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Abstract 

Many practical decision-making problems involve a significant level of data uncertainty. In such a case, modeling the 

uncertainty involved is critical to making informed decisions. The set-based robust optimization approach is one of the most 

efficient techniques for finding optimal decisions in problems involving uncertain data. The main concern with this technique 

is over-conservatism. This drawback has been widely investigated, and several robust formulations have been developed in the 

literature to deal with it. However, research is still ongoing to obtain effective formulations to handle uncertainty. In this study, 

we derive a robust counterpart formulation for an uncertain linear programming problem under a new uncertainty set that is 

defined based on a pairwise comparison of perturbation variables. The performance of the proposed robust formulation is 

evaluated using numerical studies and in terms of different performance metrics. For this purpose, robust counterpart models 

corresponding to the production-mix sample problems are solved at different protection levels. Then, for each solution obtained, 

violation probability is calculated using a Monte-Carlo simulation approach. The results revealed that the proposed method 

outperforms the existing ones.   

 

Keywords - perturbation variables; robust counterpart optimization; uncertain coefficients; uncertainty set 

 

INTRODUCTION 

In a real-life environment, due to factors such as the random nature of the input parameters and measurement errors, most 

problems involve data that contain uncertainties [1]. Uncertainty in input data can lead to a significant deviation in the problem’s 

solution. Ben-Tal et al. [2] demonstrated that the solution to an optimization problem often shows high sensitivity to changes 

in the input data. Hence, ignoring uncertainty may lead to a solution that is not optimal or even feasible. The set-based robust 

optimization approach provides a powerful modeling framework for solving decision-making problems under uncertainty. This 

technique works in two steps. First, an uncertainty set is defined in the uncertain space to determine the values that uncertain 

coefficients can take. Secondly, the best solution is obtained in such a way that feasibility is guaranteed for every realization 
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of the uncertain parameters in the defined set. The set-based robust optimization approach is widely used to deal with various 

uncertain problems in different fields, such as energy management of power plants and electric vehicles [3]-[9], finance [10, 

11], supply chain management [12]-[15], transportation [16, 17], statistics and estimation [18]-[20], machine learning [21, 22], 

production planning [23, 24], etc. The robust model proposed by Soyster [25] is one of the earliest studies in this field. Soyster 

[25] assumed that the actual value of each uncertain coefficient varies independently within a bounded interval. He then 

proposed a robust model to obtain the best solution that remains feasible for every possible realization of the uncertain 

parameters. Despite ensuring the solution’s robustness, Soyster’s approach is highly conservative and significantly reduces the 

quality of the solution. 

To reduce the over-conservatism of Soyster’s approach, El-Ghaoui and Lebert [26], El-Ghaoui et al. [27], and Ben-Tal and 

Nemirovski [28]-[30] independently tried to improve the solution quality by slightly decreasing robustness. They introduced 

robust nonlinear formulations for uncertain optimization problems. Specifically, Ben-Tal and Nemirovski [28]-[30] proposed 

an ellipsoidal uncertainty set followed by robust models to address uncertainty in linear and quadratic programming problems. 

Bertsimas and Sim [31, 32] further defined a polyhedral set in the uncertain space whose size could be adjusted using a budget 

parameter. They then derived a robust model with the flexibility to control the robustness level of the solution accordingly. The 

advantage of the polyhedral uncertainty set over the ellipsoidal uncertainty set is that its corresponding robust counterpart 

model is linear, making it computationally less challenging to solve.  

Li et al. [1] introduced several other uncertainty sets (i.e., pure polyhedral; pure ellipsoidal; adjustable box; combined 

polyhedral, ellipsoidal, and interval set), and then, based on each of these sets, they derived a robust counterpart model for LP 

and MILP problems. Mulvey et al. [33] investigated a situation where uncertain coefficients could have discrete values. In 

other words, they described the input data by a set of scenarios for their value and developed a robust model to obtain a solution 

that is the best with respect to all the scenarios for the input parameters. 

Previous studies have assumed that input data are independently uncertain. However, in practice, uncertain parameters 

may be correlated. In this regard, Bertsimas and Sim [32] investigated a situation in which perturbation in the actual value of 

each coefficient is due to several known sources of uncertainty. They assumed that the perturbation at each coefficient’s actual 

value is a linear combination of the impact rates of the uncertainty sources. They then proposed a robust counterpart model for 

such a situation. The main concern of Bertsimas’s approach is that it is difficult and often impossible to identify all effective 

sources of uncertainty. To overcome the drawback of Bertsima’s approach, Pachamanova [34] considered a situation in which 

the covariance matrix of uncertain parameters is available, but the uncertainty sources are unknown. She then incorporated the 

covariance matrix in the definition of the uncertainty set and derived a robust formulation accordingly.  

Jalilvand-Nejad et al. [35] and Daneshvari and Shafaei [36] also examined uncertain linear problems with unknown sources 

of uncertainty. Each of these papers incorporated the correlation matrix of uncertain parameters in the definition of the 

uncertainty set and derived a robust formulation accordingly. The latter model was shown to outperform the former. In this 

paper, we first define a new uncertainty set for a case where uncertain coefficients are independent of each other. We then 

derive a robust counterpart model for the general form of an uncertain linear optimization problem. Monte-Carlo simulations 

are also performed to compare the performance of the proposed robust formulation with the most prominent robust counterpart 

models in the literature in terms of different performance measures. Within the above context, the new contributions of this 

study are as follows:  

 To propose a new uncertainty set and derive a robust counterpart model accordingly. 

 To compare the performance of the proposed model with the most prominent robust counterpart models introduced in the 

literature in terms of the violation probability, the objective function value, and the price of robustness criterion. 

Fig.1 shows the details of the research process adopted in this paper. 

