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Abstract 

This paper focuses on robust scheduling for an assembly flow shop where assembling times are uncertain. The 

considered manufacturing environment is a two-stage production system that consists of a processing stage followed 

by an assembly stage. There are two parallel machines in the first stage to process the components followed by an 

assembly stage wherein, the components are assembled to products. The majority of scheduling research considers 

a deterministic environment with pre-known and fixed data. However, in real-world condition, several kinds of 

uncertainties should be considered. In this article, the scheduling problem is tackle under uncertainty and the 

assembling time of each product at the second stage is the source of uncertainty. The problem is described and 

formulated as a mixed-integer linear programming model under deterministic condition. After that, the uncertainty 

issue is discussed and the robust scheduling procedure is introduced to minimize the maximum completion time of 

all products based on the min-max regret approach. To solve the robust scheduling an exact method is proposed to 

solve the problem on the small scales. Moreover, two approximate methods are modified and used to solve this NP-

hard problem on the small and practical scales. The performances of the proposed methods are evaluated by several 

numerical examples taken from valid references. Computational results indicate that the proposed robust scheduling 

methods provide effective hedges against processing time uncertainty while maintaining excellent expected 

makespan performance.   
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INTRODUCTION 

The scheduling problem is one of the most important issues 

for shop floor managers due to its great influence on 

increasing the productivity of manufacturing resources. The 

main concern in scheduling problems is how to assign a set 

of limited resources to a set of jobs concerning operational 

constraints is obtained [1] , [2]. In the classical deterministic  

 

scheduling problem, there are a set of independent jobs to be 

processed by several machines in a specified format (i.e., 

single machine, parallel machine, flow shop, job shop, and so 

on). Each job has to be carried out on one of the machines 

during a fixed processing time, without preemption. So, the 

aim is to achieve the optimal schedule to satisfy one or more 

objectives as well as possible [3]. 
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Many manufacturing industries produce complex 

products through a combination of processing and assembly 

structures. Therefore, integrated scheduling for the two-stage 

production systems includes one processing stage and one 

assembly stage is one of the most popular scheduling 

problems in industries that can provide ideal results for the 

related managers. In addition, adding an assembly stage to 

the scheduling problem makes it closer to the real-world 

condition [4]. It is worthy to be mentioned that, although 

researchers usually deal with these two stages separately, it 

may cause to lose ideal result [5].  

Due to different kinds of scheduling problems, a broader 

range of optimization methods has been developed in the 

literature of scheduling. The majority of these proposed 

methods have been proposed under the traditional 

assumptions especially that the data are perfectly known and 

fixed. These assumptions allow the problem to be treated 

deterministically, which considerably simplifies the solution 

process. Nevertheless, in reality, there are several sources of 

uncertainty that can affect production plans and so, 

manufacturers are unable to provide reliable or satisfactory 

data for the problems that arise [6]. The presence of these 

uncertainty factors makes the question of modelling 

inevitably. This observation has highlighted the emergence 

of a new topic of research, called scheduling under 

uncertainty. 

Processing and assembling time is one of the most 

important sources of uncertainty in scheduling problems. In 

accordance with the machine conditions, worker skill levels 

or some other manufacturing factors, the processing and 

assembling times of jobs and products are often uncertain in 

practice [7], [8]. Especially the assembling times of the final 

products depend directly on the tolerances, tools, and workers 

skills. This uncertain issue can often be tackled by some 

stochastic models if the probability distribution of 

assembling time is determined. In this way, historical data 

and experience are useful to obtain the probability 

distribution. However, due to diversifying products or 

developing new technology, they have neither poor historical 

data nor experience, which means the probability distribution 

is unavailable. In some other research, the scenario-based 

framework is applied, in which the uncertainty is modeled 

through the use of a number of scenarios. The scenario-based 

approaches use either discrete probability distributions or the 

discretization of continuous probability distribution 

functions, and the expectation of a certain performance 

criterion, such as the expected profit which is optimized with 

respect to the scheduling decision variables [9]. When 

decision makers are unable neither to acquire probabilistic 

information, nor determine the number of definite scenarios, 

robust framework can be useful to deal with uncertainty. The 

robust scheduling approaches reflect the concerns of risk-

averse decision makers who may be more interested in 

hedging against poor system performance. This procedure 

focuses on hedging against the worst-case result rather than 

optimising expected performance under all potential 

condition. There are many efforts related to scheduling 

problems under uncertainty which used robust approach; for 

example, we can cite [10], [11], and [12]. This study 

discusses an assembly flow shop scheduling problem 

wherein, the assembling times of product are uncertain in the 

assembly stage. The objective is to minimize the maximum 

possible regret associated with a schedule in terms of 

makespan. To this end, we apply the robust approach 

concerning worst-case performance to the uncertain 

assembly flow shop scheduling problem.  

The paper is organized as follows. In Section 2, we 

present a literature review of works related to this article. 

Section 3 is devoted to the problem explanation and 

formulation. In Section 4, we present solution approaches 

including an exact algorithm, a heuristic method, and a 

metaheuristic algorithm. Section 5 reports the data of test 

examples and the computational performance of the 

procedures. Finally, the conclusion and the direction of our 

future work are provided in section 6. 

LITERATURE REVIEW 

Since this study aims to tackle the assembly flow shop 

scheduling problem under uncertainty, the related studies in 

the literature are presented in two subsections. First, the 

studies dealing with the assembly flow shop scheduling 

problem are reviewed. After that, the search contributions 

focusing on the uncertainty issue in scheduling problems are 

investigated. Finally, to clear this paper's novelty, a 

comparison is provided between this research and the 

existing works, focusing on the common factors. 

I. Literature review on the assembly flow shop scheduling 

problem 

Integrated scheduling for two-stage production systems that 

consider both the processing activities and assembly 

operation concurrently is one of the most popular scheduling 

problems in industries. An assembly flow shop is a special 

form of the two-stage production system that consists of two 

types of stages: fabrication/processing or machining stage 

and assembly stage. Machining and assembly stages are 

composed of either one or a set of machines that are working 

in parallel [5], [13]. This problem has many applications in 

industry, and hence, has received increasing attention from 

researchers both in the field of academic research and 

manufacturing enterprise [14]. Lee et al. described a special 

case of this problem for the first time in 1993. They supposed 

that each product is assembled from two types of parts. The 

first part of each product is processed on the first machine 

and the second one must be processed on the second machine. 

Finally, the third machine assembles the two components into 
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a product. They proved that the problem is strongly NP-

complete. They also introduced a fire engine assembly plant 

as an application of this system  [15]. After that, Potts et al. 

dealt with the assembly flow shop by inspiration of personal 

computer manufacturing  [16].  The authors extended the 

problem in which there are m machines in the first stage and 

one machine in the second stage. They proposed a heuristic 

algorithm to solve the problem with the aim of minimizing 

the makespan. 

Sun et al. studied the same problem as [15] and proposed 

a series of heuristic algorithms using the basic idea of 

Johnson’s algorithm and Gupta’s idea to solve the problem 

on the practical scales. The authors considered minimising 

the makespan as the objective function and shown that their 

proposed heuristics can solve all of the worst cases which 

cannot be solved by the existing heuristic algorithms [17]. 

Koulamas and Kyparisis extended the problem as [15]  to 

three-stage assembly flow shop scheduling problem in which 

an intermediate operation is considered after the machining 

stage devoted to collecting and transporting the fabricated 

parts from the processing areas to the assembly area. The 

authors shown that the problem is strongly NP-hard and then 

analyzed the worst-case ratio bound for several heuristics to 

the problem on the large scales [18]. In similar research, 

Komaki et al. investigated three-stage assembly flow shop 

scheduling problem where the first stage has several identical 

parallel machines and the second and the third stages have a 

single machine. They proposed an improved Cuckoo 

Optimization Algorithm (COA) which incorporates new 

adjustments such as clustering and immigration of the 

cuckoos based on a discrete representation scheme [13]. 

Similarly, Maleki-Darounkolaei discussed a three-stage 

assembly flow shop scheduling problem with sequence-

dependent setup times and blocking times between stages. 

