1 and subsystem 2, the states S9 and S10 
completely failed. 
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• Assumptions used for the study of the model:  

The following under-mentioned assumption is taken during the study of the model. 
1. The system is firstly in the state S0, in which all subsystems and switching devices are in pristine condition, with 
probability P0(0) =1. 
2. The partial failure degrades the proficiency of the system but did not stop functioning until it goes beyond working policy 
k-out-of-n: G 
3. A complete failure state stops the system's operation.  
4. General distribution is used to repair partially failed states, but copula distribution is used to repair complete failure. 
5. All failure rate is constant and follows an exponential distribution. 
6. At least k units are required to be functioning to be the subsystem 1 operative. 
7. Repaired system units work like new and repairing does not damage anything. 

TABLE 1 
 NOMENCLATURE OF SYSTEM VARIABLES AND NOTATIONS 

t On the time scale, there is a time variable. 
s Laplace transform variable. 

𝜆𝜆1 /𝜆𝜆2/𝜆𝜆3/𝜆𝜆𝑆𝑆1/𝜆𝜆𝑆𝑆2 Failure rates for subsystem 1/2/3/ switch subsystem1/ switch 
subsystem 2 

𝜑𝜑1(𝑥𝑥)/ 
𝜑𝜑2 (x)/ Repair rates of units of subsystem1/ subsystem 2. 

𝜇𝜇0(x): Repair rate for all complete failed states of the system, i. e., 
S4, S7, S8, S9, S10. 

P0(t): The probability that the system is in the perfect state is S0. 

𝑃𝑃�(𝑠𝑠): It is a notation of Laplace transformation of state transition P 
(t). 

𝑃𝑃𝑖𝑖(x, t): For i=1 to 10, the probability that a system is in state Si; the 
system is under repair and the elapsed repair time is x, t. 

Ep(t): This represents the predictable profit thru the interval [0, t). 

𝐾𝐾1 /𝐾𝐾2: 
In the time interval [0, t) respectively, K1/K2 revenue/service 
cost per unit time. 

𝜇𝜇0(x): 

According to the Gumbel-Hougaard family copula, joint 

probability function (from failed state S j to good state S0) is 

defined as; for 1 ≤ 𝜃𝜃 ≤ ∞,𝐶𝐶𝜃𝜃 (𝑢𝑢1(𝑥𝑥),  u2(𝑥𝑥)) = exp[𝑥𝑥𝜃𝜃 +

{log𝜑𝜑(𝑥𝑥)}𝜃𝜃]1/𝜃𝜃, u1 = φ(x), and u2 = e -λx, θ is a parameter. 

MATHEMATICAL MODELLING OF THE SYSTEM 

If the system is in the state S0 at any time t and will remain in that state in time [t, t + Δt], it must not move to any other state, 
and if it is in another failed state, it must return to S0 after repair. With the current mathematical model in state transition figure 
1, the following state equations can be derived via probability constraints: figure 1: 

𝑆𝑆0: �
𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑛𝑛𝜆𝜆1 + 𝜆𝜆𝑆𝑆1 + 𝜆𝜆𝑆𝑆2 + 3𝜆𝜆2 + 𝜆𝜆3� 𝑃𝑃0(𝜕𝜕) =  � 𝜑𝜑1(𝑥𝑥)𝑃𝑃1(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥 +

∞

0
� 𝜑𝜑2(𝑥𝑥)𝑃𝑃5(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥 +
∞

0
 + � 𝜇𝜇0(𝑥𝑥)𝑃𝑃7(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥 +

∞

0
 

∫ 𝜇𝜇0(𝑥𝑥)𝑃𝑃8(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥 +∞
0  ∫ 𝜇𝜇0(𝑥𝑥)𝑃𝑃9(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∞

0  +∫ 𝜇𝜇0(𝑥𝑥)𝑃𝑃10(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∞
0                     (1) 

𝑆𝑆1: � 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝑛𝑛 − (𝑘𝑘 − 1)�𝜆𝜆1 + 𝜆𝜆𝑆𝑆1 + 𝜆𝜆𝑆𝑆2 + 𝜑𝜑1(𝑥𝑥)�𝑃𝑃1(𝑥𝑥, 𝜕𝜕) = 0                                                 (2)      

𝑆𝑆2: � 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑛𝑛 − 𝑘𝑘)𝜆𝜆1 + 𝜆𝜆𝑆𝑆1 + 𝜆𝜆𝑆𝑆2 + 𝜑𝜑1(𝑥𝑥)�𝑃𝑃2(𝑥𝑥, 𝜕𝜕) = 0                                                          (3)  

    S3: � ∂
∂t

+ ∂
∂x

+ (n − (k + 1))λ1 + λS1 + λS2 + φ1(x)�P3(x, t)=0                                                     (4)  

 
   S4: � ∂

∂t
+ ∂

∂x
+ μ0(x)�P7(x, t) = 0                        (5) 
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S5: � ∂
∂t

+ ∂
∂x

+ 2λ2 + λ3 + λS1 + λS2 + φ2(x)�           P5(x, t) = 0                                                         (6) 

 

S6:�
∂
∂t +

∂
∂x + λ2 + λ3 + λS1 + λS2 + φ2(x)�P6(x, t) = 0                                          (7) 

S7: � ∂
∂t

+ ∂
∂x

+ μ0(x)�P7(x, t) = 0                       (8) 

S8: � ∂
∂t

+ ∂
∂x

+ μ0(x)�P8(x, t) = 0                       (9)  

S9: � ∂
∂t

+ ∂
∂x

+ μ0(x)�P9(x, t) = 0                     (10) 

S10: � ∂
∂t

+ ∂
∂x

+ μ0(x)�P10(x, t) = 0                 (11) 