       The rest of the paper is organized as follows. Section 2 discusses the background and related works in detail. The definition 

of the proposed uncertainty set and the corresponding robust model are presented in Section 3. In Section 4, the proposed model 

is validated by Monte-Carlo simulations, and the results of the performance evaluation metrics are presented. The paper 

concludes with a summary of results and an outlook toward future investigations in section 5. 
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Define a new uncertainty set and derive a linear robust model accordingly

Design sample problems to evaluate the performance of the proposed model

Find the optimal solution of different robust models corresponding to each 

sample problem at different protection levels

Set up the simulation environment to calculate the violation probability of 

each solution obtained

Analyze the results

Compare the results of the proposed model with the existing methods using 

different performance measures
 

FIGURE 1  
RESEARCH PROCESS 

 

LITERATURE REVIEW 

As mentioned earlier, in set-based robust optimization, how each robust counterpart model deals with the uncertainty of the 

input data depends on the uncertainty set on which the model is based. So far, several uncertainty sets have been proposed for 

addressing data uncertainty. In the following, we review the most prominent ones. Consider the general form of an uncertain 

linear problem, which can be described as follows: 

 

        max    𝑢𝑇𝑦
subject to 

   �̃�𝑦 ≤ 𝑣 
       𝑒 ≤ 𝑦 ≤ 𝑑

          (1)  

 

Here �̃�𝑚×𝑛 is a rectangular matrix representing the actual values of the constraint coefficients, 𝑣𝑚×1 is a column vector 

representing the right-hand side, 𝑢𝑛×1 is a column vector representing the objective function coefficients, 𝑦𝑛×1 is a column 

vector representing the variables, 𝑒𝑛×1 and 𝑑𝑛×1 are column vectors representing the lower and upper bounds of variables 

respectively, and the superscript T stands for transpose. 

In model (1), it is assumed that uncertainty exists only on the left-hand side of the constraints. Note that if the objective 

uncertainty or right-hand side uncertainty exists in the problem, (1) can be reformulated as (2) so that the uncertainty reappears 

only on the left-hand side of the constraints [32]: 

 
      max     𝑥
subject to

             𝑥 − �̃�𝑇𝑦 ≤ 0

               𝑦0�̃� + �̃�𝑦 ≤ 0
     𝑦0 = −1

        𝑒 ≤ 𝑦 ≤ 𝑑

         (2) 

 

Each entry �̃�𝑖𝑗 of the matrix �̃� in (1) denotes the actual value of the coefficient and is defined by �̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗 �̂�𝑖𝑗 , where 𝑟𝑖𝑗  

indicates the nominal value of the coefficient, �̂�𝑖𝑗  represents the maximum positive perturbation, and 𝜉𝑖𝑗  is the perturbation 

variable that has an unknown but symmetric distribution and varies in the interval [−1, 1]. 
The robust formulation proposed by Soyster [25] was one of the earliest works in robust optimization. Soyster proposed 

the following robust model for (1): 
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 max     𝑢𝑇𝑦                                        
subject to                                                    

∑𝑟𝑖𝑗𝑦𝑗
𝑗

+∑ �̂�𝑖𝑗𝑤𝑗
𝑗∈𝑇𝑖

≤ 𝑣𝑖          ∀𝑖

−𝑤𝑗 ≤ 𝑦𝑗 ≤ 𝑤𝑗             ∀𝑗 ∈ 𝑇𝑖         

𝑒 ≤ 𝑦 ≤ 𝑑                                         
𝑤 ≥ 0                                                

      (3) 

 

Soyster’s model allows all the perturbation variables (i.e., 𝜉𝑖𝑗s) to vary in the interval [−1, 1]; therefore, the solution obtained 

remains feasible for every possible value of the uncertain coefficients. It should be noted that there is an inverse relationship 

between the robustness of a solution and its quality. Thus, though Soyster’s approach ensures the robustness of the solution, it 

is too conservative and significantly decreases the solution quality. 

Ben-Tal and Nemirovski [28] argued that it is unlikely that all uncertain coefficients have their extreme simultaneously. 

Thus, to decrease the over-conservatism of Soyster’s approach, they tried to improve the solution’s quality by slightly reducing 

the size of the uncertainty set. To this end, they defined an ellipsoidal set in the uncertain space, which is formulated as follows: 

 

𝑈 = {�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗  | ∑ 𝜉𝑖𝑗
2

𝑗∈𝑇𝑖
≤ Ωi

2    ∀𝑖, |𝜉𝑖𝑗| ≤ 1   ∀𝑖, ∀𝑗 ∈ 𝑇𝑖}        (4) 

 

Where 𝑇𝑖  indicates the index set of the uncertain coefficients of 𝑖𝑡ℎ constraint, and Ωi is a parameter that is used to adjust the 

size of the uncertainty set (it should be noted that Ωi ≤ (|𝑇𝑖|)
1
2⁄ , where |𝑇𝑖| is the number of elements in the set 𝑇𝑖). 

Based on the ellipsoidal uncertainty set, Ben-Tal and Nemirovski proposed the following robust formulation for (1): 

 

         max     𝑢𝑇𝑦                                                                                           
   subject to                                                                                                 

∑𝑟𝑖𝑗𝑦𝑗
𝑗

+∑  �̂�𝑖𝑗𝑤𝑖𝑗 +

𝑗∈𝑇𝑖

Ωi√∑( �̂�𝑖𝑗𝑡𝑖𝑗)
2

𝑗∈𝑇𝑖

≤ 𝑣𝑖           ∀𝑖

         −𝑤𝑖𝑗 ≤ 𝑦𝑗 − 𝑡𝑖𝑗 ≤ 𝑤𝑖𝑗              ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                                    

           𝑒 ≤ 𝑦 ≤ 𝑑                                                                                          
         𝑊 ≥ 0                                                                                                

          (5) 

 

In the above model, the robustness of the solution can be controlled by changing the value of the parameter Ω. It is worth noting 

that the ellipsoidal-based robust formulation is a nonlinear programming problem. Nonlinear programming problems are 

inherently more challenging to solve than linear ones; therefore, a linear formulation would be more desirable for any practical 

problem. 