They modeled the problem to minimize weighted mean 

completion time and makespan. In view of the NP-hard 

nature of the problem, the authors proposed a meta-heuristic 

method based on simulated annealing (SA) in order to solve 

the problem at hand on the small scales [19]. 

Allahverdi and Al-Anzi discussed a two-stage assembly 

flow shop scheduling problem wherein, there are 𝑚 machines 

at the first stage and one assembly machine at the second 

stage [14]. The authors supposed that the setup times are 

treated as separate from processing times. They proved that 

the considered problem is strongly NP-hard, and therefore 

presented a dominance relation and propose three heuristics 

based on tabu search, a self-adaptive differential evolution 

(SDE), and a new self-adaptive differential evolution 

(NSDE) to solve the problem on the practical scales. Fattahi 

et al. extended the assembly flow shop in the case that the 

machining stage is a flexible flow shop which identical 

parallel machines in some machining stage followed by a 

single assembly machine. The authors developed an MIP 

model considering makespan as the objective function to 

formulate the problem. Due to complexity of the problem, 

some heuristic algorithms based on the basic idea of 

Johnson’s rule were proposed in their paper to solve the 

problem on the large sizes. They also developed two tight 

lower bounds as reliable references to evaluate the 

performance of the proposed algorithms [5]. They continued 

their study by considering sequence-independent setup times 

in processing stage. The authors developed a hierarchical 

branch and bound algorithm just on the small-sized scales in 

their research [20]. 

Framinan et al. provided a comprehensive survey on 

two-stage production systems and concurrent-type 

scheduling methods for machining the parts and assembly the 

products [21]. Furthermore, a consolidated survey of 

assembly flow shop models was performed by Komaki et al. 

presented by focusing on solution methodology. They also 

introduced some problems receiving less attention and 

proposed several salient research opportunities [22] . 

Some studies have dealt with two-stage production 

systems using exact methods just for special cases. We can 

refer [23] and [4] who developed a branch and bound 

algorithm with some tight lower bounds for this problem. 

Some researchers have dealt with the assembly flow 

shop scheduling problem with distributed machining stages. 

For instance we can cite Deng et al. that addressed a 

distributed two-stage assembly flow shop scheduling 

problem (DTSAFSP) and proposed a competitive memetic 

algorithm to minimise the makespan as the objective 

function. The authors also proposed an MIP model in their 

study to formulate the problem at hand [24]. In a similar 

study, Lei et al. introduced a distributed two-stage assembly 

flow shop scheduling problem and proposed a cooperated 

teaching-learning-based optimisation (CTLBO) algorithm to 

minimise the maximum completion time (makespan) [25]. 

Distributed assembly permutation flow-shop scheduling 

problem (DAPFSP) was also investigated by Huang et al. 

considering sequence-dependent set-up times. They proposed 

a new solution approach in which, two kinds of feasible 

solutions are generated in the first phase and then, a modified 

product insertion method is performed in the next phase. 

Finally, a job insertion method is used to adjust the 

processing order of jobs in each product. A local search 

method is also combined to jump out of local optima [26]. 

The summary of the existing literature demonstrates that 

scheduling for part processing and product assembly 

simultaneously has been increasing attention in recent years 

by researchers due to its application in manufacturing 

industries. However, many of these works have dealt with 

this problem under deterministic condition. There are few 
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efforts on assembly-type scheduling problem under 

uncertainty that are discussed in the next subsection. 

II. Literature review on scheduling problems under 

uncertainty 

The issue of uncertainty in scheduling problems has received 

relatively little attention in the literature, in spite of its 

importance. Most of the existing efforts have assumed 

independent and known processing time distributions for 

individual jobs and proposed stochastic methods for the 

problem at hand [27]. In the literature, we can see other 

attempts that have followed a scenario-oriented framework, 

in which the uncertainty is modeled through the use of a 

number of scenarios, using either discrete probability 

distributions or the discretization of continuous probability 

distribution functions. Some works have dealt with the issue 

of the uncertainty in scheduling problems without any 

assumptions about the possible distribution of processing 

time or considering scenarios. These approaches are 

categorized as: proactive approaches, the so-called robust 

approaches, reactive approaches, and hybrid approaches [6]. 

In this section, we present the related studies that have tackled 

the uncertainty in scheduling problems. The term robust is 

often defined as a term describing a solution that does not 

change its performance much if uncertain parameters or 

unexpected events occur [28]. Billaut et al. state that a 

schedule is robust if its performance is relatively insensitive 

to the data uncertainty [29]. In this article, we consider the 

latter definition of robust scheduling. 

Balasubramanian and Grossmann discussed multi-

period flow shop scheduling problem with uncertain 

processing times. They proposed an MIP model for the 

problem to minimise the expected maximum completion 

time. In addition a branch and bound algorithm with an 

aggregated probability model was developed in their study 

for a special case [30]. Li and Ierapetritou performed a 

comprehensive review on the main approaches that have been 

address for the problem of production scheduling under 

uncertainty until 2007 [31]. Similarly, Verderameet al. 

provided an overview of the key contributions within the 

planning and scheduling communities with specific emphasis 

on uncertainty analysis until 2009 [32]. 

Allahverdi and Aydilek investigated the two-machine 

flow shop scheduling problem where jobs have random 

processing times that are bounded within certain intervals and 

the probability distributions of job processing times is not 

known. However, the lower and upper bounds of job 

processing times are determined. They considered 

minimizing the makespan as the objective function. The 

authors proposed several heuristic algorithms using the 

bounds for the problem [8]. Xu et al. dealt with the scheduling 

problem on identical parallel machines with uncertainty in 

processing time of jobs. Moreover, they supposed that the 

probability distribution of processing times is unknown to 

close the problem to real-world condition. A robust 

scheduling method was proposed in their study with minimal 

maximal deviation from the corresponding optimal schedule 

across all possible job-processing times. They also developed 

two exact algorithms to optimise this problem using a general 

iterative relaxation procedure [33]. 

A two-stage hybrid flow shop scheduling problem was 

addressed by Feng et al. where there is one machine at the 

first stage and the second stage has several identical parallel 

machines. The processing time of jobs in uncertain in their 

search with unknown probability distribution. The authors 

proposed a robust scheduling model the so-called, min–max 

regret to minimize the makespan. To this end, they first 

derived several properties of the worst-case scenario for a 

given schedule and then, developed both exact and heuristic 

algorithms to solve this problem [12]. A comprehensive 

review on the Flow-shop scheduling problem under 

uncertainties has been performed by González-Neira et al. 

that can be helpful for interested researchers [34]. 

Tadayonirad et al. addressed a two-stage assembly flow 

shop scheduling with random machine breakdowns and 

proposed a robust scheduling considering makespan and 

robustness simultaneously as two objective functions. The 

authors used imperialist competitive algorithm (ICA), 

genetic algorithm (GA), and hybridized with simulation 

techniques for handling complexities of the problem. 

Moreover, they used artificial neural network (ANN) to 

predict the parameters of the proposed algorithms in 

uncertain condition [35]. Faraji amiri and Behnamian 

addressed the flow shop scheduling problem under 

uncertainty to optimize makespan and energy consumption 

simultaneously. They formulated the problem and proposed 

a mathematical model and a scenario-based estimation of 

distribution algorithm (EDA) to solve the problem [36]. 

Recently, Wu et al. tackled a two-stage assembly flow 

shop scheduling problem with two scenario-dependent jobs 

processing times. Since the problem is NP-hard, the authors 

first derived a dominance property and a lower bound to 

propose a branch-and-bound algorithm to find a permutation 

schedule with minimum makespan. After that, they used 

Johnson’s rule to propose eight polynomial heuristics for 

finding near-optimal solutions [37].  

In addition to the assembly flow shop, there are other 

assembly manufacturing systems that researchers deal with 

them. For instance, we can cite [38] that discussed the 

production scheduling problem in an assembly 

manufacturing system with uncertain processing time and 

random machine breakdown. The authors formulated the 

problem and developed a modified master-apprentice 

evolutionary algorithm (MAE) for robust scheduling. 