Equations for Boundary conditions: 

𝑃𝑃1(0, 𝜕𝜕) = 𝑛𝑛𝜆𝜆1𝑃𝑃0(𝜕𝜕),𝑃𝑃2(0, 𝜕𝜕) = 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)𝜆𝜆12𝑃𝑃0(𝜕𝜕),𝑃𝑃3(0, 𝜕𝜕) = 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘)𝜆𝜆13𝑃𝑃0(𝜕𝜕), 
𝑃𝑃4(0, 𝜕𝜕) = 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘)(𝑛𝑛 − 1 − 𝑘𝑘)𝜆𝜆14𝑃𝑃0(𝜕𝜕),𝑃𝑃5(0, 𝜕𝜕) = 3𝜆𝜆2𝑃𝑃0(𝜕𝜕), ),(6),0(),(6),0( 0

3
270

2
26 tPtPtPtP λλ ==

𝑃𝑃8(0, 𝜕𝜕) = 𝜆𝜆3(1 + 3𝜆𝜆2 + 6𝜆𝜆22)𝑃𝑃0(𝜕𝜕), 𝑃𝑃9(0, 𝜕𝜕) = 𝜆𝜆𝑆𝑆1[(1 + 𝑛𝑛𝜆𝜆1 + 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)𝜆𝜆12 +  𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘)𝜆𝜆13 + (3𝜆𝜆2 +
6𝜆𝜆22)]𝑃𝑃0(𝜕𝜕), 𝑃𝑃10(0, 𝜕𝜕) = 𝜆𝜆𝑆𝑆2[(1 + 𝑛𝑛𝜆𝜆1 + 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)𝜆𝜆12 +      𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘)𝜆𝜆13 + (3𝜆𝜆2 + 6𝜆𝜆22)]𝑃𝑃0(𝜕𝜕) (12) 
 
Initial condition: P0(0)=1, Pj(x,0=0 for j=1,2,….10) 

• Solution of the Model  

Taking the Laplace transform of the equation (1) – (11) with the help of the Initial condition i.e., 𝑃𝑃0(0) = 1 and other state 
transition probability at 𝜕𝜕 = 0 are zero, and using Laplace transform as;  𝐿𝐿[𝑃𝑃0(𝜕𝜕)] = 𝑃𝑃�0(𝑠𝑠) and 𝐿𝐿��́�𝑃0(𝜕𝜕)� = 𝑠𝑠𝑃𝑃�0(𝑠𝑠)− 𝑃𝑃0(0) one 
can obtain the equations as; 
�𝑠𝑠 + 𝑛𝑛𝜆𝜆1 + 𝜆𝜆𝑆𝑆1 + 𝜆𝜆𝑆𝑆2 + 3𝜆𝜆2 + 𝜆𝜆3�𝑃𝑃0(𝑠𝑠)∫ 𝜑𝜑1(𝑥𝑥)𝑃𝑃1(𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑥𝑥 +∞

0 ∫ 𝜑𝜑2(𝑥𝑥)𝑃𝑃5(𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑥𝑥 +∞
0 ∫ 𝜇𝜇0(𝑥𝑥)𝑃𝑃4(𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑥𝑥∞

0 +

∫ μ0(x)P7(x, s)dx +∞
0 ∫ μ0(x)P8(x, s)dx +∞

0      ∫ μ0(x)P9(x, s)dx +∞
0 ∫ μ0(x)P10(x, s)dx∞

0      (13)   
 

�s + ∂
∂x

+ (n − k + 1)λ1 + λS1 + λS2 + φ1(x)�P1(x, s) = 0          (14) 

�s + ∂
∂x

+ (n − k)λ1 + λS1 + λS2 + φ1(x)�P2(x, s) = 0                 (15) 

�s + ∂
∂x

+ (n − k− 1)λ1 + λS1 + λS2 + φ1(x)�P3(x, s) = 0         (16) 

�𝑠𝑠 +
𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜇𝜇0(𝑥𝑥)�𝑃𝑃4(𝑥𝑥, 𝑠𝑠) = 0                     (17) 

�𝑠𝑠 + 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 2𝜆𝜆2 + 𝜆𝜆3 + 𝜆𝜆𝑆𝑆1 + 𝜆𝜆𝑆𝑆2 + 𝜑𝜑2(𝑥𝑥)�𝑃𝑃6(𝑥𝑥, 𝑠𝑠)    (18) 

�𝑠𝑠 + 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜆𝜆2 + 𝜆𝜆3 + 𝜆𝜆𝑆𝑆1 + 𝜆𝜆𝑆𝑆2 + 𝜑𝜑2(𝑥𝑥)�𝑃𝑃6(𝑥𝑥, 𝑠𝑠)           (19)
 

�𝑠𝑠 +
𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜇𝜇0(𝑥𝑥)�𝑃𝑃7(𝑥𝑥, 𝑠𝑠) = 0                       (20)

 

�𝑠𝑠 +
𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜇𝜇0(𝑥𝑥)�𝑃𝑃8(𝑥𝑥, 𝑠𝑠) = 0                        (21)
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�𝑠𝑠 +
𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜇𝜇0(𝑥𝑥)�𝑃𝑃9(𝑥𝑥, 𝑠𝑠) = 0                       (22) 

�𝑠𝑠 +
𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝜇𝜇0(𝑥𝑥)�𝑃𝑃10(𝑥𝑥, 𝑠𝑠) = 0                    (23) 

Laplace transform of Boundary conditions: 

𝑃𝑃1(0, 𝑠𝑠) = 𝑛𝑛𝜆𝜆1𝑃𝑃0(𝑠𝑠),  𝑃𝑃2(0, 𝑠𝑠) = 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)𝜆𝜆12𝑃𝑃0(𝑠𝑠), 
𝑃𝑃3(0, 𝑠𝑠) = 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘)𝜆𝜆13𝑃𝑃0(𝑠𝑠), 