As already mentioned, the main drawback of the ellipsoidal uncertainty set is that the corresponding robust formulation is 

nonlinear. To overcome this problem, Bertsimas and Sim [32] defined a new set in the uncertain space such that the 

corresponding robust counterpart model is linear. In addition, the level of the solution’s robustness can also be adjusted using 

a budget parameter. The polyhedral uncertainty set defined by Bertsimas and Sim is formulated as follows: 

 

𝑈 = {�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗  | ∑ |𝜉𝑖𝑗|𝑗∈𝑇𝑖
≤ Γi    ∀𝑖, |𝜉𝑖𝑗| ≤ 1   ∀𝑖, ∀𝑗 ∈ 𝑇𝑖}         (6) 

 

Where 𝑇𝑖  indicates the index set of the uncertain coefficients of the 𝑖𝑡ℎ constraint, and 𝛤𝑖  represents a parameter used to adjust 

the size of the uncertainty set (note that Γi ≤ |𝑇𝑖|, where |𝑇𝑖| represents the number of elements in the set 𝑇𝑖). Based on the 

above set, Bertsimas and Sim derived the following robust counterpart model for (1): 
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     max     𝑢𝑇𝑦                                                                                                         
subject to                                                                                                                           

∑𝑟𝑖𝑗𝑦𝑗
𝑗

+∑ 𝑝𝑖𝑗 +

𝑗∈𝑇𝑖

Γi𝑄𝑖 ≤ 𝑣𝑖           ∀𝑖                                                           

 𝑄𝑖 + 𝑝𝑖𝑗 ≥  �̂�𝑖𝑗𝑤𝑗              ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                                                                    

−𝑤𝑗 ≤ 𝑦𝑗 ≤ 𝑤𝑗                  ∀𝑗                                                                                 

𝑒 ≤ 𝑦 ≤ 𝑑               
𝑤𝑗 ≥ 0             ∀𝑗      

𝑄𝑖 ≥ 0             ∀𝑖     
        𝑝𝑖𝑗 ≥ 0       ∀𝑖, ∀𝑗 ∈ 𝑇𝑖  

                                                                                                

(7) 

 

In model (7), parameter Γ adjusts the solution’s robustness. That is, the larger the value of Γ is, the more robust the solution is, 

and vice versa. Li et al. [1] further defined an adjustable-box set in the uncertain space as follows: 

 

𝑈 = {�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗  | |𝜉𝑖𝑗| ≤ Ψi     ∀𝑖, ∀𝑗 ∈ 𝑇𝑖}            (8)  

 

Where 𝑇𝑖  represents the index set of the uncertain coefficients of the 𝑖𝑡ℎ constraint, and Ψ𝑖 indicates a parameter that is used to 

adjust the size of the uncertainty set (note that 0 ≤ Ψ𝑖 ≤ 1). For each constraint 𝑖, the box uncertainty set covers all perturbation 

variables that vary in the interval [−Ψ𝑖 , Ψ𝑖]. The corresponding robust formulation, under the adjustable box set, is as follows: 

 

     max     𝑢𝑇𝑦      
subject to                  

                                          ∑𝑟𝑖𝑗𝑦𝑗
𝑗

+Ψi [∑  �̂�𝑖𝑗𝑤𝑗
𝑗∈𝑇𝑖

] ≤ 𝑣𝑖           ∀𝑖 

                            −𝑤𝑗 ≤ 𝑦𝑗 ≤ 𝑤𝑗                    ∀𝑗 ∈ 𝑇𝑖   

𝑒 ≤ 𝑦 ≤ 𝑑          
𝑊 ≥ 0     

                                 (9) 

  

Li et al. [1] also introduced several other uncertainty sets (i.e., pure polyhedral; pure ellipsoidal; and combined polyhedral, 

ellipsoidal, and interval set), which are discussed below. 

The mathematical formulation of the pure polyhedral uncertainty set is as follows: 

 

𝑈 = {�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗  | ∑ |𝜉𝑖𝑗|𝑗∈𝑇𝑖
≤ Γi    ∀𝑖}                 (10) 

 

It should be noted that the pure polyhedral set is not suitable for a problem with bounded uncertainty. Because the corresponding 

robust model either provides the same solution as Bertsimas’s approach or gives a conservative solution that is also robust to 

perturbations outside the uncertain space. Hence, the pure polyhedral set is suitable for situations where uncertainty is 

unbounded. The robust model based on the pure polyhedral set is shown below. 

 

     max     𝑢𝑇𝑦                                                              
subject to                                                                         

∑𝑟𝑖𝑗𝑦𝑗
𝑗

+ Γi𝑄𝑖 ≤ 𝑣𝑖           ∀𝑖                            

 𝑄𝑖 ≥  �̂�𝑖𝑗𝑤𝑗              ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                             

−𝑤𝑗 ≤ 𝑦𝑗 ≤ 𝑤𝑗       ∀𝑗                                         

 𝑒 ≤ 𝑦 ≤ 𝑑               
𝑤𝑗 ≥ 0             ∀𝑗      

𝑄𝑖 ≥ 0             ∀𝑖       

                                          

(11) 
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Li et al. [1] defined the pure ellipsoidal uncertainty set as follows: 

 

𝑈 = {�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗  | ∑ 𝜉𝑖𝑗
2

𝑗∈𝑇𝑖
≤ Ωi

2    ∀𝑖}        (12) 

 

Note that, like the previous set, the pure ellipsoidal set is not also suitable for a case where uncertainty is bounded. Because the 

corresponding robust model either provides the same solution as Ben-Tal’s approach or gives a conservative solution that is 

also robust to perturbations outside the uncertain space. The robust model based on the pure ellipsoidal set is mathematically 

formulated as follows: 

 

 

 max     𝑢𝑇𝑦                                                                               
subject to                                                                                          

∑𝑟𝑖𝑗𝑦𝑗
𝑗

+ Ωi√∑( �̂�𝑖𝑗𝑦𝑗)
2

𝑗∈𝑇𝑖

≤ 𝑣𝑖           ∀𝑖                      

𝑒 ≤ 𝑦 ≤ 𝑑                                                   

         (13) 

 

Li et al. [1] also defined a combined set in the uncertain space, which is formulated as follows: 

 

𝑈 = {�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗  | ∑ 𝜉𝑖𝑗
2

𝑗∈𝑇𝑖
≤ Ωi

2  ∀𝑖, ∑ |𝜉𝑖𝑗|𝑗∈𝑇𝑖
≤ Γi  ∀𝑖, |𝜉𝑖𝑗| ≤ 1  ∀𝑖, ∀𝑗 ∈ 𝑇𝑖   }      (14) 