Based on the literature, the researchers considered 

stability and robustness to deal with the assembly-type 

http://m.growingscience.com/beta/ijiec/2501-flow-shop-scheduling-problem-under-uncertainties-review-and-trends.html
http://m.growingscience.com/beta/ijiec/2501-flow-shop-scheduling-problem-under-uncertainties-review-and-trends.html
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scheduling problem during recent years. However, there is a 

lack of solution procedures for the assembly flow shop with 

uncertainty in assembling times. Therefore, we applied the 

robust approach concerning worst-case performance to the 

uncertain interval assembly flow shop scheduling problem. 

The considered procedure has been inspired by Feng et al. 

and modified for the two-stage assembly flow shop in this 

study. 

PROBLEM DESCRIPTION 

The two-stage assembly flow shop scheduling problem is a 

special case of the two-stage flow shop where we have 𝑚 

parallel machines in the first stage for processing the parts 

and an assembly machine in the second stage for assembling 

the parts to the final product. Due to the application of this 

problem in different manufacturing industries, many 

researchers have dealt with it in the last three decades. Fire 

engine assembly plant was introduced as an application of 

this production system for the first time by Lee et al. in 1993. 

Moreover, the production process of personal computer and 

body making of automotive manufacturing industries have 

been presented as other instances of application the assembly 

flow shop scheduling problem. However, a few studies have 

dealt with uncertainty in this problem, and this fact limits 

their applications in real-world manufacturing environments. 

The considered problem in this study is a two-stage assembly 

flow shop where there are two parallel machines in the first 

stage (processing stage) and one machine in the second stage 

(assembling stage). Each product is assembled from two 

types of components. The first component of each product 

must be processed on the first parallel machine and the 

second component is processed on the second parallel 

machine at the first stage. After processing and preparing two 

components, they are assembled into the final product in the 

second stage. According to the conditions of the assembly 

machine, different worker skill levels, and some other 

manufacturing factors, there is uncertainty in the assembling 

times of the products. We consider minimizing the maximum 

completion time of all products (makespan) as the objective 

function for this study. Figure 1 represents a schematic view 

of the considered problem in this study. 

To clarify the problem at hand, we first formulate it 

under deterministic condition by proposing a mixed-integer 

linear programing (MIP) model. After that, the problem will 

be discussed under uncertainty in assembling time and is 

tackled using a robust approach. To complete notation and 

the mathematical model, we assume that part 0 is a dummy 

job with zero release time and zero processing time which 

should be placed in position one on all machines. Without 

loss of generality, it is also assumed that product 0 is a 

dummy product with zero assembly time which should be 

placed in position one on the assembly stage. 

 
FIGURE 1 

A SCHEMATIC VIEW OF THE CONSIDERED PROBLEM 

 
 

• Sets and indices 

ℎ, ℎ′ = {1, 2, … , 𝐻} Indices for products 
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machines 
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• Decision variables 

𝑋ℎ,ℎ′  

Binary variable taking value 1 if product ℎ is an 

immediate predecessor of product ℎ′ and 0 

otherwise 

𝐹ℎ Start time for assembly of product ℎ  

𝐶ℎ Completion time of assembling the product ℎ  

𝐶𝑃𝑖ℎ 
Completion time of part 𝑖 of product ℎ in 

processing stage 

𝐶𝑚𝑎𝑥 
Maximum completion time of all products that is a 

continuous positive variable 

 

• Model formulation 

The above mathematical model has been proposed based 

on the model developed by [5] and [39]. We formulate the 

problem and develop the model considering uncertainty 

feature using relations (13) to (25). 

In the mathematical model, the maximum completion 

time of all products (makespan) is minimized by relation (1) 

as the considered objective function. Constraints (2) 

determine the makespan. Constraints (3) and (4) ensure that 

every product must be exactly at one position. Equations (5) 

control that dummy product 0 has exactly one successor. 

Constraints (6) enforce the occurrence of cross-precedencies, 

meaning that a product cannot be at the same time both a 

predecessor and a successor of another product. The 

completion time of each part is calculated by the constraints 

(7). Constraints (8) and (9) determine the Start time for 

assembly of product h. The completion time of products is 

indicated by relation (10). Finally, constraints (11) and (12) 

are used to indicate the domains of the decision variables. 

In the considered problem, the product assembling time 

times are assumed to be uncertain with unavailable 

probability distribution due to some stochastic variability. 

The only information is that the assembling time of an 

arbitrary product h lies in an interval [Ah
min , Ah

max] where 

0 < Ah
min ≤ Ah

max]. A scenario s is used to describe a possible 

product assembling family of sets where Ah
s ∈ [Ah

min , Ah
max]. 

All the possible scenarios are denoted as a set S. 

We use Ω to demonstrate all the feasible sequences 

constructed from these H products. Let F(σ, s) denotes the 

makespan of a sequence σ ε Ω under the given scenario s. 

Under this scenario s s, there is an optimal sequence σ∗ with 

makespan Fs
∗ = F(σ∗, s) = min

σ ε Ω
F(σ, s). Then, the regret 

under scenario s for a sequence σ is denoted as (13). 

 

R(σ, s) =  F(σ, s) − Fs
∗ (13) 

 

Among all the possible scenarios, the one which 

maximises the regret of the schedule σ is called the worst-

case scenario for sequence σ. The maximum regret of 

sequence σ is shown as (14). 

 

Rmax(σ, s) = max
s∈S

(F(σ, s) − Fs
∗)  (14) 

 

The proposed solution method aims to find a robust 

sequence σ with the minimal–maximum regret. It can be 

formulated as equation (15). 

 

min
σ∈Ω

Rmax(σ, s) = min
σ∈Ω

(max
s∈S

(F(σ, s) − Fs
∗))  (15) 

A matrix Y = [yhk]h×h is used product sequencing in the 

considered two-stage production system. For This matrix, 

yhk equals 1 if the product h is the 𝑘th product to be 

assembled; and 0 otherwise. For the processing stage, Fk
s is 

used to denote the assembling time of product occupying the 

kth position under the scenario s for the given schedule σ. 

Note that in any sequence, it is uncommon that a part i 

(1)  𝑀𝑖𝑛  𝑍 = 𝐶𝑚𝑎𝑥 

  St. 

(2) ∀ℎ 𝐶𝑚𝑎𝑥 ≥ 𝐶ℎ 

(3) ∀ ℎ′ ∑ 𝑋ℎℎ′ = 1

𝐻

ℎ=0,ℎ≠ℎ′

 

(4) ∀ℎ ∑ 𝑋ℎℎ′ ≤ 1

𝐻

ℎ′=1,ℎ′≠ℎ

 

(5)  ∑ 𝑋0ℎ

𝐻

ℎ=1

= 1                                           

(6) ∀ℎ, ℎ′ ; ℎ

≠ ℎ′ 
𝑋ℎℎ′ + 𝑋ℎ′ℎ ≤ 1 

(7) ∀𝑖, ℎ, ℎ′ ; ℎ

≠ ℎ′ 
𝐶𝑃𝑖ℎ ≥ 𝐶𝑃𝑖ℎ′ + 𝑃𝑖ℎ − 𝐿. (1 − 𝑋ℎ′ℎ) 

(8) ∀ 𝑖, ℎ 𝐹ℎ ≥ 𝐶𝑃𝑖ℎ 

(9) ∀ℎ, ℎ′ ; ℎ

≠ ℎ′ 
𝐹ℎ ≥ 𝐶ℎ′ − 𝐿. (1 − 𝑋ℎ′ℎ) 

(10) ∀ ℎ 𝐶ℎ ≥ 𝐹ℎ +  𝐴ℎ 

(11) ∀ℎ, ℎ′ 𝑋ℎℎ′ ∈ {0,1} 

(12) ∀𝑖, ℎ, ℎ′ Fh, Ch, CPih, Cmax ≥ 0  
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occupies a later position of processing than another part j 
related to a successor product. 