𝑃𝑃4(0, 𝑠𝑠) = 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘)(𝑛𝑛 − 1 − 𝑘𝑘)𝜆𝜆14𝑃𝑃0(𝑠𝑠), 

𝑃𝑃5(0, 𝑠𝑠) = 3𝜆𝜆2𝑃𝑃0(𝑠𝑠), ),(6),0(),(6),0( 0
3
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2
26 sPsPsPsP λλ == 𝑃𝑃8(0, 𝑠𝑠) = 𝜆𝜆3(1 + 3𝜆𝜆2 + 6𝜆𝜆22)𝑃𝑃0(𝑠𝑠) 

𝑃𝑃9(0, 𝑠𝑠) = 𝜆𝜆𝑆𝑆1[(1 + 𝑛𝑛𝜆𝜆1 + 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)𝜆𝜆12 + 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘)𝜆𝜆13 + (3𝜆𝜆2 + 6𝜆𝜆22)]𝑃𝑃0(𝑠𝑠), 
𝑃𝑃10(0, 𝑠𝑠) = 𝜆𝜆𝑆𝑆2[(1 + 𝑛𝑛𝜆𝜆1 + 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)𝜆𝜆12 +  𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘)𝜆𝜆13 + (3𝜆𝜆2 + 6𝜆𝜆22)]𝑃𝑃0(𝑠𝑠)                                       (24) 

 

Solving equation (11)- (24) with implication of equation (24) and notations. 

𝑆𝑆𝜑𝜑(𝑥𝑥) = 𝜑𝜑(𝑥𝑥)𝑒𝑒−∫ 𝜑𝜑(𝜕𝜕)  ∞
0  , 𝑆𝑆�̅�𝜑(𝑠𝑠) = ∫ 𝑒𝑒−𝑠𝑠𝜕𝜕𝑆𝑆𝜑𝜑(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0  

𝑃𝑃0(𝑠𝑠) = 1
𝐷𝐷(𝑠𝑠)

                                                             (25) 

𝑃𝑃1(𝑠𝑠) = 𝑛𝑛𝜆𝜆1
𝐷𝐷(𝑠𝑠)

�1−𝑆𝑆𝜑𝜑1(𝑠𝑠+(𝑛𝑛+1−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)
(𝑠𝑠+(𝑛𝑛+1−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)

�               (26) 

𝑃𝑃2(𝑠𝑠) = 𝑛𝑛(𝑛𝑛+1−𝑘𝑘)𝜆𝜆12

𝐷𝐷(𝑠𝑠)
�1−𝑆𝑆𝜑𝜑1(𝑠𝑠+(𝑛𝑛−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)

(𝑠𝑠+(𝑛𝑛−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)
�       (27) 

  𝑃𝑃3(𝑠𝑠) = 𝑛𝑛(𝑛𝑛+1−𝑘𝑘)(𝑛𝑛−𝑘𝑘)𝜆𝜆13

𝐷𝐷(𝑠𝑠) �1−𝑆𝑆𝜑𝜑1�𝑠𝑠+(𝑛𝑛−1−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2�
�𝑠𝑠+(𝑛𝑛−1−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2�

�  (28) 

𝑃𝑃�4(𝑠𝑠) = 𝑛𝑛(𝑛𝑛+1−𝑘𝑘)(𝑛𝑛−𝑘𝑘)(𝑛𝑛−1−𝑘𝑘)
𝐷𝐷(𝑠𝑠)

�
1−�̅�𝑆µ0(𝑠𝑠)

𝑠𝑠
�               (29) 

𝑃𝑃�5(𝑠𝑠) =  3𝜆𝜆2
𝐷𝐷(𝑠𝑠)

�1−�̅�𝑆𝜑𝜑1(𝑠𝑠+2𝜆𝜆2+𝜆𝜆3+𝜆𝜆𝑠𝑠1+𝜆𝜆𝑠𝑠2)
�𝑠𝑠+2𝜆𝜆2+𝜆𝜆3+𝜆𝜆𝑠𝑠1+𝜆𝜆𝑠𝑠2�

�               (30) 

𝑃𝑃�6(𝑠𝑠) =
6λ 2

2

𝐷𝐷(𝑠𝑠)
 �1−�̅�𝑆𝜑𝜑1(𝑠𝑠+𝜆𝜆2+𝜆𝜆3+𝜆𝜆𝑠𝑠1+𝜆𝜆𝑠𝑠2)

�𝑠𝑠+𝜆𝜆2+𝜆𝜆3+𝜆𝜆𝑠𝑠1+𝜆𝜆𝑠𝑠2�
�               (31) 

𝑃𝑃�7(𝑠𝑠) =  
6λ 2

3

𝐷𝐷(𝑠𝑠)
 �
1−�̅�𝑆µ0(𝑠𝑠)

𝑠𝑠
�                                      (32) 

𝑃𝑃�8(𝑠𝑠) =
(1+3𝜆𝜆2+6λ 2

2
)

𝐷𝐷(𝑠𝑠)
 �
1−�̅�𝑆µ0(𝑠𝑠)

𝑠𝑠
�                             (33) 

𝑃𝑃�9(𝑠𝑠) = 𝜆𝜆𝑠𝑠1  A
𝐷𝐷(𝑠𝑠)

  �
1−�̅�𝑆µ0(𝑠𝑠)

𝑠𝑠
�                                         (34) 

𝑃𝑃�10(𝑠𝑠) = 𝜆𝜆𝑠𝑠2  A
𝐷𝐷(𝑠𝑠)

