


1.     Introduction
Landslides as natural phenomenon occur every year

in many parts of the world, especially in hilly areas,

and pose considerable life and property losses. The

negative consequences of the landslidesaremostly the

destruction of homes and infrastructure, loss of pro-

ductivity in the affected area, unpredictable changes

in alocal watercourse, and decreasing habitable and

arable lands.Landslides are caused by natural internal

and external factors, as well as humanfactors.

Internal factors are inherent environmental properties

in a particular area, such as the characteristics of

topography, geology, soil, hydrology, and vegetation.

On the other hand, external factors that directly or

indirectly trigger landslides include factors such as

earthquakes, rain, andsnowfall. Human factors such

as roads construction in steep forested areas and

changes in land use in hilly areas are effective in the

landslides. Landslidesaremostly triggered by external

and human factors.However, internal factors have a

significant impact on the initiation and development

of landslides (Kim et al. 2013). 

Landslides are part of geomorphological cycles in the

development of natural landscapes. Once they

become directly hazardous they interfere with human

activities. The major motivationfor landslide stud-

iesis the prevention and adjustment of accidents and

mitigation of risk.Landslides in developing countries

where environmental management is less of concern

might cause a higher risk.More than 95% of acci-

dents and fatalities is related to mass movements,

especially landslides in developing countries

(Hansen 1984, Chung 1995). Iran is covered byvast-

mountainousregions that constitute more than half of

the country. Due toits geology, seismicity, rainfall,

and climatic conditions, and topographical varia-

tions, Iran is among the countries that have experi-

encing numerous landslides and suffering from the

consequent losses.ShariatJafari (2011) estimated that

28443 landslides in this country caused approximate-

ly half a billion $US.Northern slopes of the Alborz

Mountains (northern Iran) are exposed to small and

large landslides that bring much damage in the region

annually (e.g., Manjil (1990), Absek (1993), Kiasar

(1999), and Karaj-Chalus road landslides (2007))

(Onagh et al. 2012).  Due to the temperate and humid

climate of northern Iran, most of the landslides that

occur in this region are triggered by rainfall events.

Significant economic and social damage of land-

slides hasmadethe understanding of spatial and tem-

poral distribution as well as the prediction of the phe-

nomenona great challenge. 

A variety of experimental and numerical methods are

applied to estimate the landslides hazard.

Experimental methods include the methods for deter-

mining the threshold of precipitation, probabilistic

methods based on historical records, statistical analy-

sis (multivariate and the informational value), math-

ematical analysis (artificial neural networks and

fuzzy logic), heuristic, and definitetechniques.

Multivariate statistical analysis and artificial network

analysis are often used to assess landslide potential

on a regional scale (Tan et al. 2008). Moreover, in the

last decade, multivariate statistical method are used

to assess landslide potential (Meusburger and

Alewell 2009).In heuristic or direct method, theex-

pertiseof landslide hazard zonation plays a key role

(Niemann and Howes, 1991; Anbalagan, 1992;

Turner and Schuster, 1996; Atkinson and Massari,

1998; VanWesten et al. 1999). The problem in this

method is that itrequires many geological and envi-

ronmental information about landslides and the fac-

tors involved.

Gaining this volume of information and data is very

difficult. Other defects of this method are renewable

results, the uniqueness of the used weighting system,

and the ranking and clustering of variables in the

study (Dai et al. 2001). The definite method is used

to assess the large-scale landslidesif the following

conditions are met:firstly, geological and geomor-

phological properties across the region are homoge-

neous and uniform; and, secondly, the type and

nature of the landslide are simple and well known

(Dai et al. 2001 Turner and Schuster, 1996). The main
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advantage of this method is that factor of safetyis

separately calculated for each slope. In small areas,

slope stability cannot be calculated with good accu-

racy using other methods;however, thedefi-

nitemethod would solve the problem well (Van

Westen, 1993; Terlien et al. 1995; Wu and Slide,

1995). Definite methods offer the best quantitative

information about the occurence of landslides, which

can be directly used in determining the hazard

value.However, these methods need highly accurate

input data from laboratory experiments and field

measurements and only used in small areas and large

scale (Van Westen 2004).Statistical methods do not

offer agoverning mechanism  forthe slope and do not-

provide a mechanical sense.However, it is assumed

that measuring the variable involved in thelandslides

in the past, regions prone to landslide can be predict-

ed (Lee et al. 2004; Zhou et al. 2003; Ohlmacher and

Davis 2003). Experimental methods, in general, are

simple and relatively easy to use. Information

required by these methods is usually readily avail-

able. When there is a local historical landslide data

center, experimental relations can be developed easi-

ly; nevertheless, experimental methods just offer

anearly estimation of travel path features (Dia et al.

2002). Experimental methods for predicting aland-

slide, due to being time-consuming and costly and

usable in a small area, are not economically justified.

