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Abstract 

In predicting of failure time based on operating hours, after identifying the effective parameters on wear process, 

it’s of great importance to model an associated function between parameters and their effects on acceleration the 

failure. Gas turbines are too complicated to simple functions, proposed by manufacturer, cover all the possible 

scenarios with high confidence. In this article, all the parameters affected by time and the working cycle are 

combined by a relation with regarding a correction function that improve the accuracy of forecast to calculate 

equivalent working hours. The approach presented here, all the parameters, with a defined coefficient affect the 

failure process and lifetime reduction of the system and the various wear fractions within the exclusive temperature 

range are weighed by an appropriate factor. This method helps give a more realistic estimate of the residual life 

with more precision. The correction function will be updated consequently base on accurate of last output in 

compare with actual result. Looking at the data, we can observe that 90 percent of failures happen in the area 

between 7800 to 8100 hours of work, which indicate accuracy with regard to these values given for the parameters. 

Also result demonstrates that consideration of the last corrections in lifetime prediction is more effective than 

consideration of all the available data. 
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INTRODUCTION 

Machines and equipment that work under load wear away by 

different patterns and their function level often decreases 

over time. Observations of failure in gas turbines in a period 

of time indicate that their function might sometimes decline 

at a constant rate and at times the rate of failure may 

accelerate or slow down depending on the working 

conditions. Saravaramuttoo and Maclsaac mentioned three 

types of failures, namely instantaneous, delayed time-

dependent and purely time-dependent, in order to explain gas 

turbines failure or degradation and concluded that 

degradation rates are rarely known and nonlinear.  

Li and Nilkitsaranout [1] analyzed recognition and 

prediction of failure time in gas turbines by combining linear 

and nonlinear equations. Also, Brothertom et.al [2] 

considered and explained the degradation mode of gas 

turbines as the bathtub type. Due to such factors as change in 

working conditions because of the design, environmental 

conditions, operating conditions, state of repair and 

maintenance, and more, prediction of failure time in gas 

turbines is a very challenging task. Therefore, to find a 

technical method to predict the effective remaining life of 

motors using gas turbines is highly demanding. 

Working in a competitive condition causes failure to 

various pieces of gas turbines. Generally speaking, one can 

classify prognostic approaches into model-based approaches, 
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data-driven approaches, and hybrid approaches [3]. The first 

group of approaches are based on the understanding the 

physics of failure and degradation mechanisms in the system. 

So, if the system includes various parts, each of which might 

have several mode of failure, understanding the physical 

mechanisms of failure and their mutual effects will be 

complicated. Data-driven approaches require extensively 

numerous sensory data collected from the system, though 

they do not need to recognize the failure mechanisms and 

only assume a proper regression structure on the basis of the 

data. To form the regression formula, some assumptions are 

needed which can affect the prediction results. So, great skill 

will be required to identify the optimum structure here [4]. 

Many of the failure Remaining Useful life prognosis 

methods that apply the data of life time and failure modes by 

use of a statistical distribution along with a diverse set of 

variables, models conditions data and operational state. In 

this method, the system is subject to a number of failure 

modes, and the collected data analysis will be based on the 

assumption of independence between the failure modes [5]. 

Of course, independence of the failure modes is an unreal 

assumption and is not true in practical conditions [6]. Hence, 

clear verification and demonstration of the dependence of 

such modes is difficult and no strategy can simply guarantee 

the efficiency of the statistical model [7]. 

So far, many methods of failure prognosis have been 

used in research and industries. Reference [8] have put 

forward a model of Mixture Weibull Proportional Hazard 

Model (MWPHM) to predict failure time in a mechanical 

system with several modes of failure. In this study, the failure 

density function in the system is obtained through the relative 

combination of failure density functions in different states. 

Here, the parameters of the model were estimated by means 

of monitoring the life time data, collected from all failure 

states. 

Liu et al. [9] suggested a condition monitoring model 

with multiple competing risks, which system failure time was 

given by a random process and a degradation threshold. 

Ahmad Rajab et al [10] suggested a method to predict 

the effective remaining life time which includes two steps: 

machine learning and model identification that called Logical 

Analysis of Data (LAD). In the learning step, the multilayer 

LAD approach is applied in order to extract the inherent 

knowledge based on the monitoring data, collected from a set 

of similar systems exposed to competing failure states. Then, 

the fittest pattern was recognized to predict RUL. 