  �
1−�̅�𝑆µ0(𝑠𝑠)

𝑠𝑠
�                                      (35) 

here, 

A= [1+𝑛𝑛𝜆𝜆1 + 𝑛𝑛(𝑛𝑛 + 1 − 𝑘𝑘)λ 1

2
+ n(n + 1 − k)(n − k)λ 1

3
+ (3𝜆𝜆2 + 6λ 2

2
)] 

The sum of Laplace transforms the state transition probabilities where the system is in an operational state i.e.   𝑆𝑆1, 𝑆𝑆2,𝑆𝑆3,𝑆𝑆4, 
𝑆𝑆4,𝑆𝑆5, 𝑆𝑆6 

𝑃𝑃�𝑢𝑢𝑢𝑢(𝑠𝑠) = ∑𝑃𝑃�𝑖𝑖(𝑠𝑠), i = 0,  1, 2,3,4,5, 6  
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Pup(s) = 1
D(s)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 + nλ1

s+(n+1−k)λ1+λS1+λS2+φ1
+

n(n+1−k)λ12

s+(n−k)λ1+λS1+λS2+φ1
+

n(n+1−k)(n−k)λ13

s+(n+1−k)λ1+λS1+λS2+φ1
+

3λ2
s+2λ2+λ3+λS1+λS2+φ2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                         (36) 

ANALYTIC STUDY OF THE MODEL 

• Availability analysis for copula repair: 

When the repairs follow a copula distribution. 

Setting: 𝑆𝑆𝜇𝜇0(𝑠𝑠) = 𝑒𝑒𝜕𝜕𝑢𝑢[𝜕𝜕𝜃𝜃+{𝑙𝑙𝑙𝑙𝑙𝑙𝜑𝜑(𝜕𝜕)}𝜃𝜃]1/𝜃𝜃

𝑠𝑠+𝑒𝑒𝜕𝜕𝑢𝑢[𝜕𝜕𝜃𝜃+{𝑙𝑙𝑙𝑙𝑙𝑙𝜑𝜑(𝜕𝜕)}𝜃𝜃]1/𝜃𝜃,  𝑆𝑆𝜙𝜙𝑖𝑖(𝑠𝑠) = 𝜙𝜙𝑖𝑖
𝑠𝑠+𝜙𝜙𝑖𝑖

,   i= 1, 2 and using the following values for failure and repair rates; 

𝜆𝜆1 = 0.01,𝜆𝜆2 = 0.02,𝜆𝜆3 = 0.03,𝜆𝜆𝑠𝑠1 = 0.03,    𝜆𝜆𝑠𝑠2 = 0.025,  𝜑𝜑1 = 1, 𝜑𝜑2 = 1,  𝜇𝜇0 = 2.7183 in equation (36) one can obtain 
the different expressions of system performance of repairable system by using invers Laplace transform.  

The system performance via Availability analysis for copula repair for different configurations for subsystem 1. 

A= Case 1. (For n=50, k=20) 
Availability =0.03654668e -2.83376991t - 0.0794794e -1.765916379t +0.002167158x10-3 e-1.145599662t+1.0413024e -0.108013972t)- 
0.195467243x10-4 e-1.345000000t -0.00435345e -1.105000000t - 0.0009880893828e -1.355000000t              (37a)                                                                   

B=Case 2. (For n=50, k=30)  
Availability= -0.35742045x10-3e-1.1050000t+0.03711598e-2.83250103t -0.06770939481e-1.698305734t+0.9089538204x10-3e-

1.138137934t+1.030143323e -0.08435523964t -0.1980816780x10-5e-1.245000000t -0.994202898x10 -4 e-1.255000000t        (37b) 
 
Case 3. (For n=50, k=40) 
Availability=-0.201289705x10-3e -1.1050000t -0.22091558x10-5 e -1.1450000t+ 
0.03759025170e-2.831402377t- 0.053774778e-1.634510832t +0.1227352268x10-3e -1.129123034t+1.016368080e-0.058263750t - 
0.102787745510-3e -1.1550000t                                (37c) 

 We get various values of availability as presented in Table 2a & Figure 2a for different values of time-variable from the 
expressions 37a, 37b, and 37c respectively 

TABLE 2A 
COPULA REPAIR CONCERNING TIME 

Time 
 

Availability 
n=50, k=20 

Availability 
n=50, k=30 

Availability 
n=50, k=40 

0 1.00 1.000 1.000 
1 0.92 0.94 0.95 
2 0.84 0.87 0.90 
3 0.75 0.80 0.85 
4 0.68 0.74 0.81 
5 0.61 0.68 0.76 
6 0.55 0.62 0.72 
7 0.49 0.57 0.68 
8 0.44 0.53 0.64 
9 0.39 0.48 0.60 
10 0.35 0.44 0.57 

 



Journal of Industrial Engineering International, 18(3), September 2022 

 

 

 J     I     E     I  
 

42 

 
 

 
 
• Availability for the general repair 

  When all repair follows general distribution keeping all failure rates as the same for copula repair one can obtain the 
following expressions presented in (38a, 38b& 38c); 

 
Case 1. (For n=50, k=20) configuration 
Availability= -0.038102549e-1.849791754t+ 0.92499186x10-2e-1.1507647t+0.03366445e -1.030607578t+0.9958058773e-0.1038358801t -
0.5161828687x10-3e -1.105000000t -0.19838109x10-5e -1.345000t -0.995378x10-4e -1.355000t      (38a) 

 Case 2. (For n=50, k=30) configuration  
Availability= -0.410155582x10-3e -1.105000000t -0.100308133x10-3e -1.255000000t -0.01902305767e -1.788410401t +0.3465143945x10-2e 