   

 

They derived the following robust model based on the above set: 

 

         max     𝑢𝑇𝑦                                                                                           
   subject to                                                                                                 

∑𝑟𝑖𝑗𝑦𝑗
𝑗

+∑ 𝑝𝑖𝑗 +

𝑗∈𝑇𝑖

Γi𝑄𝑖 + Ωi√∑( �̂�𝑖𝑗𝑤𝑖𝑗)
2

𝑗∈𝑇𝑖

≤ 𝑣𝑖           ∀𝑖

−𝑝𝑖𝑗 ≤ 𝑡𝑖𝑗 ≤ 𝑝𝑖𝑗              ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                                             

−𝑧𝑖 ≤  �̂�𝑖𝑗𝑦𝑗 − 𝑡𝑖𝑗 − 𝑤𝑖𝑗 ≤ 𝑧𝑖              ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                      

         

 𝑒 ≤ 𝑦 ≤ 𝑑                                                                                              
𝑤𝑖𝑗 ≥ 0                ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                                                               

𝑄𝑖 ≥ 0                ∀𝑖                                                                             
𝑧𝑖 ≥ 0                ∀𝑖                                                                             
𝑝𝑖𝑗 ≥ 0                ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                                                              

 (15) 

 

It is worth noting that (15) is a nonlinear optimization problem. As we know, nonlinear problems are inherently more 

challenging to solve than linear ones. In the sequel, we review the robust models derived based on the assumption that uncertain 

coefficients are correlated. One of the earliest studies to derive robust formulations for problems with uncertain correlated 

parameters was conducted by Bertsimas and Sim [32]. They assumed that there were several known sources of uncertainty that 

impacted all the input data. In other words, they considered the uncertainty model as follows: 

 

�̃�𝑖𝑗 = 𝑟𝑖𝑗 + ∑ �̃�𝑖𝑢ℎ𝑢𝑗       ∀𝑗 ∈ 𝑇𝑖
𝑢∈𝑈𝑖

                       (16) 

 

Where 𝑈𝑖 is the set of uncertainty sources that impact the data in row 𝑖, and �̃�𝑖𝑢 is a variable with an unknown symmetric 

distribution that varies in the interval [−1, 1]. Under the above definition of uncertainty, Bertsimas and Sim presented the 

following robust model: 
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     max     𝑢𝑇𝑦                                                                                    
subject to                                                                                             

∑𝑟𝑖𝑗𝑦𝑗
𝑗

+ ∑ 𝑡𝑖𝑢 +

𝑢∈𝑈𝑖

Γ𝑖𝑧𝑖 ≤ 𝑣𝑖           ∀𝑖                               

 𝑧𝑖 + 𝑡𝑖𝑢 ≥ 𝑥𝑖𝑢                ∀𝑖, ∀𝑢 ∈ 𝑈𝑖                                        

−𝑥𝑖𝑢 ≤ ∑ ℎ𝑢𝑗
𝑗∈𝑇𝑖

𝑦𝑗 ≤ 𝑥𝑖𝑢                ∀𝑖, ∀𝑢 ∈ 𝑈𝑖                      

𝑒 ≤ 𝑦 ≤ 𝑑                         
𝑥𝑖𝑢 ≥ 0       ∀𝑖, ∀𝑢 ∈ 𝑈𝑖   
𝑧𝑖 ≥ 0          ∀𝑖                  
𝑡𝑖𝑢 ≥ 0        ∀𝑖, ∀𝑢 ∈ 𝑈𝑖

                                                     

(17) 

 

As mentioned earlier, one of the main limitations of the above approach is that it is difficult to identify all the possible sources 

of uncertainty that impact the data. To overcome this drawback, another class of models has been proposed in the literature. 

Two key assumptions underpin these models. First, uncertainty sources are unknown; second, a correlation/covariance matrix 

of uncertain parameters is available. The research conducted by Pachamanova [34] was one of the earliest studies based on 

these assumptions. Pachamanova defined the uncertainty set as follows: 

 

𝑈 = {�̃� | ‖Σ−
1

2 (𝑉𝑒𝑐(�̃�) − 𝑉𝑒𝑐(�̂�))‖
1
≤ Γ}             (18)  

 

Where �̃� is the matrix of actual values of the parameters, �̂� indicates the matrix of expected values of the parameters, Σ indicates 

the covariance matrix of the uncertain parameters, and finally 𝑉𝑒𝑐(�̃�) and 𝑉𝑒𝑐(�̂�) indicate column vectors that are produced 

by stacking the rows of �̃� and �̂� on top of one another, respectively. Pachamanova then derived the following robust model 

accordingly: 

 

max     𝑢𝑇𝑦
subject to                  

                 

                𝑌𝑖
𝑇𝑉𝑒𝑐(�̂�) + 𝑢𝑖 . Γ ≤ 𝑣𝑖        ∀𝑖

          𝑢𝑖 . 𝑒𝑇 ≥ Σ 
1

2 𝑌𝑖                   ∀𝑖  

           𝑢𝑖 . 𝑒𝑇 ≥ −Σ 
1

2 𝑌𝑖                ∀𝑖   

          𝑢𝑖 ≥ 0                                ∀𝑖  

         (19)  

 

Where 𝑒(𝑚.𝑛)×1 is a vector of one, and (𝑌𝑖)(𝑚.𝑛)×1 represents a vector includes y in entries (𝑖. 𝑛 − 𝑛 + 1) through (𝑖. 𝑛), and 0 

in all other places. The robust formulation of Jalilvand-Nejad et al. [35] is another model based on the availability of the 

correlation matrix of uncertain parameters and the unknown sources of uncertainty. They defined the uncertainty set as follows: 

 

𝑈 = {�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗  | |𝜉𝑖𝑗| + ∑ [(1 − (
𝑛−Γi

𝑛−1
) |𝜌𝑖𝑗𝑘|) |𝜉𝑖𝑘|]𝑘≠𝑗 ≤ Γi      ∀𝑖, ∀𝑗 ∈ 𝑇𝑖}  (20)  