According the above description, the proposed model 

entitled robust assembly flow shop (RAF) is presented as 

follows: 

Min
σ∈Ω

(max
s∈S

(F(σ, s) − Fs
∗))  (16) 

∑ yhk = 1

H

h=1

 ∀k = 1,2, … , H (17) 

∑ yhk = 1

H

k=1

 ∀h = 1,2, … , H (18) 

CPi1 ≥ ∑ (Pih × yh1)
H

h=1
 ∀ i (19) 

CPik

≥ CPi(k−1)

+ ∑ (Pih × yhk)
H

h=1
 

∀ i, ∀k = 2,3, … , H (20) 

Fk
s ≥ CPik ∀ i, k (21) 

Fk
s ≥ Fk−1

s + Ah
s  ∀k = 2,3, … , H (22) 

yhk ∈ {0,1} ∀k, h (23) 

 

Constraint (16) determine the value of the objective 

function. Constraints (17) and (18) guarantee that the robust 

sequence is feasible. Constraints (19) calculate the 

completion time of the parts related to the product that 

occupies the first position. Similarly, constraints (20) indicate 

the completion time of the parts related to the products that 

occupy the second to the last position. Constraints (21) and 

(2) calculate the Start time for of product assembly. Finally, 

constraints (23) demonstrate the change scope of decision 

variable. 

In this model, Fs
∗ can be determined by solving a mixed-

integer linear programming model. SinceF(σ, s) =
max

k
{Fk

s + Ak
s }, there are two nested max operators in the 

objective function. We transform it into a mixed-integer 

linear programming model as follows. 

Min
σ∈Ω

 r  (24) 

Fk
s + Ak

s -r≤ Fs
∗  k = 1,2, … , H , s ∈ S (25) 

(17) ~ (23) 

In the above mixed-integer linear programming model, 

(17) ~ (23) means the equations (17), (18), (23) and 

constraints (19)-(21) of the previous model. 

SOLUTION METHODS 

I. Exact algorithm 

In this section, a general iterative relaxation (𝐼𝑅) procedure 

is proposed to solve the min-max regret problem explained in 

the previous section. The considered procedure was 

introduced by [40] for the first time and developed by [41], 

[42]. This approach has been used in different studies due to 

its efficiency. For instance, we can cite [12] that used this 

method for a two-stage hybrid flow shop scheduling problem 

with uncertain interval processing times. Based on this 

method, the iteration can be reduced using a finite set Γ to 

replace all the possible scenarios S in the solution method. 

The set Γ is defined as follows: 

 

Γ = {Ah = Ah
min   or   Ah

s = Ah
max   h = 1,2, … , H} 

 

It is obvious that, Γ ∈ S and the relaxed mixed-integer 

model called RAFS-relaxed in this paper can be presented as 

follows: 

 

Min
σ∈Ω

 r  (26) 

Fk
s + Ak

s − 𝑟 ≤ Fsw
∗   k = 1,2, … , H , ∀ sw ∈ Γ (27) 

(17) ~ (23)   

The optimal makespan Fsw
can be provided by solving a 

mixed-integer programming for a determined scenario sw. 

Let σ̂denote the solution to RAFS-relaxed, with 

corresponding objective value r̂. We use r∗ to represent the 

minimal–maximum regret. Then, r̂ ≤ r∗is a proper lower 

bound of the solution. The lower bound r̂ is non-decreasing 

as more regret cuts being added. 

We use a worst-case procedure to obtain the worst-case 

scenario and the corresponding maximum regret (Rmax) for a 

specific sequence σ̂. It is obvious that Rmax ≥ r∗is the upper 

bound of the solution. In the worst-case procedure, a state 
(σ , h) shows the sequence σ wherein the product his the 

critical product with the maximum makespan. In this way, for 

a given sequence σ̂ we first calculate the deviation between 

the makespan of this sequence and the corresponding 

makespan of the optimal sequence. 

During each iteration, the state ŝ is chosen associated 

with the greatest deviation as the worst-case scenario of the 

sequence  σ̂. Then, by a candidate initial sequence  σ̂, we can 

get its worst-case procedure and then the upper bound. Add 
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this scenario into Γ, and generate new regret cuts. Thus, H 

constraints, Fk
s + Ak

s − r ≤ Fsw
∗  as regret cuts are added into 

RAFS-relaxed. 

Then, the new solution and the lower bound can be 

obtained by solving the new RAFS -relaxed. The iterative 

procedure continues until the upper bound is no greater than 

the current lower bound. 

The problem at hand is well known strongly NP-hard and 

the relaxed mixed-integer program model is far more difficult 

since the number of regret cuts increases with the number of 

iterations. Besides, for each iteration, the upper bound 

𝑅𝑚𝑎𝑥(�̂�)for a given sequence �̂� must be obtained by the 

worst-case procedure. However, for any given state (𝜎 , ℎ), 

we have to compute the deviation between the makespan of 

this sequence under this state and the corresponding 

makespan of the optimal sequence in the worst-case 

procedure. The NP-hard problem should to be solved 𝑛 times 

in the worst-case procedure in each iteration. Therefore, with 

an inspiration from [12] we improve the considered 𝐼𝑅 

algorithm by reducing the number of iterations. In this way, 

we always concern the least upper bound and corresponding 

sequence. Thus, we define 𝑈𝐵∗ and 𝜎∗ as the least upper 

bound and corresponding sequence respectively. Then the 

following steps are need to reduce iterations: 

 

I. Input an initial sequence σ̂. Set 𝐿𝐵 = 0 , 𝑈𝐵∗ = +∞ 

and 𝜎∗ = 𝜙; 

II. Generate the worst-case Ŝ of σ̂ by worst-case 

procedure and obtain the corresponding maximum 

regret 𝑅𝑚𝑎𝑥(�̂�); 

If  𝑈𝐵∗ ≥ 𝑅𝑚𝑎𝑥(�̂�) set 𝑈𝐵∗ = 𝑅𝑚𝑎𝑥(�̂�) and 𝜎∗ = �̂� 

go to step 3 

If 𝑈𝐵∗ < 𝐿𝐵 go to step 5 

III. Add the new regret cuts 𝐹𝑘
�̂� + 𝐴𝑘

�̂� − 𝑟 ≤ 𝐹�̂�
∗ into 

RAFS-relaxed; 

IV. Calculate �̂� and �̂� by solving RAFS-relaxed then set 

𝐿𝐵 = �̂� and go step 2; 

V. Stop and output the optimal sequence �̂�r and 𝑈𝐵∗ as 

the minimal–maximum regret; 

As mentioned before, the considered problem is a well-

known NP-hard problem. Therefore, a heuristic solution 

method is proposed in the next section to solve the problem 

with practical scales in a reasonable time. 

II. Approximate algorithms 

Due to the complexity of the problem at hand, it is 

computationally expensive to provide the optimal solution 

using the exact method. Therefore, a heuristic and a 

metaheuristic algorithm are proposed in this section to find a 

near-optimal sequence for the products. The proposed 

heuristic solution method is developed based on the heuristic 

introduced by [39] that is modified for the uncertainty 

condition. According to this method, the solution procedure 

is divided into two phases. The first phase is determining the 

sequence of products to assemble and the second one is 

assigning the parts of each product ℎ to a machine in the first 

stage to process (for ℎ = 1, 2, … , 𝐻).  

For instance, suppose that three products are ordered to 

be produced (𝐻 = 3). The first product needs parts number 

1, 2, and 3 to be assembled. The second product needs parts 

number 4, 5 and finally the third product needs parts number 

6, 7 for assembling. Two aforementioned solution phases of 

this example can be demonstrated as Figure 2 . 

 

 

 

 

 

 

  

 

 

FIGURE 2 
TWO-PHASE SOLUTION APPROACH 
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For the first phase (product sequencing) an extension of 

the Johnson’s algorithm is used. After that, a heuristic method 

is proposed for assigning parallel machines to process the 

parts. 