1.140183652t+0.02714107622-1.025127447t+0.9889293185e -0.08127850010t -0.2017299039x10-5e -1.245000000t                         (38b) 

Case 3. (For n=50, k=40) configuration 
Availability=-0.217002676x10-3e-1.105000000t -0.104138308x10-3e --1.155000000t +0.212089482x10-2e-1.731617561t+0.33449849x10-3e-

1.129316329t+0.01841740590e -1.017792478t+ 0.9794506176e(-0.05627363150t) -0.227595499x10-5e -1.145000000t                    (38c)  
TABLE 2B 

AVAILABILITY VARIATION RESPECT OF TIME FOR GENERAL REPAIR 
Time 

 
Availability 
n=50, k=20 

Availability 
n=50, k=30 

Availability 
n=50, k=40 

0 1.00 1.00 1.00 
1 0.91 0.92 0.93 
2 0.81 0.84 0.88 
3 0.73 0.78 0.83 
4 0.66 0.72 0.78 
5 0.59 0.66 0.74 
6 0.53 0.61 0.70 
7 0.48 0.56 0.66 
8 0.43 0.52 0.62 
9 0.39 0.48 0.59 
10 0.35 0.44 0.56 
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FIGURE 2B 

AVAILABILITY VARIATION CORRESPONDS TO THE TIME FOR GENERAL REPAIR 

• Reliability: When all repair is assumed to be zero then the system performance is proclaimed as a reliability metric. 
Taking all repairs in equation (36) to zero i.e.,  𝜑𝜑1 = 𝜑𝜑2 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 µ0(𝑥𝑥) = 0 and for some values of failure rates as; 
 𝜆𝜆1 = 0.01, 𝜆𝜆2 = 0.02, 𝜆𝜆3 = 0.03,  𝜆𝜆𝑠𝑠1 = 0.03,   𝜆𝜆𝑠𝑠2 = 0.025, we get distinct values of Reliability for different values of 
time t = 0,1,2,3,4,5,6,7,8,9,10 unit of time, as shown in table 2c and picture 2c. 

Case 1. (For n=50, k=20)  
R1(t)= 0.16981e-0.14500t +1.6129e -0.36500t +0.0096429e -0.11500t - 0.80813e -0.67500t +0.015625e-0.35500t+0.00015152e -0.34500t                                  

(39a) 

Case 2. (n = 50, k = 30)  
R2(t)=0.16981e -0.14500t +1.2195e -0 .26500t +0.11628x10-3e - 0.24500) +0.96429 10-2e -   0.11500t -0.41099e -0.67500t +0.011905e -.25500t   

(39b) 

Case 3. (n = 50, k = 40)  
R3 (t)= 0.96154x10-2 e- 0.15500t + 0.16991e -0 .14500t +0.9642x10-2 e -0.11500t -0.1695e -0.67500t +0.9803e -0.16500     (39c) 

TABLE 2C 
RELIABILITY TABLE FOR T= 0,1,2, 3…..10 

Time t 
 

R1(t) 
n=50, k=20 

R2 (t) 
=50, k=30 

R3(t) 
n=50, k=40 

0 1.00 1.00 1.00 
1 0.87 0.89 0.91 
2 0.71 0.75 0.80 
3 0.56 0.62 0.70 
4 0.43 0.50 0.60 
5 0.32 0.40 0.52 
6 0.24 0.32 0.44 
7 0.19 0.26 0.38 
8 0.14 0.20 0.32 
9 0.11 0.16 0.27 
10 0.08 0.13 0.23 
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• Profit Analysis: 

If revenue generation K1 and service cost K2 are both per unit time in the interval [0, t], the expected profit E p (t) can be 
determined using the formula in equation (40). For the set of the parametric values of failure and repairs rates 𝜆𝜆1 = 0.01,𝜆𝜆2 =
0.02,𝜆𝜆3 = 0.03,𝜆𝜆𝑠𝑠1 = 0.03,    𝜆𝜆𝑠𝑠2 = 0.025,  𝜑𝜑1, = 1, 𝜑𝜑2 = 1,  𝜇𝜇0 = 2.7183 and assuming that the repair facility is always 
available then from equation (36), one can get the expression for an expected profit Ep (t) by operations of the system in interval 
[0, 𝜕𝜕) as presented in the equation (41) from Maple Software output. 

𝐸𝐸𝑢𝑢(𝜕𝜕) = 𝐾𝐾1 ∫ 𝑃𝑃𝑢𝑢𝑢𝑢(𝜕𝜕)𝑑𝑑𝜕𝜕𝜕𝜕
0 − 𝐾𝐾2𝜕𝜕                          (40) 

• Cost Analysis for copula repair  

Let's presume the repair follows two types of distributions: General and Gumbel Hougaard family copula distributions. 
Consequently, using fixed values of failure rates as in the availability analysis section, we get the following expression using 
equation (36) in the formula in the cost function Ep (t).  

EP(t)= K1[0.18216x10-3e -1.1050t +0.19294x10-5e -1.1450t -0.013276e -2.8314t  +0.032900e -1.6345t -0.10870x10-3e -1.1291t -17.444 e -

0.058264t +  0.88994x10 -4 e -1.1550 t+17.42  ...(41)                        

Table 3a is obtained by setting K1= 1 and K2 = 0.6, 0.4, 0.2, and 0 and varying time t the profit variation concerning time t is 
depicted in Figure 3a. 