 

Where 𝜌𝑖𝑗𝑘  indicates the correlation coefficient between the uncertain parameters �̃�𝑖𝑗 and �̃�𝑖𝑘. Jalilvand-Nejad et al. then derived 

the following robust model by incorporating the correlation matrix in the definition of the uncertainty set: 



Journal of Industrial Engineering International, 18(2), June 2022 

 

 

130 

 J     I     E     I  

 

max     𝑢𝑇𝑦                                                                                                               
subject to                                                                                                                           

∑𝑟𝑖𝑗𝑦𝑗
𝑗

+∑Γ𝑖  𝑝𝑖𝑗 +

𝑗

∑𝑧𝑖𝑗
𝑗

≤ 𝑣𝑖           ∀𝑖                                                           

𝑝𝑖𝑗 +∑[(1 − (
𝑛 − Γ𝑖
𝑛 − 1

) |𝜌𝑖𝑗𝑘|) 𝑝𝑖𝑘]

𝑘≠𝑗

≥  �̂�𝑖𝑗  𝑥𝑗      ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                               

𝑒 ≤ 𝑦 ≤ 𝑑                                                                                                                    
−𝑥𝑗 ≤ 𝑦𝑗 ≤ 𝑥𝑗          ∀𝑗  

  𝑧𝑖𝑗 ≥ 0             ∀𝑖, ∀𝑗    

𝑝𝑖𝑗 ≥ 0             ∀𝑖, ∀𝑗  

𝑥𝑗 ≥ 0               ∀𝑗         

                                                                                                

(21) 

 

Daneshvari and Shafaei [36] further defined another set in the uncertain space based on the correlation matrix of uncertain 

parameters. In particular, they considered the uncertainty set as follows: 

 

𝑈 =

{
 
 

 
 

�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗|

∑  |𝜉𝑖𝑗| (1 − 𝛽Γ𝑖 − (2 − 2|𝜌𝑖𝑗𝑘|)(1 − 𝛽))

𝑘≠𝑗

≥

∑(2|𝜌𝑖𝑗𝑘| − 1) (|𝜉𝑖𝑘| − 𝛽Γ𝑖 − (1 − 𝛽)(2 − 2|𝜌𝑖𝑗𝑘|)) ,

𝑘≠𝑗

 ∀𝑖, ∀𝑗
}
 
 

 
 

  (22) 

 

Where 𝜌𝑖𝑗𝑘  indicates the correlation coefficient between the uncertain parameters �̃�𝑖𝑗 and �̃�𝑖𝑗 , Γ𝑖 adjusts the solution’s robustness, 

and 𝛽 represents the risk aversion of the decision-maker that varies in the interval [0, 1]. They then derived the following robust 

model accordingly: 

 

max     𝑢𝑇𝑦                                                                                                                            
subject to                                                                                                                                           

       ∑𝑟𝑖𝑗𝑦𝑗
𝑗

+∑∑|𝜌𝑖𝑗𝑘|

𝑘≠𝑗𝑗

(𝛽Γ𝑖 + (1 − 𝛽)|1 − 𝜌𝑖𝑗𝑘|)𝑀𝑖𝑗 +∑𝑁𝑖𝑗
𝑗

+∑Γi 𝑝𝑖𝑗
𝑗

≤ 𝑣𝑖     ∀𝑖

∑(𝛽𝛤𝑖 − 1 + (1 − 𝛽)|1 − 𝜌𝑖𝑗𝑘|)𝑀𝑖𝑗

𝑘≠𝑗

+ 𝑝𝑖𝑗 +                                                                  

∑(1 − (
𝑛 − Γi
𝑛 − 1

) |𝜌𝑖𝑗𝑘|)

𝑘≠𝑗

𝑝𝑖𝑘 −∑|𝜌𝑖𝑗𝑘|𝑀𝑖𝑘 + 𝑁𝑖𝑗
𝑘≠𝑗

≥  �̂�𝑖𝑗  𝑥𝑗      ∀𝑖, ∀𝑗                          

     

𝑒 ≤ 𝑦 ≤ 𝑑                                                                                                                                     
−𝑥𝑗 ≤ 𝑦𝑗 ≤ 𝑥𝑗         ∀𝑗                                                                                                                    

𝑀𝑖𝑗 ≥ 0             ∀𝑗, 𝑗                                                                                                                     

𝑁𝑖𝑗 ≥ 0             ∀𝑗, 𝑗                                                                                                                       

𝑝𝑖𝑗 ≥ 0              ∀𝑗, 𝑗                                                                                                                       

𝑥𝑗 ≥ 0                ∀𝑗                                                                                                                          

(23) 

 

In the next section, first, a new uncertainty set is defined in the uncertain space. Then a new robust formulation for linear 

problems with independent uncertain parameters is derived accordingly. 

THE PROPOSED APPROACH 

In this section, we derive a new robust model for a linear optimization problem with independent uncertain parameters. The 

proposed model could improve the quality of the solution without much impact on its robustness. The details are discussed 

below. 

 Definition of the new uncertainty set 
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As mentioned earlier, it is unlikely that all the uncertain parameters of a problem have their extreme values simultaneously. In 

other words, there are some points in the uncertainty space with a low probability of occurring that their coverage by the 

uncertainty set results in over-conservatism. Therefore, to decrease over-conservatism, the new uncertainty set is defined based 

on a pairwise comparison of perturbation variables. In particular, the proposed uncertainty set is formulated as follows: 

 

 𝑈 = {�̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗  | |𝜉𝑖𝑘| + |𝜉𝑖𝑠| ≤ θi    ∀𝑖, ∀𝑠, 𝑘 ∈ 𝑇𝑖    𝑠 < 𝑘, |𝜉𝑖𝑗| ≤ 1   ∀𝑖, ∀𝑗 ∈ 𝑇𝑖}            (24) 

 

Where 𝑇𝑖  indicates the index set of the uncertain parameters of the 𝑖𝑡ℎ constraint, and θi is a parameter used to adjust the size 

of the uncertainty set (note that 0 ≤ 𝜃𝑖 ≤ 2). The boundaries of the proposed uncertainty set are determined by the following 

constraints: 