Johnson's rule that was introduced in 1954 is a method 

for job scheduling in the two-stage flow shop with the 

objective of minimizing Makespan (that is (𝐹2 ∥ 𝐶𝑚𝑎𝑥)). It 

also reduces the amount of idle time between the two stages 

in the optimal sequence. The technique requires several 

preconditions:  

A summary of the Johnson’s algorithm for scheduling 

jobs in the two-stage flow shop is given as below: 

Suppose that 𝑝𝑖1 is the processing time of job 𝑖 in stage 

1 and 𝑝𝑖2 is the processing time of job 𝑖 in stage 2. Similarly, 

𝑝𝑗1 and 𝑝𝑗2 are processing time of job 𝑗 in stage 1 and stage 

2 respectively. In the optimal schedule, job 𝑖 precedes job 𝑗 

if: 

min{𝑝𝑖1 , 𝑝𝑗2} < min{𝑝𝑖2 , 𝑝𝑗1} 

The steps of this algorithm can be presented as below: 

• Step 1: Form the set 𝑈 containing all jobs with 𝑝𝑖1 <
𝑝𝑖2 

• Step 2: Form the set 𝑉 containing all jobs with 𝑝𝑖1 >
𝑝𝑖2 

The jobs with 𝑝𝑖1 = 𝑝𝑖2 can be put in either set. 

• Step 3: Sort the jobs in set 𝑈 in increasing order 

(SPT) 

• Step 4: Sort the jobs in set 𝑉 in decreasing order 

(LPT) 

• Step 5: Form the sequence of all jobs according to 

the set 𝑈 followed by the set 𝑉 

To extend and use the Johnson’s algorithm for the 

problem at hand, the parallel machines are assumed as the 

first stage of the production system and the assembly stage is 

considered as the second stage (or the first and the second 

machine respectively). Then the Johnson’s method is used to 

determine the sequence of the products as the first phase. 

Assembly time of each product ℎ is considered as 𝑝2ℎ. Also, 

the maximum time of 𝑝iℎ (𝑖 ∈ 𝑎, 𝑏) can be computed as 𝑝1ℎ. 

After determining the first sequence, we can calculate its 

worst-case scenario and then indicate the regret under this 

scenario. It should be noted that, constructing the initial 

sequence and doing the worst-case procedure require to 

provide the optimal sequence of the problem at hand. Since 

the problem is NP-hard, near-optimal solutions obtained by 

some approximate methods proposed by [5] and [39] are 

replaced.  

By replacing the initial sequence with new one, new 

regret can be calculated and the maximum regret can be 

improved to get the near-robust sequence. There are two 

methods to change a sequence into a new one (i.e. shift 

neighborhood and interchange neighborhood). Shift 

neighborhood is the method moving product from one 

position to another, while interchange neighborhood is 

interchanging products between different positions. 

Jozefowska et al. [43][43]proved interchange neighborhood 

yields better results than the shift neighborhood by 

computational experimentation [43]. We also use interchange 

neighborhood for the considered problem to change the 

current sequence in each iteration. 

In addition to the above mentioned exact and heuristic 

algorithms that are called EA and HA respectively in this 

study, a Hill-climbing local search algorithm (HLSA) 

proposed by [12] for scheduling of a two-stage hybrid flow 

shop with uncertain interval processing times is modified and 

used. Therefore, three algorithms EA, HA, and HLSA are 

applied to solve the problem and for result comparison. 

COMPUTATIONAL EXPERIMENTATION 

To use the proposed algorithms for solving the problem at 

hand, first, some test instances are design considering 

problem features. In this way, we follow the approach in [5] 

that has designed proper test examples for an assembly 

flexible flow shop scheduling problem with deterministic 

processing times. They designed 60 test examples under 

different various conditions. These examples are summarized 

for the considered problem in this study to one processing 

stage consists of several parallel machines and one assembly 

stage. Moreover, the number of products are considered 5, 

10, and 15 and all characteristics of the test instances have 

been demonstrated in Table 1.  

To modify the instances to features of the considered 

problem in this research under uncertainty, definitions of [12] 

are modified for the problem at hand in this paper. To this 

end, the lower bound of the assembly time for the product ℎ 

is chosen at random from two uniform distributions of 

integers on the interval Ah
min ∈ [10𝛽 , (10 + 40𝛼1)𝛽]. The 

upper bounds of the assembly time for the product ℎ is chosen 

at random from two uniform distributions of integers on the 

interval Ah
max ∈ [𝐴ℎ

𝑚𝑖𝑛 , (10 + 𝛼2)𝐴ℎ
𝑚𝑖𝑛]. Two parameters 𝛼1 

and 𝛼2 are required to control the variability of assembly time 

across products and within a given product, respectively.  

Three values 0.2, 0.6, and 1.0 are used for both 𝛼1 and 𝛼2. 

Finally, the processing time of parts in the first stage is 

chosen at random from the uniform distribution [5 , 10]. We 

defined a range of processing time to evaluate the 

performance of the algorithms in different conditions. 

https://en.wikipedia.org/wiki/Makespan
https://en.wikipedia.org/wiki/Idle
https://en.wikipedia.org/wiki/Skill
https://en.wikipedia.org/wiki/Preconditions
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TABLE 1 
CHARACTERISTICS OF TEST INSTANCES. 

 
Example No. 1 2 3 4 5 6 7 8 9 

𝐻 5 5 5 5 5 5 5 5 5 

(𝛼1, 𝛼2) (0.2,0.2) (0.2,0.6) (0.2,1.0) (0.6,0.2) (0.6,0.6) (0.6,1.0) (1.0,0.2) (1.0,0.6) (1.0,1.0) 

𝑃𝑎ℎ [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] 

𝑃𝑏ℎ [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] 

          

Table 1 (Continue) 

Example No. 10 11 12 13 14 15 16 17 18 

𝐻 10 10 10 10 10 10 10 10 10 

(𝛼1, 𝛼2) (0.2,0.2) (0.2,0.6) (0.2,1.0) (0.6,0.2) (0.6,0.6) (0.6,1.0) (1.0,0.2) (1.0,0.6) (1.0,1.0) 

𝑃𝑎ℎ [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] 

𝑃𝑏ℎ [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] 

          

Table 1 (Continue) 

Example No. 19 20 21 22 23 24 25 26 27 

𝐻 15 15 15 15 15 15 15 15 15 

(𝛼1, 𝛼2) (0.2,0.2) (0.2,0.6) (0.2,1.0) (0.6,0.2) (0.6,0.6) (0.6,1.0) (1.0,0.2) (1.0,0.6) (1.0,1.0) 

𝑃𝑎ℎ [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] 

𝑃𝑏ℎ [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] [5,10] 

 

To modify the instances to features of the considered 

problem in this research under uncertainty, definitions of [12] 

are modified for the problem at hand in this paper. To this 

end, the lower bound of the assembly time for the product ℎ 

is chosen at random from two uniform distributions of 

integers on the interval Ah
min ∈ [10𝛽 , (10 + 40𝛼1)𝛽]. The 

upper bounds of the assembly time for the product ℎ is chosen 

at random from two uniform distributions of integers on the 

interval Ah
max ∈ [𝐴ℎ

𝑚𝑖𝑛 , (10 + 𝛼2)𝐴ℎ
𝑚𝑖𝑛]. Two parameters 𝛼1 

and 𝛼2 are required to control the variability of assembly time 

across products and within a given product, respectively.  

Three values 0.2, 0.6, and 1.0 are used for both 𝛼1 and 𝛼2. 

Finally, the processing time of parts in the first stage is 

chosen at random from the uniform distribution [5 , 10]. We 

defined a range of processing time to evaluate the 

performance of the algorithms in different conditions.  

There are 10 replications generated for each combination 

of ℎ, 𝛼1 and 𝛼2 resulting in 270 test instances and each test 

instance is solved by the three given algorithms. All 

procedures have been coded in MATLAB 2013 and the 

Computational experiments are executed on a Pc with a 

2.0GHz Intel Core 2 Duo processor and 1GB of RAM 

memory. 