TABLE 3A 
 EXPECTED PROFIT FOR COPULA REPAIR   

Time t Expected Profit K1=1, and K2 
K2=0.6 K2=0.4 K2=0.2 K2=0 

0 0 0 0 0 

1 0.372 0.572 0.772 0.972 
2 0.699 1.099 1.499 1.899 
3 0.977 1.577 2.177 2.777 
4 1.205 2.005 2.805 3.605 
5 1.387 2.387 3.387 4.387 
6 1.525 2.725 3.925 5.125 
7 1.621 3.021 4.421 5.821 
8 1.678 3.278 4.878 6.478 
9 1.697 3.497 5.297 7.097 
10 1.682 3.682 5.682 7.682 
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FIGURE 3A 

EXPECTED PROFIT GRAPH FOR COPULA REPAIR 

• Cost Analysis for General repair  

Assuming the repair follows only general distribution than for fixed values of failure rates as are in availability analysis section 
via the use of equation (36) in the formula in cost function 𝐸𝐸𝑢𝑢(𝜕𝜕) we have following expression.   

EP(t)= K1[0.010637e-1.7884t -0.0030391e -1.1402t -0.026476e-1.0251t -12.167e -0.081279t +0.79927x10-4e-1.2550t +0.16203x10-5e-1.2450t + 
0.37118x10-3e - 1.1050t   +12.186]  - K2t      (42) 

Using different values of time t in equation (42) as; t = 0,1, 2, 3….10 one can obtain the values of expected profit presented 
in table 3b and the corresponding figure 3b 

TABLE 3B 
EXPECTED PROFIT IN [0, T), T = 0,1, 2, 3….10 

Time t Expected Profit K1=1, and K2 
K2=0.6 K2=0.4 K2=0.2 K2=0 

0 0 0 0 0 
1 0.360 0.560 0.760 0.960 
2 0.641 1.041 1.441 1.841 
3 0.850 1.450 2.050 2.650 
4 0.995 1.795 2.595 3.395 
5 1.082 2.082 3.082 4.082 
6 1.115 2.315 3.515 4.715 
7 1.200 2.498 3.898 5.298 
8 1.036 2.636 4.236 5.836 
9 0.931 2.731 4.531 6.331 
10 0.788 2.788 4.788 6.788 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3B 
EXPECTED PROFIT GRAPH FOR GENERAL REPAIR 
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• Mean time to failure (MTTF) Analysis  

In system operation, the (MTTF) is a very crucial measure with predicts which subsystem or unit needs to be much more 
sensitive to take care of. It is the average time in which a system fails and depends on subsystem failure rates. Mathematically 
taking all repair rates i.e., ϕ1, ϕ2, and μ0, to zero in equation (36) and taking the limit of s tend to zero one can get an expression 
of MTTF corresponding to failure rates. i.e., 𝐹𝐹 = lim

𝑠𝑠→0
𝑃𝑃�𝑢𝑢𝑢𝑢(𝑠𝑠), with all repair zero. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = 1
𝐾𝐾

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 + 𝑛𝑛𝜆𝜆1

(𝑛𝑛+1−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)

+ 𝑛𝑛(𝑛𝑛+1−𝑘𝑘)(𝑛𝑛−𝑘𝑘)𝜆𝜆13

(𝑛𝑛+1−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)
+

3𝜆𝜆2
2𝜆𝜆2+𝜆𝜆3+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)

+

6𝜆𝜆22

(𝑛𝑛+1−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)
+ 𝑛𝑛(𝑛𝑛+1−𝑘𝑘)𝜆𝜆12

(𝑛𝑛−𝑘𝑘)𝜆𝜆1+𝜆𝜆𝑆𝑆1+𝜆𝜆𝑆𝑆2)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

         (43) 

 
Here, 𝐾𝐾 = 𝑛𝑛𝜆𝜆1 + 3𝜆𝜆2 + 𝜆𝜆3 + 𝜆𝜆𝑆𝑆1 + 𝜆𝜆𝑆𝑆2  
We can find the values of the MTTF corresponding to the failure rate λ1 by setting 𝜆𝜆2 = 0.02,𝜆𝜆3 = 0.03,𝜆𝜆𝑠𝑠1 = 0.03,    𝜆𝜆𝑠𝑠2 =
0.025 and varying λ1 from 0.01, with an increment of 0.01 in each next value up to reach 0.1, in equation (43) the variation of 
MTTF concerning failure λ1   is perceived in column 2 of Table 4. 
Setting, 𝜆𝜆1 = 0.01,𝜆𝜆3 = 0.03,𝜆𝜆𝑠𝑠1 = 0.03,    𝜆𝜆𝑠𝑠2 = 0.025 and varying λ2 from 0.01, with an increment of 0.01 in each next 
value up to reach 0.1, in equation (43) one may obtain the column 3 of table 4 reveals fluctuations of MTTF concerning the 
failure rate λ2. 

Setting, 𝜆𝜆1 = 0.01,𝜆𝜆2 = 0.02,𝜆𝜆𝑠𝑠1 = 0.03,    𝜆𝜆𝑠𝑠2 = 0.025  and varying λ3 from 0.01, with an increment of 0.01 in each next 
value up to reach 0.1, in equation (43) one may obtain the values of the MTTF corresponding to the failure rate λ3. The 
fluctuation of MTTF for the failure rate  λ3 is seen in column 4 of Table 4. 
Setting, 𝜆𝜆1 = 0.01,𝜆𝜆2 = 0.02,𝜆𝜆3 = 0.03,    𝜆𝜆𝑠𝑠2 = 0.025, and varying 𝜆𝜆𝑠𝑠1 from 0.01, with increment of 0.01 in each next value 
up to reach 0.1, in equation (43) we can obtain the values of MTTF corresponding to the failure rate  𝜆𝜆𝑠𝑠1. Column 5 of Table 4 
shows the variation of MTTF to the failure 𝜆𝜆𝑠𝑠1 . 