 
𝜉𝑖𝑘 − 𝜉𝑖𝑠 ≤ 𝜃𝑖                  ∀𝑖, ∀𝑠, 𝑘 ∈ 𝑇𝑖    𝑠 < 𝑘
−𝜉𝑖𝑘 + 𝜉𝑖𝑠 ≤ 𝜃𝑖               ∀𝑖, ∀𝑠, 𝑘 ∈ 𝑇𝑖    𝑠 < 𝑘
𝜉𝑖𝑘 + 𝜉𝑖𝑠 ≤ 𝜃𝑖                   ∀𝑖, ∀𝑠, 𝑘 ∈ 𝑇𝑖    𝑠 < 𝑘
−𝜉𝑖𝑘 − 𝜉𝑖𝑠 ≤ 𝜃𝑖               ∀𝑖, ∀𝑠, 𝑘 ∈ 𝑇𝑖    𝑠 < 𝑘

|𝜉𝑖𝑗| ≤ 1                           ∀𝑖, ∀𝑗 ∈ 𝑇𝑖                   

             (25) 

 

Defining the uncertainty set, as described above, removes the perturbation vectors with a low probability of occurrence from 

the uncertainty set. Hence, the quality of the solution could be improved without much impact on robustness. Note that if there 

are only two uncertain parameters in a row, the newly defined set and the polyhedral set are identical. 

II. The proposed model 

Here, we derive a robust linear formulation based on the defined uncertainty set for (1). To this end, we first derive a robust 

nonlinear formulation for the problem and then present an equivalent linear model. Consider the general form of an uncertain 

linear programming problem in (1). By defining the uncertainty with �̃�𝑖𝑗 = 𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗 the 𝑖𝑡ℎ constraint of (1) can be 

reformulated as follows: 

 

∑𝑟𝑖𝑗
𝑗∉𝑇𝑖

𝑦𝑗 +∑(𝑟𝑖𝑗 + 𝜉𝑖𝑗  �̂�𝑖𝑗)𝑦𝑗 ≤ 𝑣𝑖
𝑗∈𝑇𝑖

           (26)  

 

Since in the robust counterpart optimization technique under a predefined uncertainty set, we are willing to find a solution that 

guarantees feasibility for every realization of the uncertain parameters in the uncertainty set, so the robust counterpart 

formulation related to the constraint (26) could be defined as follows: 

 

∑𝑟𝑖𝑗𝑦𝑗 + [max
𝛏∈𝑈

(∑ 𝜉𝑖𝑗  �̂�𝑖𝑗
𝑗∈𝑇𝑖

𝑦𝑗)] ≤ 𝑣𝑖
𝑗

            (27) 

 

Consequently, the robust counterpart formulation for model (1) is derived as shown below: 

 

max     𝑢𝑇𝑦                                                                                                                             
subject to                                                                                                                                           

        ∑𝑟𝑖𝑗𝑦𝑗
𝑗

+ max
{𝜁𝑖𝑗 ||𝜉𝑖𝑘|+|𝜉𝑖𝑠|≤𝜃𝑖    ∀𝑠,𝑘∈𝑇𝑖  𝑠<𝑘,|𝜉𝑖𝑗|≤1  ∀𝑗∈𝑇𝑖}

{∑|𝜉𝑖𝑗| �̂�𝑖𝑗
𝑗∈𝑇𝑖

|𝑦𝑗|} ≤ 𝑣𝑖    ∀𝑖

𝑒 ≤ 𝑦 ≤ 𝑑                                                                                                                                   

   (28) 

 

Since the above robust counterpart model is a nonlinear programming problem, we derive an equivalent linear model for it 

using the following theorem. 

Theorem: The robust nonlinear optimization model in (28) can be equivalently recast as the following linear programming 

problem: 
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max     𝑢𝑇𝑦                                                                                 
subject to                                                                                                  

∑𝑟𝑖𝑗𝑦𝑗

𝑛

𝑗=1

+∑ ∑ 𝜃𝑖𝑀𝑖𝑠𝑘

𝑛

𝑘=𝑠+1

+∑𝑄𝑖𝑗

𝑛

𝑗=1

𝑛−1

𝑠=1

≤ 𝑣𝑖   ∀𝑖                        

 ∑𝑀𝑖1𝑘

𝑛

𝑘=2

+ 𝑄𝑖1 ≥ �̂�𝑖1 𝑤1   ∀𝑖                                                           

∑𝑀𝑖𝑠𝑛

𝑛−1

𝑠=1

+ 𝑄𝑖𝑛 ≥ �̂�𝑖𝑛 𝑤𝑛   ∀𝑖                                                           

∑𝑀𝑖𝑠𝑗 + ∑ 𝑀𝑖𝑗𝑘

𝑛

𝑘=𝑗+1

+ 𝑄𝑖𝑗

𝑗−1

𝑠=1

≥ �̂�𝑖𝑗  𝑤𝑗    ∀𝑖, ∀𝑗   𝑗 ≠ 1, 𝑛 

𝑒 ≤ 𝑦 ≤ 𝑑                                                                               
−𝑤𝑗 ≤ 𝑦𝑗 ≤ 𝑤𝑗        ∀𝑗                                                            

𝑀𝑖𝑠𝑘 ≥ 0                  ∀𝑖, ∀𝑠, 𝑘   𝑠 < 𝑘                                   

           

(29)

𝑄𝑖𝑗 ≥ 0                     ∀𝑖, 𝑗                                                        

𝑤𝑗 ≥ 0                      ∀𝑗                                                           
                    

 

  

 

Proof: Let 𝑌∗ denote the optimal solution of model (28), then the protection function of the 𝑖𝑡ℎ constraint is defined as follows: 

 

𝜎𝑖(𝑌
∗, 𝜃𝑖)= max

{𝜁𝑖𝑗 ||𝜉𝑖𝑘|+|𝜉𝑖𝑠|≤𝜃𝑖    ∀𝑠,𝑘∈𝑇𝑖  𝑠<𝑘,|𝜉𝑖𝑗|≤1  ∀𝑗∈𝑇𝑖}
{∑|𝜉𝑖𝑗| �̂�𝑖𝑗
𝑗∈𝑇𝑖

|𝑦𝑗
∗|}        (30) 