Computational result and performance of the proposed 

algorithms in solving test instances has been demonstrated in 

Table 2. Two sub columns of the EA demonstrate the average 

iterations required to obtain the robust optimal solutions and 

the average CPU time (in seconds) respectively. For two 

approximate algorithms we have three sub columns that show 

the average CPU time (in seconds), the average percentage 

increase over the optimal sequence under the mid-point 

scenario, and the maximum percentage increase over the 

optimal sequence under the mid-point scenario respectively. 

Definition of midpoint scenario has been inspiration from the 

Xu et al. [33]. They introduced a scenario 𝑆
1

2 for the problem 

𝑃‖𝐶𝑚𝑎𝑥 in which the processing time of part 𝑗 in stage 𝑖 is 

determined as 𝑝𝑖𝑗
𝑆

1
2 =

1

2
(𝑝𝑖𝑗 + �̅�𝑖𝑗). This definition is 

modified in this study for the considered problem as 𝐴ℎ
𝑆

1
2 =

1

2
(𝐴ℎ

𝑚𝑖𝑛 + Ah
max). They emphasized that a considerable initial 

sequence �̂� where jobs are scheduled by solving the problem 

𝑃‖𝐶𝑚𝑎𝑥 under the abovementioned scenario has the 

maximum regret 𝑅𝑚𝑎𝑥(�̂�) with an upper bound. This 

property is |also applied to our problem. 

The result shows that the CPU time of the exact 

algorithm increases rapidly when the problem size gets 

larger. However, the obtained exact solutions are considered 

as proper references for evaluation of the approximation 

methods. While the number of products grows to 15, the 

problem cannot be solved by the exact algorithm within 1 

hour. Both of the proposed heuristic and metaheuristic 

algorithms consume less CPU time compared with the exact 

algorithm. 
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To better comparison the CPU time, we can see the CPU 

time of the heuristics algorithm and Hill-climbing local 

search algorithm for solving the problem on different sizes in 

Figure 3. In this way, we continued to design the test 

examples for 25, 50, 75, and 100 products. As the figure 

shows, the CPU time of the Hill-climbing local search 

algorithm increases dramatically as the dimensions of the 

problem increase. However, the increasing CPU time of the 

heuristic algorithm increases at a very low rate. 

It can be also concluded from this table that both two 

proposed algorithms closely approximate the optimal 

solution. However, HLSA obtains more close solutions to the 

optimal solution provided by the exact method. In addition, 

since HLSA has carried out more iterations and exploration, 

it costs more CPU times compared with HA. 

Table 2 shows that the solutions quality of the optimal 

schedule under the mid-point scenario has significant 

deviations from the optimal condition. The average 

approximation of the result is from 10.8% to 66.9%, and the 

maximum errors of the method are between 35.4% and 

319.6%. In addition, both the average and the maximum 

deviations rise as the problem size increases.  

Moreover, the result denotes that the proposed robust 

schedule procedure closely approximates the schedule in 

terms of the optimal expected makespan. The average 

approximation errors of the robust scheduling is between 

0.27% to 8.44%, and the maximum errors of 0.98% and 

14.56%. We can conclude that the robust optimal schedules 

hedge against assembling time uncertainty while maintaining 

excellent expected makespan performance. 

 

 

TABLE 2   
COMPUTATIONAL RESULTS OF THE PROPOSED ALGORITHMS.  

 

Example No. 
𝐸𝐴 𝐻𝐴 𝐻𝐿𝑆𝐴 Mid-point Makespan 

Iteration CPU CPU Mean Max CPU Mean Max Mean Max Mean Max 

1 7.6 201.9 0.81 3.8 12.1 10.61 1.6 8 10.8 35.4 0.35 1.04 

2 8.4 216.1 0.84 5.7 17.8 11.64 1.8 11.4 15.1 64.8 0.71 0.98 

3 7.2 198.8 0.49 6.3 16.9 11.29 3.9 11.7 10.4 51.9 0.69 1.26 

4 6.9 174.8 0.72 8.7 12.5 11.52 7.5 12.3 12.4 50.7 1.03 2.31 

5 8.1 218.7 0.78 9.4 19.3 12.2 5.5 18.9 19.8 102.5 0.27 1.08 

6 8.8 232.9 0.41 9.6 16.9 12.7 6.8 11.1 15.8 79 0.58 2.12 

7 7.9 211.1 0.66 8.5 20.5 12.6 7.5 16.9 19.8 132.7 1.21 3.17 

8 9.6 237.7 0.68 10.2 23.6 9.9 9.5 19 17.9 60.6 1.07 2.84 

9 7.4 199.5 0.79 7.4 19.5 11.5 7.3 17.3 14.2 89.6 0.41 3.01 

10 34.8 975.7 2.51 14.8 66.7 32.5 10.7 65.9 38.7 122.4 2.09 4.32 

11 37.2 988.5 2.54 12.8 54.9 34.9 10.6 59.6 36.8 203.7 2.36 3.98 

12 40.4 1062.1 2.19 16.2 67.4 42.4 7.3 67.3 40.6 231.7 1.98 5.27 

13 38.6 1047.5 2.42 15.6 49.2 41 7.1 51.2 35.4 89.6 3.05 4.38 

14 37.7. 1014.9 2.48 11.8 58.5 39.3 8.4 56.1 30.4 117.5 4.17 4.49 

15 41.2 1149.3 2.11 14.3 54.4 41.9 9.1 44.6 36.8 240.3 2.75 5.94 

16 40.3 1021.4 2.36 16.9 87.2 45.8 12.9 81.6 29.6 187.9 5.12 6.53 

17 38.7 1035.7 2.38 17.1 49.8 33.7 10.2 74.6 24.6 154.6 3.66 4.05 

18 39.4 1042.8 2.49 16.4 50.7 34.8 11.9 63.6 36.6 143.8 4.29 5.48 

19 121.7 3406.2 9.7 21.7 72.8 96.3 11.8 91.8 47 212.7 6.41 9.09 

20 128.6 3452.8 8.4 19.4 84.1 103.8 10.7 45.1 50.2 257.5 3.78 8.71 

21 125.7 3304.9 7.8 19.9 79.4 107.3 12.5 51.8 44.8 195.9 5.16 12.02 

22 130.8 3549.7 9.2 20.5 90.34 111.8 11.8 47.2 64.6 304.2 7.87 11.48 

23 126.5 3448.2 10.4 23.6 88.4 114.2 14.4 94.8 66.9 278.9 6.09 12.56 

24 122.9 3411.6 7.8 22.8 69.8 107.3 15 104.7 55.6 317.7 6.61 13.04 

25 131.7 3559.3 9.8 20.2 102.6 122.9 14.8 83.5 40.7 121.7 5.9 10.89 

26 130.8 3508.7 8.7 21.3 112.8 99.3 10.8 119.7 54.2 319.6 8.44 14.65 

27 127.3 3451.2 8.6 19.7 96.2 98.8 11.3 103.8 52.4 270.3 7.65 13.27 
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FIGURE 3 

COMPARISON OF CPU TIMES 

 

 

CONCLUSIONS 

This paper focused on a two-stage assembly flow shop in 

which the assembling times of products are uncertain and the 

performance measure of interest is system makespan. The 

problem was described carefully and an MIP model was 

proposed for the deterministic environment. In addition, the 

problem was extended under uncertainty in assembling times 

of products. An iterative relaxation (𝐼𝑅) method was 

proposed as an exact algorithm to solve the problem on the 

small scales.  In addition, one heuristic method and one 

metaheuristic (i.e. Hill-climbing local search algorithm 

(HLSA)) were tuned to solve the problem at hand on the 

medium and large sizes. 

The considered problem has many application in 

manufacturing industries. Considering new features in this 

study especially investigating the problem under uncertainty 

in assembling times, close the problem to real-world 

condition. For the shop floor activities managers, it is vital to 

consider uncertainties in times of different operations in 

addition to the others disruptions. 

Several number of numerical instances taken from valid 

references were modified for the considered problem to 

evaluate the performance of the proposed solution procedure. 

The computational results demonstrated that the proposed 

robust scheduling procedures hedge effectively against 

uncertain assembling times, while maintaining excellent 

expected makespan performance. However, the proposed 

heuristic consumes less CPU time compared with the 

metaheuristic algorithm and the metaheuristic outperforms 

the heuristic in terms of solution quality. 