Most models reviewed in the above paragraphs assume 

that the age data for a particular failure mode are based on a 

specific parametrical failure distribution function. This 

assumption, however, requires a lot of experience and 

knowledge on the efficiency of any distribution in different 

modes. Moreover, it has been mentioned that some studies 

have supposed that different competing modes of failure are 

independent of each other. In addition, many of such models 

are restricted to a few failure modes. As a consequence, it is 

difficult for expert in industries to choose a prognostic model 

proper for their purpose. Therefore, the main challenge in 

prognosis of failure is creating a comprehensive model for 

estimation of age in systems that possess some dependent 

variables. 

Along all the papers reviewed, a number of them have 

put forward approaches that take into dependence of 

variables as a condition. Noorossana and Sabri-Laghaie [11] 

studied the certainty level in systems with competing risks 

and two-time scales where the second scale follow the 

Poisson process. They assumed that modes of the failures 

were independent. Instead of obtaining a limited form for the 

certainty level of the system, they proposed an upper 

parametrical limit. 

The goal of this paper is prognosis of the possible failure 

time in a system with multi-time scales considering the 

possible change of failure patterns over time. Many scales 

could affect failure, which are independent of each other and 

dependent on the first variable. The regression formula given 

for failure by the producers of the system is upgraded through 

a correctional function that follows a particular distribution. 

Gas turbine is considered as a case study and the data are 

collected in a certain period. 

The present research is divided into five sections: The 

second section introduces gas turbines and the approach 

towards their failure. The third section puts forward the 

approach for the solution. And the fourth section goes about 

the use of the model and analysis of the results. Finally, the 

last section concludes it. 

 

GAS TURBINE FAILURE PROCESS 

The first step to get the right results in prognosis of failure 

time in a system is a thorough study and recognition of all 

parameters affecting failure. Then, by choosing the best 

approach base on inputs, we can gain the most effective 

output. The failure process in gas turbines is too complicated 

to allow individual signals, used for diagnosis and prognosis, 

to cover all the possible scenarios. 

I. Description of the gas turbine studied 

Gas turbines have a simple and robust design so that their 

repair and maintenance is done over long intervals. Their 

wear is a function of time and cyclical process. Such turbines 

normally work at high temperatures where erosion and wear 

happen along hot gas path under temperature. The parts of 

gas turbines that are under more pressures, include the 

casings and blades of the turbine. Pollutants and dust could 

also cause wear. These factors can also affect fatigue and its 
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damages and entail the natural deterioration of gas turbines. 

Like any other machine, gas turbines are also subject to wear 

due to long period of use. Timing of inspection and repair 

must be based on accumulation of all kinds of wear caused 

by various sources, which is called the Equivalent Operating 

Hours (EOH) 

II. The suggested approach 

As can be seen in Figure.1, the approach to the failure 

time of turbine could be divided into four steps with regard 

to data collection: The time of system's failure, evaluation of 

the effect of the present failure function in failure prognosis, 

upgrading the coefficients of the correctional function, and 

estimation of the failure time. Following the failure time, data 

collection is carried out continuously. At this step, the 

amounts of all parameters affecting failure at the time of 

failure are gathered. Then, on the basis of accumulation of the 

effects of all effective parameters, ROH is calculated 

according to section III considering the effect of each 

parameter. In this step, the precision of the failure function is 

assessed through consideration of the latest temporal data of 

the failure time. By analyzing precision of the failure function 

estimated, the correctional function is upgraded, which is 

given in section IV. The last outputs of this approach are the 

estimation of next failure time and the certainty level. Due to 

inherent uncertainty in the deterioration process and the 

errors of prognosis approaches, consideration of certainty 

limits seems logical. 

 

FIGURE 1 
THE VARIATION OF THE RATE OF FUEL FLOW 

 

III. Effective Parameters on turbine failure process 

As mentioned before, the parameters effective in wear of 

gas turbine are functions of time and working cycles. In the 

relevant literature, various models have been introduced to 

combine the time-dependent wear fraction and the working 

cycle. In the present paper, the model applied is the one which 

the producers of the machine have suggested for LCF 

evaluation based on working hours. Table.1 shows all the 

parameters effective in the failure process. The current 

approach requires that all the parameters affected by time and 

the working cycle are combined by (1) for the calculation of 

equivalent working hours. Relation.1 indicates that all the 

parameters, with a defined coefficient affect the failure 

process and lifetime reduction of the system and the various 

wear fractions within the exclusive temperature range are 

weighed by an appropriate factor. 