 

Where it can be recast as the nonlinear optimization problem in (31): 

 

𝜎𝑖(𝑌
∗, 𝜃𝑖) = max∑|𝜉𝑖𝑗| �̂�𝑖𝑗

𝑗∈𝑇𝑖

|𝑦𝑗
∗|                                   

subject to                                                                                     
|𝜉𝑖𝑠| + |𝜉𝑖𝑘| ≤ 𝜃𝑖       ∀𝑠, 𝑘 ∈ 𝐾𝑖    𝑠 < 𝑘                   

|𝜉𝑖𝑗| ≤ 1                      ∀𝑗 ∈ 𝑇𝑖                                      

(31) 

 

Model (31) can also be transformed into the following linear programming problem by introducing new variables 𝑃𝑖𝑗 = |𝜉𝑖𝑗|: 

 

𝜎𝑖(𝑌
∗, 𝜃𝑖) = max∑ 𝑃𝑖𝑗  �̂�𝑖𝑗

𝑗∈𝑇𝑖

|𝑦𝑗
∗|                                   (32)               

subject to                                                                                                           

𝑃𝑖𝑠 + 𝑃𝑖𝑘 ≤ 𝜃𝑖           ∀𝑠, 𝑘 ∈ 𝑇𝑖    𝑠 < 𝑘                        (33)           

0 ≤ 𝑃𝑖𝑗 ≤ 1               ∀𝑗 ∈ 𝑇𝑖                                           (34)           

 

 

For simplicity and without loss of generality, from here on, we assume that all the coefficients are subject to uncertainty. It 

should be noted that if some of the coefficients have deterministic values, we can consider them uncertain parameters with a 

maximum positive perturbation equal to zero. 

Let 𝑀𝑖𝑠𝑘 and 𝑄𝑖𝑗  be the dual variables corresponding to constraints (33) and (34), respectively, then the dual formulation of the 

sub-problem (32)-(34) is as follows: 
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min   ∑ ∑ 𝜃𝑖𝑀𝑖𝑠𝑘

𝑛

𝑘=𝑠+1

+∑𝑄𝑖𝑗

𝑛

𝑗=1

𝑛−1

𝑠=1

                                             

subject to                                                                                                  

∑𝑀𝑖1𝑘

𝑛

𝑘=2

+ 𝑄𝑖1 ≥ �̂�𝑖1 |𝑦1
∗|                                                    

 ∑𝑀𝑖𝑠𝑛

𝑛−1

𝑠=1

+ 𝑄𝑖𝑛 ≥ �̂�𝑖𝑛 |𝑦𝑛
∗|                                                     

∑𝑀𝑖𝑠𝑗 + ∑ 𝑀𝑖𝑗𝑘

𝑛

𝑘=𝑗+1

+ 𝑄𝑖𝑗

𝑗−1

𝑠=1

≥ �̂�𝑖𝑗  |𝑦𝑗
∗|    ∀𝑗   𝑗 ≠ 1, 𝑛   

           
𝑀𝑖𝑠𝑘 ≥ 0              ∀𝑠, 𝑘     𝑠 < 𝑘                                          
𝑄𝑖𝑗 ≥ 0                 ∀𝑗                                                             

(35) 

 

If the primal sub-problem in (32)-(34) has feasible solutions and a bounded objective function (and so has an optimal solution), 

then so does the dual problem (35). Therefore, according to the strong duality theorem, the objective functions of these two 

problems are equal. Consequently, we can obtain our desired result by substituting 𝜎𝑖(𝑌
∗, 𝜃𝑖) in (28) with the dual problem 

(35). In general, the proposed model could find superior solutions in terms of the violation probability and the objective 

function’s value. In the following, numerical studies are conducted to evaluate the performance of the proposed model. 

NUMERICAL RESULTS 

In this section, we consider a production-mix problem with left-hand side uncertainty to assess the performance of the new 

robust model. The problem is described below. 

I. Production planning problem with uncertain coefficients 

Consider a production-mix problem in which it is aimed to decide on the production quantity of P different products during a 

mid-term scheduling horizon. It is assumed that there are K different machines, and each machine has a certain capacity (i.e., 

the number of hours of processing time) available per period. It is also assumed that the processing time of each product on 

each machine is uncertain. The goal of the problem is to determine the mix of production quantities that maximizes profit while 

respecting the limited capacity of each machine. This uncertain production-mix problem is formulated as follows: 

. 

     max    ∑𝑢𝑗𝑦𝑗

𝑃

𝑗=1

                              

subject to                                            

∑ �̃�𝑖𝑗𝑦𝑗

𝑃

𝑗=1

≤ 𝑣𝑖       𝑖 = 1,2, … , 𝐾

𝑦𝑗 ≥ 0                    𝑗 = 1,2, … , 𝑃

             (36) 

 

Where 𝑢𝑗 denotes the unit profit for product 𝑗, �̃�𝑖𝑗 denotes the actual value of processing time on machine 𝑖 per unit of product 

𝑗, 𝑣𝑖 indicates processing time available per period on machine 𝑖, and 𝑦𝑗 represents the decision variable. 

Note that problem (36) is identical to the one utilized by Jalilvand-Nejad et al. [35], with the difference that the uncertain 

coefficients in this problem are assumed to be uncorrelated. In the following, we use this problem to study the performance of 

the newly derived robust formulation. To do this, we consider 8 sample problems. Table 1 shows the details of the sample 

problems. In these problems, the expected values of processing times and the objective function coefficients are randomly 

generated from uniform distributions with a range of [20, 29] and [50, 79], respectively.  
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        It is also assumed that the available time for each machine is equal to 1500 hours, and the actual values of the processing 

times have a maximum of 10% perturbation around their nominal values. The same level of protection is applied to all the 

constraints. 