Setting, 𝜆𝜆1 = 0.01,𝜆𝜆2 = 0.02,𝜆𝜆2 = 0.03,𝜆𝜆𝑠𝑠1 = 0.03, and varying  ,𝜆𝜆𝑠𝑠2  from 0.01, with increment of 0.01 in each next value 
up to reach 0.1, in equation (43 ) one may obtain  the values of the MTTF corresponding to the failure rate 𝜆𝜆𝑠𝑠2 . Column 6 of 
Table 4 shows the variation of MTTF concerning the failure𝜆𝜆𝑠𝑠2 . 

TABLE 4 
THE VARIATION OF MTTF 

Failure 
Rates 

MTTF 
λ1 

MTTF 
λ2 

MTTF 
λ3 

MTTF 
𝜆𝜆𝑠𝑠1 

MTTF 
𝜆𝜆𝑠𝑠2 

0.01 7.079 7.081 7.460 
8.137 7.844 

0.02 4.558 7.079 7.260 7.571 7.317 

0.03 3.362 7.008 7.079 7.079 6.856 

0.04 2.670 6.904 6.913 6.646 6.449 

0.05 2.220 6.782 6.761 
6.263 6.087 

0.06 1.905 6.653 6.619 5.920 5.763 

0.07 1.672 6.523 6.486 5.613 5.471 

0.08 1.493 6.394 6.362 
5.336 5.207 

0.09 1.351 6.268 6.244 5.085 4.967 

0.1 1.236 6.147 6.132 
4.855 4.748 
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FIG 4 

MTTF VARIATION CONCERNING FAILURE RATES 

RESULT DISCUSSION AND CONCLUSIONS 

When failure rates are fixed at different levels, Figure.4.1 demonstrates how the availability of the repairable system varies 
over time. For the specific presumed values of failure rates like; λ1 = 0.01, λ2 = 0.02, λ3 = 0.03, λs1 = 0.03,    λs2 =
0.025,  φ1, = 1, φ2 = 1,  μ0 = 2.7183   the system's availability drops and eventually stabilizes at zero after a sufficient 
period. As a result, as evidenced by the graphical reflection of the model, one may reliably forecast the future behavior of the 
system at any time for any given set of parametric values. Availability of system for the configuration k-out-of-n: G for 
subsystem 1 has computed in tables 2a, 2b for the set of values n= 50 and k= 20, 30 & 40 for copula repair and general repair. 
It is observed from keeping the fixed value of n=50 and varying k as 20, 30 40 the availability decreases in both the cases of 
copula repair and general repair. It is also noticed that system performance is better when the repair follows two types of 
distribution. 
        The fluctuation in the reliability of a non-repairable system is shown in Figure 2c, and the system performance is relatively 
low when compared to a repairable system. When revenue cost per unit time K1 is fixed at 1, service costs K=0.6, 0.4, 0.2, and 
0 and t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are varied, revenue cost per unit time K2=0.6, 0.4, 0.2, and 0 accordingly. Tables 3a and 
3b show the predicted profit from the system's operation using the same set of system variables. It shows that the predicted 
profit grows over time. Finally, it's worth noting that when service expenses rise, profit falls. In general, when low service costs 
are compared to high service costs, the predicted profit is significant. 
       When the other parameters are kept constant, figure.4 depicts the system's mean-time-to-failure MTTF for variations in 
𝜆𝜆1, 𝜆𝜆2,𝜆𝜆3,𝜆𝜆𝑠𝑠1 ,  𝑎𝑎𝑛𝑛𝑑𝑑 𝜆𝜆𝑠𝑠2 respectively. The variation in MTTF corresponds to the failure rate corresponding to failure 
rate𝜆𝜆1, 𝜕𝜕ℎ𝑒𝑒 trend is decreasing, and after this value becomes constant for higher values of failure rate. The MTTF respects 
failure rate 𝜆𝜆2  &𝜆𝜆3,   and 𝜆𝜆𝑠𝑠1&   𝜆𝜆𝑠𝑠2 very concomitantly. 
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APPENDIX 1 

Mathematical Modelling of the Model:  
If the system at any time t is in the state 𝑆𝑆0 and will remain in the state 𝑆𝑆0 in time [ t, t + ∆ t] is that it must not move to any 
other state and if it is in other states after failing then it must approach to 𝑆𝑆0 after repair. If the failure rate from 𝑆𝑆0 to S1 is  
 nλ 1 ∆ 𝜕𝜕, then not going to 𝑆𝑆1 state (1 – nλ 1 ∆ 𝜕𝜕).                                    
i.e.,  𝑃𝑃0 (t +∆ 𝜕𝜕) = ( 1 – nλ 1 ∆ 𝜕𝜕) ( 1-𝜆𝜆𝑠𝑠1 ∆ t)( 1− 3λ 2 ∆ 𝜕𝜕)                   

                     �𝟏𝟏 − λ 𝟑𝟑 ∆ 𝒕𝒕 �  �𝟏𝟏 − λ 𝑠𝑠2
 ∆ 𝒕𝒕 �𝑃𝑃0 (t )  +  ∫ 𝝋𝝋𝟏𝟏 (𝐱𝐱)∞

𝟎𝟎  𝑷𝑷𝟏𝟏(𝒙𝒙, 𝒕𝒕)𝑑𝑑𝑥𝑥 ∆ 𝒕𝒕 + ∫ 𝝋𝝋𝟐𝟐 (𝐱𝐱)∞
𝟎𝟎  𝑷𝑷𝟓𝟓(𝒙𝒙, 𝒕𝒕)𝑑𝑑𝑥𝑥 ∆ 𝒕𝒕  

                   +∫ 𝜇𝜇0
∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃7(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃8(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃9(𝑥𝑥, 𝜕𝜕) 𝑑𝑑𝑥𝑥∆  