In accordance with Table.1, the start and turn-off of gas 

turbines, rapid temperature changes,  protective measures 

load rejection and trip, rapid loading, and working time are 
 

  

Data collection of failure time 

Performance evaluation of failure function  
 

Failure time estimation and Confidence interval 

Correct function analyzes and update 
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TABLE I 

EFFECTIVE PARAMETERS ON FAILURE PROCESS 

 

 

 

𝑡𝑒𝑞𝑢   
𝑛1 
𝑎1  
𝑛2 
𝑎2 
𝑡𝑖  
𝑛 

𝑡𝑏𝑎𝑠𝑒 

𝑡2    
𝑏2        
𝑓 
𝑤        

𝑡𝑒𝑞𝑢 = ∑ 𝑎𝑖𝑛𝑖

2

𝑖=1

+ ∑ 𝑡𝑖

𝑛

𝑗=1

+ 𝑤 ∗ 𝑓 ∗ (… . 𝑡𝑏𝑎𝑠𝑒 + 𝑏2𝑡2)            (1) 

equivalent operating hours 
number of starts   
start factor   
number of trips 
rapid loading factor 
equivalent hours due to rapid temperature change 
number of rapid temperature change  
operating hours at up to base load 
operating hours from base load to peak load 
peak load factor 
fuel weighting factor 
weighting factor for injection of water 

 

among the effective parameters in speeding up the turbine 

failure process. Also, the dependence of creep strength on 

temperature and its effect on the equivalent working hour are 

given by weighing factors 𝑏1  and 𝑏2 . Given the effect of 

temperature on reduction of lifetime, the basic load factor is 

assumed as 𝑏1 = 0. At temperature rates higher than the basic 

temperature rate, the input temperature and consequently the 

temperature of metal parts along the gas path items increase 

thus causing the load factor at temperature rates higher than 

the basic rate (𝑏2 ) to be equal to 1. The tests run by the 

machine producers demonstrate that the number of working 

hours between the basic load and the peak load (𝑡2) affect the 

calculation of the EOH with a coefficient of 𝑏2 = 4 , which 

shortens the inspection intervals. 
The basic fuel weighing factor is the light liquid fuel for 

which one can assume 𝑓 = 1. As fuel pollutants increase, f 

approaches 1.5 (𝑓 = 1.5). For heavy fuels, the fuel weighing 

factor varies between 1.5 and 4 as a function of concentration 

and the turbine input temperature (More details are provided 

in the repair and maintenance manual.) Weighing factors of 

w and f cannot be directly combined for water and polluted 

liquid fuels since they follow different chemical and 

mechanical mechanisms; so producers advise that the weight 

of these two are fully discussed with designers of the turbines 

in the factory. 

Each start that involves measured and registered gas 

temperatures, clearly elevated to indicate ignition of the main 

flames, is designated as start  

𝑛1. Moreover, automatic registration (major inspection 

meter) is considered a start while the switching speed above 

ignition speed is exceeded (approx. 1/3 rated speed). And for 

starts, the associated weighing factor is 𝑎1 = 10 (start 

factor). Measurement of working time is also carried out on 

the basis of this speed switching point. 

Each time the associated selector switch is actuated 

during operation, a rapid loading  

𝑛2 is counted. The weighing factor  

𝑎2 = 10 (rapid loading factor) is attributed to the standard 

setting of the rapid loading sequence. As a result, a start with 

rapid loading is weighted 20 EOH. In the event the option of 

a start with reduced startup power is chosen, acceleration 

goes ahead at a higher temperature of the hot gas. This type 

of start is to be weighed as a rapid loading, in terms of its 

additional loading. 

Where the rapid temperature varies, 𝑡1 equivalent 

working hours also accrue in the manner identical with rapid 

load changes or when the protective measures load rejection 

and trip take place. Equivalent operating hours caused by 

rapid temperature changes are shown on the working hours 

meter as dynamic working hours. Rapid load changes are 

particularly likely to happen in small, island-like electric 

power supply grids when large power loads (for example, 

electric arc furnaces) are supplied or on loss of a major power 

plant. 

 

IV. Correctional function 

Repair and maintenance instructions for gas turbines are 

upgraded on the basis of data and information exchange 

between the producers and the factory. Following such 

instructions, gas turbines could operate for 8500 equivalent 

time units at a great certainty level, after which begins the 

process of damage. However, what is reminded by 

operational units is that the equivalent time calculated is a 
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guiding measure which could increase or decrease as a 

function of working conditions and findings of inspections. 