 
TABLE 1 

SAMPLE-PROBLEM DETAILS 

Problem number 1 2 3 4 5 6 7 8 

No. of machine 3 5 4 4 3 10 5 10 

No. of product 10 10 15 20 30 10 30 20 

No. of UP* 30 50 60 80 90 100 150 200 

*Uncertain Parameter 

II. Performance evaluation of the proposed approach 

In this section, the performance of the proposed formulation is evaluated using various performance metrics. For this purpose, 

first, different robust formulations corresponding to each sample problem are solved at different protection levels. Then, the 

simulation model is repeated 10,000 times to calculate the violation probability of each solution obtained. The results are then 

used to compare the proposed formulation with three other widely used methods. These methods include robust formulations 

based on the polyhedral, ellipsoidal, and box uncertainty sets. 

       It is worth noting that linear formulations were solved using the CPLEX solver, and nonlinear formulations were solved 

using the MOSEK solver of GAMS 24.8 software. The actual values of the uncertain parameters in the Monte-Carlo simulation 

model are also produced using the following formula: 

 

𝜒𝑖(𝑟) = 𝜒𝑖(0) + 𝜅𝑠𝜁𝑖(𝑟)           (37)  

 

Where 𝜒𝑖(𝑟) indicates the 𝑖𝑡ℎ random value produced corresponding to the 𝑟𝑡ℎ uncertain parameter, 𝜒𝑖(0) is a random seed, 

and 𝜁𝑖(𝑟) indicates the noise factor. The value of the multiplier 𝜅𝑠 in the above formula determines the degree of correlation 

among the 𝜒𝑖(𝑟)s, where 𝜅𝑠 = 0.8 results in a correlation matrix whose components vary in the range of (0, 0.06). 
Fig. 2 and Fig. 3 show the objective function values and the violation probabilities for solutions obtained from the different 

robust formulations at different protection levels, respectively. The results in Fig. 2 and Fig. 3, demonstrate how the objective 

function value and violation probability of different robust formulations change with respect to the corresponding adjustable 

parameters. However, to compare the performance of the four robust counterpart models studied,  

Fig. 4 shows changes in the objective function values and violation probabilities at different protection levels 

simultaneously. In other words, Fig. 4 shows the results related to the performance of different robust counterpart models at 

different protection levels. Note that the X-axis indicates the objective function value, and the Y-axis shows the violation 

probability. 

As can be seen in Fig 4, both the objective function value and violation probability increase with a decrease in protection 

level. The results in Fig. 4 also show that the proposed model provides solutions with a superior objective value and a lower 

violation probability than those of the other three models. 

In the sequel, we compare the proposed formulation with the other three models in terms of another metric, the price of 

robustness, presented by Bertsimas and Sim [32]. This measure offers a trade-off between the quality of the solution and its 

robustness. 

Let 𝐹𝐷𝑒𝑡 denote the objective function value for the solution obtained from the deterministic model, 𝐹𝑅𝑜𝑏 denotes the 

objective function value for the solution obtained from the robust counterpart model corresponding to a certain level of 

protection, and PoR stands for the price of robustness criterion. The value of PoR is then computed as follows: 

 

PoR =
𝐹𝐷𝑒𝑡 − 𝐹𝑅𝑜𝑏

𝐹𝐷𝑒𝑡
× 100              (38) 

It is worth noting that at a certain level of protection, a model that can provide solutions with a lower price of robustness 

is preferred to the other models. Here, the  PoR values for 0.99-protected solutions of the proposed formulation are compared 

to those of the other three models. The results are given in Table 2. The corresponding plots are also shown in Fig. 5. Note that, 

here, a solution is considered α-protected solution if it is the best solution that has a violation probability less than (1 − 𝛼). 
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FIGURE 2  
OBJECTIVE FUNCTION VALUES FOR SOLUTIONS OBTAINED FROM THE DIFFERENT ROUST FORMULATIONS  
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FIGURE 3  

VIOLATION PROBABILITIES FOR SOLUTIONS OBTAINED FROM THE DIFFERENT ROBUST FORMULATIONS 
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FIGURE 4  

PERFORMANCE OF THE DIFFERENT ROBUST FORMULATIONS 
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TABLE 2 

 THE POR VALUES (α = 0.99) 

Problem 
number 

Box Ellipsoidal Polyhedral Proposed 

1 8.583% 7.321% 9.032% 6.905% 

2 7.621% 7.475% 7.518% 7.357% 

3 6.906% 6.897% 6.937% 6.894% 

4 7.384% 7.379% 8.538% 7.005% 

5 8.481% 7.074% 7.211% 7.058% 

6 7.861% 6.861% 6.879% 6.860% 

7 7.516% 7.443% 8.359% 7.443% 

8 6.988% 6.587% 7.435% 6.565% 

 

 

 
FIGURE 5  

THE POR VALUES FOR DIFFERENT ROBUST FORMULATIONS 

As it is evident from Table 2 and Fig. 5, the performance of the newly derived robust model is better than that of the other three 

models, and it provides solutions with a lower PoR value. 

CONCLUSIONS 

This paper provided a robust formulation for uncertain linear problems using a new uncertainty set defined based on a pairwise 

comparison of perturbation variables. The definition of the uncertainty set based on the pairwise comparison of perturbation 

variables makes it possible to obtain high-quality solutions with a slight decrease in robustness (due to eliminating the 

perturbation vectors with a low probability of occurrence). The performance of the proposed method was studied by solving 

several uncertain sample problems at different protection levels. Monte-Carlo simulations were also performed to calculate the 

violation probability of each solution obtained from the robust models studied. The simulation results showed that the proposed 

model outperforms the other three studied robust formulations in terms of the violation probability and the objective function 

value. In other words, the results demonstrated that the proposed method provides solutions with a better objective value and a 

lower probability of violation than the other three models. To further investigate the performance of the proposed method, the 

price of robustness was used as a performance metric. According to this metric, a model with a lower price of robustness is 

more desirable because a lower value for this metric means a better objective value at a certain protection level. Comparing the 

proposed model with the other three formulations showed the superiority of the proposed approach in providing solutions with 

a lower price of robustness. Therefore, the proposed approach can be used as an efficient tool to solve different uncertain 

problems in various fields. The authors are currently working on robust formulations to derive offering curves for the 

participation of power plants in the restructured electricity markets. 
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