In practice, the processing times of parts on each stage 

and the assembling times of products on the last stage are 

often uncertain due to the machine conditions, worker skill 

levels, or some other accidental factors. Due to the result of 

this study, ignoring these facts may lead to lose the ideal 

solution that causes increasing in makespan and operational 

costs. 

According to the finding of this study, the quality of the 

solution of the optimal schedule without considering changes 

in assembling times causes significant deviations from the 

optimal condition. The final result denoted that the average 

approximation of the result is from 10.8% to 66.9%, and the 

maximum errors of the method is between 35.4% and 

319.6%. In addition, both the average and the maximum 

deviations rise as the problem size increases.  

Especially, for the scheduling problems with delivery 

date and tardiness penalty, it is vital to determine appropriate 

time window according to the uncertainty in parameters. In 

addition, identifying the root of uncertainty factors and 

reducing their effects as much as possible can help to have a 

robust optimal schedule that significantly hedges against 

processing times and assembling times uncertainty. 

It would be worth investigating situations where there is 

uncertainty in setup times. Other possible extensions of this 

work include considering the time window for the due date 

and investigating lateness as a new objective function. 

Extension of the proposed methods for other scheduling 

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

C
P

U
 t

im
e 

(S
)

Example No.

HA HLSA



 Journal of Industrial Engineering International, 17(3), Aug. 2021 

   

 

 J     I     E     I  

 

32 

problems such as three-stage assembly flow shop or flow 

shop with assembly stage can be another attractive topic for 

future research. 

REFERENCES 

[1] I. Hamdi and S. Toumi, “MILP models and valid inequalities for the 

two-machine permutation flowshop scheduling problem with minimal 
time lags,” J. Ind. Eng. Int., vol. 15, no. 1, pp. 223–229, Dec. 2019, doi: 

10.1007/S40092-019-00331-1. 

[2] R. Buddala and S. Mahapatra, S., “Improved teaching–learning-based 
and JAYA optimization algorithms for solving flexible flow shop 

scheduling problems,” J. Ind. Eng. Int., vol. 14, no. 3, pp. 555–570, Sep. 

2018, doi: 10.1007/S40092-017-0244-4. 

[3] M. Afzalirad and J. Rezaeian, “Resource-constrained unrelated parallel 

machine scheduling problem with sequence dependent setup times, 

precedence constraints and machine eligibility restrictions,” Comput. 

Ind. Eng., vol. 98, pp. 40–52, Aug. 2016, doi: 

10.1016/J.CIE.2016.05.020. 

[4] F. Daneshamooz, P. Fattahi, and S. M. H. Hosseini, “Scheduling in a 
flexible job shop followed by some parallel assembly stations 

considering lot streaming,” Eng. Optim., pp. 1–20, 2021, doi: 

10.1080/0305215X.2021.1887168. 

[5] P. Fattahi, S. M. H. Hosseini, and F. Jolai, “A mathematical model and 

extension algorithm for assembly flexible flow shop scheduling 

problem,” Int. J. Adv. Manuf. Technol., vol. 65, no. 5–8, pp. 787–802, 
2013, Accessed: Aug. 07, 2021. [Online]. Available: 

https://doi.org/10.1007/s00170-012-4217-x. 

[6] T. Chaari, S. Chaabane, T. Loukil, and D. Trentesaux, “A genetic 
algorithm for robust hybrid flow shop scheduling,” Int. J. Comput. 

Integr. Manuf., vol. 24, no. 9, pp. 821–833, 2011, doi: 

10.1080/0951192X.2011.575181. 

[7] R. Montemanni, “A mixed integer programming formulation for the 

total flow time single machine robust scheduling problem with interval 

data,” J. Math. Model. Algorithms, vol. 6, no. 2, pp. 287–296, Jun. 2007, 

doi: 10.1007/S10852-006-9044-3. 

[8] A. Allahverdi and H. Aydilek, “Heuristics for the two-machine flowshop 

scheduling problem to minimise makespan with bounded processing 
times,” Int. J. Prod. Res., vol. 48, no. 21, pp. 6367–6385, Nov. 2010, doi: 

10.1080/00207540903321657. 

[9] Z. Ziaei and A. Jabbarzadeh, “A multi-objective robust optimization 
approach for green location-routing planning of multi-modal 

transportation systems under uncertainty,” J. Clean. Prod., vol. 291, no. 

0959–6526, p. 125293, 2021, Accessed: Aug. 20, 2021. [Online]. 

Available: https://doi.org/10.1016/j.jclepro.2020.125293. 

[10] N. M. Matsveichuk, Y. Sotskov, N. G. Egorova, and T. C. Lai, 

“Schedule execution for two-machine flow-shop with interval 
processing times,” Math. Comput. Model., vol. 49, no. 5–6, pp. 991–

1011, 2009, [Online]. Available: doi.org/10.1016/j.mcm.2008.02.004. 

[11] N. M. Matsveichuk, Y. N. Sotskov, and F. Werner, “The dominance 

digraph as a solution to the two-machine flow-shop problem with 

interval processing times,” Optimization, vol. 60, no. 12, pp. 1493–1517, 

Dec. 2011, doi: 10.1080/02331931003657691. 

[12] X. Feng, F. Zheng, and Y. Xu, “Robust scheduling of a two-stage hybrid 

flow shop with uncertain interval processing times,” Int. J. Prod. Res., 
vol. 54, no. 12, pp. 3706–3717, Jun. 2016, doi: 

10.1080/00207543.2016.1162341. 

[13] G. M. Komaki, E. Teymourian, V. Kayvanfar, and Z. Booyavi, 

“Improved discrete cuckoo optimization algorithm for the three-stage 

assembly flowshop scheduling problem,” Comput. Ind. Eng., vol. 105, 
pp. 158–173, 2017, Accessed: Aug. 07, 2021. [Online]. Available: 

https://doi.org/10.1016/j.cie.2017.01.006. 

[14] A. Allahverdi and F. S. Al-Anzi, “The two-stage assembly scheduling 
problem to minimize total completion time with setup times,” Comput. 

Oper. Res., vol. 36, pp. 2740–2747, 2009, doi: 

10.1016/j.cor.2008.12.001. 

[15] C. Y. Lee, T. C. E. Cheng, and B. M. T. Lin, “Minimizing the makespan 

in the 3-machine assembly-type flowshop scheduling problem,” 

Manage. Sci., vol. 39, no. 5, pp. 616–625, 1993, doi: 

10.1287/MNSC.39.5.616. 

[16] C. N. Potts, S. V. Sevast’janov, V. A. Strusevich, L. N. Van 

Wassenhove, and C. M. Zwaneveld, “The two-stage assembly 
scheduling problem: Complexity and approximation,” Comput. Oper. 

Res., vol. 43, no. 2, pp. 346–355, Apr. 1995, doi: 

10.1287/OPRE.43.2.346. 

[17] X. Sun, K. Morizawa, and H. Nagasawa, “Powerful heuristics to 

minimize makespan in fixed, 3-machine, assembly-type flowshop 

scheduling,” Eur. J. Oper. Res., vol. 146, no. 3, pp. 498–516, 2003, 
Accessed: Aug. 07, 2021. [Online]. Available: 

https://doi.org/10.1016/S0377-2217(02)00245-X. 

[18] C. Koulamas and G. j. Kyparisis, “The three-stage assembly flowshop 
scheduling problem,” Comput. Oper. Res., vol. 28, no. 7, pp. 689–704, 

2001, Accessed: Aug. 22, 2021. [Online]. Available: 

https://doi.org/10.1016/S0305-0548(00)00004-6. 

[19] A. Maleki-Darounkolaei, M. Modiri, R. Tavakkoli-Moghaddam, and I. 

Seyyedi, “A three-stage assembly flow shop scheduling problem with 

blocking and sequence-dependent set up times,” J. Ind. Eng. Int., vol. 8, 

no. 1, pp. 1–7, Dec. 2012, doi: 10.1186/2251-712X-8-26. 