This degree of diversion could be covered by the correctional 

function and to do this, we can rewrite (1) as (2): 

𝑡𝑒𝑞𝑢−𝑛𝑒𝑤 = 𝑡𝑒𝑞𝑢 + 𝑔(𝑡𝑒𝑞𝑢)                                        (2) 
 

The measures affecting turbines failure are a set of 

consistent and inconsistent measures. As mentioned above, 

wear in gas turbines systems is a function of time and 

working cycles. Time as a basic measure gives the use of the 

system till failure time affects wear and working cycle 

variables assume their values during the process of use. In 

fact, such measures affect the product's failure alongside the 

first measure and they are dependent on the first measure, that 

is at the beginning (time is zero) they are equal to zero and 

then they gradually increase, so they are non-negative and 

non-diminutive. In the literature, these systems are called 

systems with two scales [12]. So, there is one basic rate of 

failure according to the temporal process and the natural 

deterioration. In the course of using the system some factors 

quicken the deterioration process with a particular 

coefficient. In gas turbines, the basic measure is the working 

time, and the variables listed in Table.1 affect the failure 

process of the system as additional measures.  

According to [11], the measures defined above could 

affect the rate of risk in the system by (3): 

𝑟(𝑡) = 𝑟0(𝑡) + 𝜂1𝑀1(𝑡) + 𝜂2𝑀2(𝑡) + ⋯ + 𝜂𝑚𝑀𝑚(𝑡)

= 𝑟0(𝑡) + ∑ 𝜂𝑖𝑀𝑖(𝑡)

𝑛

i=1

                                (3) 

Where 𝑟0(𝑡) is the basic hazard rate and 𝑀1(𝑡) is the effect 

of the first additional temporal measure on the hazard rate; so 

𝑀𝑚(𝑡) is the effect of the mth additional temporal measure 

on the hazard rate. If  𝑍(𝑡) = 𝜂1𝑀1(𝑡) + 𝜂2𝑀2(𝑡) + ⋯ +

𝜂𝑚𝑀𝑚(𝑡) the joint distribution function is defined as: 

𝑓𝑇,𝑈(t, u) = 𝑓𝑇|𝑍(𝑡)(𝑡|𝑢)𝑓𝑍(𝑡)(𝑢)                                               (4) 

The correction function given in (2) is a linear function as 

𝑔(𝑡)  =  𝑐𝑡 in which 𝑡 is an random variable in the probable 

distribution of 𝑓𝑧(𝑡). So in the step following calculation of 

joint probability distribution, we can calculate 𝑓𝑍(𝑡)(𝑢). The 

additional temporal measures are dependent on the basic 

measure and independent of each other. Different values of 

each additional measure happen with a certain probability at 

any time. For different values of the additional measures at 

any time, different values of 𝑍(𝑡)  is found; so due to 

independence of the additional measures from each other, 

probability for each value of 𝑍(𝑡) is the multiplication of the 

probabilities for the similar values belonging to the additional 

measures. Moreover, we might have different sets of 

additional measures for a constant value of 𝑍(𝑡)  =  𝑢 . 

Therefore: 

𝑓𝑍(𝑡)(𝑢) =  ∑ 𝑝(z𝑗(𝑡))

𝐽

𝑗=1

                                                       (5) 

Where for each value of 𝑍(𝑡) = 𝑢, J is equal to the number 

of states in which 𝜂1𝑀1(𝑡) + 𝜂2𝑀2(𝑡) + ⋯ + 𝜂𝑚𝑀𝑚(𝑡) =
𝑢 . The simulation approach used for estimation of the 

probability distribution function of 𝑓𝑧(𝑡) is: 

1- Consider every possible amount of failure time, (𝑡𝑖  , ∀𝑖 =

1, … , 𝑁 ). 

2- Partition the interval [0 𝑡] into K equal parts. 

3- Generate points on the sample path of 𝑀(𝑠), 𝑠 ∈

{0,
𝑡

𝑘
,

2𝑡

𝑘
,

3𝑡

𝑘
, … , 𝑡} 

4- According to the generated random values, find the possible 

values of 𝜔(𝑡) = 𝑢  

5- Approximate 𝒲𝑖(t) conditional on (𝑡) = 𝑢 

6- Find probability distribution of 𝒲𝑖(t).  

APPLICATION AND ANALYSIS 

Table.2 provides all the data gathered from a gas turbine. 

These data have been obtained from 12 times of repair on one 

gas turbine in the same place. The operational data in various 

working conditions have been seen as the basic data to 

evaluate the system. Each working condition consists of 12 

different variables. 