       P0 (t + Δt) = (1− (nλ1 + 𝜆𝜆𝑠𝑠1  + λ2 + λ3 + 𝜆𝜆𝑠𝑠2) 𝑃𝑃0 (t) + [(multiplication of two failure rates) (Δt) + (multiplication of three failure    

rates) (Δt)3 + .. .. .. +…….. ] 𝑃𝑃0(t)+∫ 𝜑𝜑1 (x)∞
0  𝑃𝑃1(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥 ∆ 𝜕𝜕 + ∫ 𝜑𝜑2 (x)∞

0  𝑃𝑃5(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥 ∆ 𝜕𝜕 + ∫ 𝜇𝜇0
∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃7(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 +

∫ 𝜇𝜇0
∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃8(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃9(𝑥𝑥, 𝜕𝜕) 𝑑𝑑𝑥𝑥∆ 𝜕𝜕 

 
P0(t+Δt)− P0(t)

Δt
 = − (nλ1 + 𝜆𝜆𝑠𝑠1  + λ2 + λ3 +  𝜆𝜆𝑠𝑠2) 𝑃𝑃0(t)+ [ (multiplication of two failure rates) (Δt) + (multiplication of three failure 

rates) (Δt)3 + . . . ] 𝑃𝑃0(t)+∫ ɸ1
∞
0 (x)P1(x, t)dx Δt+∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃9(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃8(𝑥𝑥, 𝜕𝜕) 𝑑𝑑𝑥𝑥∆ 𝜕𝜕 +

                  ∫ 𝜑𝜑2(𝑥𝑥)𝑃𝑃5(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + ∫ 𝜇𝜇0
∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃7(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 +  ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃10(𝑥𝑥, 𝜕𝜕)∞

0  𝑑𝑑𝑥𝑥∆ 𝜕𝜕 
lim
Δt→0

P0(t+Δt)− P0(t)
Δt

  = − (nλ1 + 𝜆𝜆𝑠𝑠1  + λ2 + λ3 + 𝜆𝜆𝑠𝑠1  ) 𝑃𝑃0(t) + [ (multiplication of two failure rates) (Δt)2 

          + (multiplication of three failure rates) (Δt)3 + .. .. ..  ] 𝑃𝑃0(t)+ ∫ 𝝋𝝋𝟏𝟏 (𝐱𝐱)∞
𝟎𝟎  𝑷𝑷𝟏𝟏(𝒙𝒙, 𝒕𝒕)𝑑𝑑𝑥𝑥 ∆ 𝒕𝒕 + ∫ 𝝋𝝋𝟐𝟐 (𝐱𝐱)∞

𝟎𝟎  𝑷𝑷𝟓𝟓(𝒙𝒙, 𝒕𝒕)𝑑𝑑𝑥𝑥 

∆ 𝒕𝒕 + ∫ 𝜇𝜇0
∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃7(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃8(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃9(𝑥𝑥, 𝜕𝜕) 𝑑𝑑𝑥𝑥∆ 𝜕𝜕 

 
∂
∂t𝑃𝑃𝑃𝑃

(𝜕𝜕) − �+𝑛𝑛λ1 + 𝜆𝜆𝑠𝑠1 + 𝜆𝜆𝑠𝑠2 + 3λ2 + λ3�𝑃𝑃𝑃𝑃(𝜕𝜕)

= � 𝝋𝝋𝟏𝟏 (𝐱𝐱)
∞

𝟎𝟎

 𝑷𝑷𝟏𝟏(𝒙𝒙, 𝒕𝒕)𝑑𝑑𝑥𝑥 ∆ 𝒕𝒕 + � 𝝋𝝋𝟐𝟐 (𝐱𝐱)
∞

𝟎𝟎

 𝑷𝑷𝟓𝟓(𝒙𝒙, 𝒕𝒕)𝑑𝑑𝑥𝑥 ∆ 𝒕𝒕 + � 𝜇𝜇0
∞

𝑙𝑙
(𝑥𝑥)𝑃𝑃7(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕

+ � 𝜇𝜇0
∞

𝑙𝑙
(𝑥𝑥)𝑃𝑃8(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + � 𝜇𝜇0

∞

𝑙𝑙
(𝑥𝑥)𝑃𝑃9(𝑥𝑥, 𝜕𝜕) 𝑑𝑑𝑥𝑥∆ 𝜕𝜕 

 𝐹𝐹𝐹𝐹𝑛𝑛𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹, � 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑛𝑛λ1 + 𝜆𝜆𝑠𝑠1 + 𝜆𝜆𝑠𝑠2 + 3λ2 + λ3� 𝑃𝑃𝑃𝑃(𝜕𝜕) = ∫ 𝝋𝝋𝟏𝟏 (𝐱𝐱)∞
𝟎𝟎  𝑷𝑷𝟏𝟏(𝒙𝒙, 𝒕𝒕)𝑑𝑑𝑥𝑥 ∆ 𝒕𝒕 + ∫ 𝝋𝝋𝟐𝟐 (𝐱𝐱)∞

𝟎𝟎  𝑷𝑷𝟓𝟓(𝒙𝒙, 𝒕𝒕)𝑑𝑑𝑥𝑥 ∆ 𝒕𝒕 +

∫ 𝜇𝜇0
∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃7(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃8(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥∆ 𝜕𝜕 + ∫ 𝜇𝜇0

∞
𝑙𝑙 (𝑥𝑥)𝑃𝑃9(𝑥𝑥, 𝜕𝜕) 𝑑𝑑𝑥𝑥∆ 𝜕𝜕                                           (1) 
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