[20] P. Fattahi, S. M. H. Hosseini, and F. Jolai, “A branch and bound 

algorithm for hybrid flow shop scheduling problem with setup time and 

assembly operations,” Appl. Math. Model., vol. 38, no. 1, pp. 119–134, 

2014, Accessed: Aug. 08, 2021. [Online]. Available: 

https://doi.org/10.1016/j.apm.2013.06.005. 

[21] J. M. Framinan and  p. p. Gonzalez, “The 2-stage assembly flowshop 

scheduling problem with total completion time: Efficient constructive 

heuristic and metaheuristic,” Comput. Oper. Res., vol. 88, no. 0305–

0548, pp. 237–246, 2017, doi: 10.1016/j.cor.2017.07.012. 

[22] G. M. Komaki, S. Sheikh, and B. Malakooti, “Flow shop scheduling 

problems with assembly operations: a review and new trends,” Int. J. 
Prod. Res., vol. 57, no. 10, pp. 2926–2955, May 2019, doi: 

10.1080/00207543.2018.1550269. 

[23] C. C. Wu et al., “A branch-and-bound algorithm and four metaheuristics 
for minimizing total completion time for a two-stage assembly flow-

shop scheduling problem with learning consideration,” Eng. Optim., vol. 

52, no. 6, pp. 1009–1036, Jun. 2020, doi: 10.1080/ 

0305215X.2019.1632303. 

[24] J. Deng, L. Wang, S. Y. Wang, and X. L. Zheng, “A competitive 
memetic algorithm for the distributed two-stage assembly flow-shop 

scheduling problem,” Int. J. Prod. Res., vol. 54, no. 12, pp. 3561–3577, 

Jun. 2016, doi: 10.1080/00207543.2015.1084063. 

[25] D. Lei, B. Su, and M. Li, “Cooperated teaching-learning-based 

optimisation for distributed two-stage assembly flow shop scheduling,” 

Int. J. Prod. Res., pp. 1–14, 2020, doi: 10.1080/ 

00207543.2020.1836422. 



 Journal of Industrial Engineering International, 17(3), Aug. 2021 

 

33 

 J     I     E     I  

 

[26] J. Huang and X. Gu, “Distributed assembly permutation flow-shop 
scheduling problem with sequence-dependent set-up times using a novel 

biogeography-based optimization algorithm,” Eng. Optim., 2021, doi: 

10.1080/0305215X.2021.1886289. 

[27] P. Kouvelis, R. L. Daniels, and G. Vairaktarakis, “Robust scheduling of 

a two-machine flow shop with uncertain processing times,” IIE Trans., 

vol. 32, no. 5, pp. 421–432, 2000, doi: 10.1023/A:1007640726040. 

[28] M. T. Jensen, “Neighbourhood based robustness applied to tardiness and 

total flowtime job shops,” Parallel Probl. Solving from Nat. PPSN VI. 

PPSN 2000. Lect. Notes Comput. Sci., vol. 1917, pp. 283–292, 2000, 

doi: 10.1007/3-540-45356-3_28. 

[29] J. C. Billaut, A. Moukrim, and E. Sanlaville, Flexibility and robustness 

in scheduling. John Wiley, 2008. 

[30] J. Balasubramanian and I. E. Grossmann, “A novel branch and bound 

algorithm for scheduling flowshop plants with uncertain processing 

times,” Comput. Chem. Eng., vol. 26, no. 1, pp. 41–57, 2002, Accessed: 
Aug. 23, 2021. [Online]. Available: https://doi.org/10.1016/S0098-

1354(01)00735-9. 

[31] Z. Li and M. Ierapetritou, “Process scheduling under uncertainty: 
Review and challenges,” Comput. Chem. Eng., vol. 32, no. 4–5, pp. 

715–727, 2008, Accessed: Aug. 07, 2021. [Online]. Available: 

https://doi.org/10.1016/j.compchemeng.2007.03.001. 

[32] P. M. Verderame, J. A. Elia, J. Li, and C. A. Floudas, “Planning and 

scheduling under uncertainty: A review across multiple sectors,” Ind. 

Eng. Chem. Res., vol. 49, no. 9, pp. 3993–4017, May 2010, doi: 

10.1021/IE902009K. 

[33] X. Xu, W. Cui, J. Lin, and Y. Qian, “Robust makespan minimisation in 
identical parallel machine scheduling problem with interval data,” Int. J. 

Prod. Res., vol. 51, no. 12, pp. 3532–3548, Jun. 2013, doi: 

10.1080/00207543.2012.751510. 

[34] M. González-Neira, E., R. Montoya-Torres, j., and D. Barrera, “Flow-

shop scheduling problem under uncertainties: Review and trends,” Int. 

J. Ind. Eng. Comput., vol. 8, no. 4, pp. 399–426, 2017. 

[35] S. Tadayonirad, H. Seidgar, H. Fazlollahtabar, and R. Shafaei, “Robust 

scheduling in two-stage assembly flow shop problem with random 

machine breakdowns: integrated meta-heuristic algorithms and 

simulation approach,” Assem. Autom., vol. 39, no. 5, pp. 944–962, Oct. 

2019, doi: 10.1108/AA-10-2018-0165/FULL/HTML. 

[36] M. F. Amiri and J. Behnamian, “Multi-objective green flowshop 

scheduling problem under uncertainty: Estimation of distribution 
algorithm,” J. Clean. Prod., vol. 251, 2020, Accessed: Aug. 07, 2021. 

[Online]. Available: https://www.sciencedirect.com/science/ 

article/pii/S0959652619346049. 

[37] C.-C. Wu, J. N. D. Gupta, S. R. Cheng, B. M. T. Lin, S. H. Yip, and W. 

C. Lin, “Robust scheduling for a two-stage assembly shop with scenario-

dependent processing times,” Int. J. Prod. Res., vol. 59, no. 17, pp. 5372–

5387, 2021, doi: 10.1080/00207543.2020.1778208. 

[38] P. Zheng, P. Zhang, J. Wang, J. Zhang, C. Yang, and Y. Jin, “A data-

driven robust optimization method for the assembly job-shop scheduling 
problem under uncertainty,” Int. J. Comput. Integr. Manuf., pp. 1–16, 

2020, doi: 10.1080/0951192X.2020.1803506. 

[39] S. M. H. Hosseini, “Modelling and solving the job shop scheduling 
Problem followed by an assembly stage considering maintenance 

operations and access restrictions to machines,” J. Optim. Ind. Eng., vol. 

12, no. 1, pp. 63–78, 2019, doi: 10.22094/joie.2018.760.1484. 

[40] M. Inuiguchi and M. Sakawa, “Minimax regret solution to linear 

programming problems with an interval objective function,” Eur. J. 

Oper. Res., vol. 86, no. 3, pp. 526–536, 1995, Accessed: Aug. 08, 2021. 

[Online]. Available: https://doi.org/10.1016/0377-2217(94)00092-Q. 

[41] H. E. Mausser and M. Laguna, “A new mixed integer formulation for 

the maximum regret problem,” Int. Trans. Oper. Res., vol. 5, no. 5, pp. 

389–403, 1998, doi: 10.1111/J.1475-3995.1998.TB00122.X. 

[42] H. E. Mausser and M. Laguna, “A heuristic to minimax absolute regret 
for linear programs with interval objective function coefficients,” Eur. J. 

Oper. Res., vol. 117, no. 1, pp. 157–174, 1999, Accessed: Aug. 07, 2021. 

[Online]. Available: https://doi.org/10.1016/S0377-2217(98)00118-0. 

[43] J. Jozefowska, M. Mika, R. Rozycki, G. Waligora, and J. Weglarz, 

“Local search metaheuristics for discrete–continuous scheduling 

problems,” Eur. J. Oper. Res., vol. 107, no. 2, pp. 354–370, 1998, 
Accessed: Aug. 07, 2021. [Online]. Available: https://doi.org/10.1016/ 

S0377-2217(97)00345-7. 

 

 

 

 