 The fuel flow that acts as the control parameter of the 

engine is a major contributor to the behavior of a simulated 

dynamic engine. For this study, the fuel flow schedule is 

depicted in Fig.2, where it is clear that it nonlinearly varies 

with regard to time. 

 
 

 

TABLE 2 

GATHERED DATA FROM A GAS TURBINE 

Description G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

Start counter 28 27 34 15 20 45 39 20 19 30 27 25 
Emergency start counter 11 11 15 2 11 18 15 9 10 11 12 7 

Fast loading counter 0 0 0 2 0 0 0 0 0 0 3 0 

Aborted starts counter 3 9 3 1 1 21 6 5 5 8 12 1 
Trip events counter 42 31 8 3 16 35 22 4 6 15 32 4 

Load rejection counter 3 4 3 1 6 2 3 1 0 1 7 10 

High loads trips counter 8 2 2 1 3 2 3 0 1 0 6 3 
High load rejection counter 2 3 1 1 4 1 2 0 0 0 6 4 

Peak loads hours counter 0 0 0 0 0 0.1 0 0 0.1 0.1 0 0 

Fast temperature change  EQ hours 50.8 95.1 117 119.4 86.1 96.5 55.4 53.4 183.9 187.2 111.6 123.3 
Base load hours counter  8042.2 8065 7395 8028.5 8002.1 7655.3 7870.6 7211 7989.4 7487 6577.2 6791.9 
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FIGURE 2 

THE VARIATION OF THE RATE OF FUEL FLOW 

 

 

The failure time prediction is a complex nonlinear. The 

goal is to predict the time of equipment failure on the basis of 

the available age and data of monitoring the condition. There 

is a very complex relationship between the input, the age and 

the data of the condition monitoring, and the output, the  

passed life percentage, and this relationship is non-linear; 

hence, in a multi-time scale system, MATLAB could be a 

powerful tool to deal with the probability function and the 

problem of failure time prediction in the approach proposed, 

because of the capability it possesses in modeling a complex 

non-linear relationship.  

In the present study, MATLAB has been used, along with 

the simulation approach given in secton.2, in order to predict 

the correction function of failure time in a system. Figure.3 

illustrates the simulated relationship between basic working 

hours of the system and the EOH based on the data from 

Table.2 and Figure.2. 

 
 

 

 
FIGURE 3 

THE RELATIONSHIP BETWEEN WORKING HOURS OF THE SYSTEM AND EOH 
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Looking at the data, we can observe that 90 percent of 

failures happen in the area between 7800 to 8100 hours of 

work, which indicate accuracy with regard to these values 

given for the parameters. 

The average prediction error, �̅� is considered as prediction 

precision index and calculated as below: 

�̅� =
1

𝑛
 ∑|𝑝𝑘 − �̂�𝑘|. 100%

𝑛

𝑘=1

                                             (6) 

Where n is the number of inspection times in order to test 

the system, 𝑝𝑘 is the passed life percentage of the system at 

the time of inspection, and �̂�𝑘 is the predicted remaining life 

percentage at 𝐾𝑡ℎ inspection time. The results is as shown in 

table 3. 

 �̅�𝐿2 is the average of prediction error for the two last times 

of inspection, which demonstrates that consideration of the 

last corrections in lifetime prediction is more effective than 

consideration of all the available data. 
 

TABLE 3 

THE RUL PREDICTION RESULTS FOR DIFFERENT TEST HISTORIES USING PROPOSED METHOD 

Period  No. Average prediction error (�̅�) 

  �̅�𝑎𝑙𝑙(%) �̅�𝐿2(%) 

1 12.5 12.5 

2 15.6 15.6 

3 10.4 10.7 

4 11.7 9.3 

5 8.1 8.0 

6 11.2 7.4 

7 10.5 7.1 

8 9.1 6.9 
 

 

 

Conclusion 

The first step to get the right results in prognosis of failure 

time in a system is a thorough study and recognition of all 

parameters affecting failure. Then, by choosing the best 

approach base on inputs, we can gain the most effective 

output. The failure process in gas turbines is too complicated 

to allow individual signals, used for diagnosis and prognosis, 

to cover all the situations. The objective of this research is to 

forecast the failure time of the gas using a linear regression 

model with regarding a correction function that consider 

second variables dependent on the time scale as first variable. 

The results show that considering multi time scales 

significantly improve forecast accuracy. 
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