Distribution models of physical features assess a sta-

ble landslide based on the factor of safety (FS). Using

the same values for each input parameter in calculat-

ing the FS would make these methods more appro-

priate for small-scale regions; because in larger areas,

the range of impacts and effective parameters on soil

analysis is significantly wide (Burton et al. 1998;

Haneberg 2004). With the progress made in combin-

ing GIS and DEM technology in modeling the distri-

bution of physical characteristics, prediction of a

landslide at the basin scale has become easier

(Montgomery and Dietrich 1994; Wu and Sidle,

1995; Dhakal and Sidle 2003; Iida 2004). Although

previous versions of the distribution models of land-

slide physical characteristics could assess aspects of

the spatial distribution,they could not evaluate

dynamic response to the heavy rains. Models of

physical distribution are potentially powerful tools in

analyzing landslide particularly when combined with

DEM data based on LIDAR (Dietrich et al. 2001),

real rains input (Baum et al. 2002; Dhakal and Sidle

2004) and long-term land use scenarios (Dhakal and

Sidle 2003). However, the widespread use of these

models is limited, because they need some distrib-

uted input data (including DEM) and specialized

software such as GIS, and some computer model-

ing.In this research, to predict the time and location

of rainfall-inducedlandslides, TRIGRS, as a distribu-

tion model of physical features, is implemented. The

model is evaluatedin Nekarood basin, eastern

Alborzrangeinnorthern Iran and its sensitivity is test-

ed to the parameters in the investigated landslide.The

aim of this study is to investigate the possibility of

applying this model in the study area, consideringthe

weather conditions and geomorphology of the study

area.

2.     Study area
The study area covers an area of approximately 6.2

km2in Safal-Mian village and 30 km south-southeast

ofNekacounty, located in Mazandaran Province. The

study area iswithin thelongitudes of 53 30 24 and 53

32 12, and latitudes of 36 29 03 and 36 30 070 (Fig.

1). The study areaconsists of limestone (calcarenite)

to marl bedrock, a cover of forest vegetation, and

anaverageprecipitation of 760 mm/year. Basin slope

angels varybetween 1° to 28° and the maximum alti-

tude is 1160 ma.s.l.Sincethis area experiences fre-

quent rainfall and the road construction along steep

slopes, it is posed tofrequent landslide hazards.

However, due to low soil thickness and relatively

steep slopes, landslides aregenerally shallow type.

3.     Index Landslide
To calibrate the TRIGRS model,a landslidemust be

selected in the field with aknown time of occurrence.
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Thus, it will be feasible to correlate the time with the

corresponding rainfall. A landslide occurredon

December 20, 2012, at the longitude of 29 31 53 and

latitude of 55 29 36 within the study area waschosen

as the index landslide. The rainfall responsible for

this slope failure wasan event with the total precipi-

tation of about 30 mm (1.27 intensity and duration of

24 h). The depth of this shallow roadside landslide

(Fig. 2) was between 2 to 2.5.

4.     Materials and Methods
4.1.     Foundations of the model

TRIGRS model was designed by the United States

geological survey (USGS) for modeling time and

spatial distribution of shallow rainfall-induced land-

slides (Baum et al. 2002). This program is written in

FORTRAN language based on models and solutions

offered by Iverson (2000). TRIGRS contains a pene-

tration model, with the governing equation based on

the linear equation of Richard (Baum et al. 2002,

Iverson 2001).The model calculates the fluctuations

of transient pore water pressure and FS due to the

influence of rainfall for each cell. TRIGRS models

the influence of rainfall during a storm with a few

hours to a few days by partial differential equations

(PDEs) for one-dimensional flow in thehomogeneous

and isotropic material in both saturated and non-sat-

urated conditions. Using a series of stepwise func-

tions allows the model to receive the variable rainfall

input and divert excess water from impermeable

areas to areas down the slope with the more penetra-

tion in a simple runoff routing model (Montrasio

2011). This solution evaluates the transient rainfall

effect at the time and location of landslides with fixed

component modeling of pore water pressure in

Equation 1 and the transient component. ToPredict

the time and amount of pore water pressureIverson's

model needs threeparameters: the intensity and dura-

tion of rainfall and soil hydraulic diffusion coeffi-

cient. Bavem et al. 2002 developed Iverson's penetra-
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Figure 1. study area and sampling points

Figure 2.Dec.20, 2012 landslide observed in the study area (landslide index)
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tion model by developing TRIGRS model for items

with variable rainfall intensity and duration.The other

inputs of the model are water table level, soil depth,

cohesion (C), internal friction angle (ϕ), hydraulic

conductivity coefficient, weight per unit volume of

soil, the number of rainfall periods, rainfall duration,

infiltration rate, and topographical conditions. To

improve usability as well as simplify the model

inputs, some soil properties (features) zones, each

one with different mechanical and hydraulic charac-

teristics, have been defined in the new version of

TRIGRS model. The solution of Iverson (2000) used

in TRIGRS is presented in Equation 1:

(Z,t)=[Z-d]β

where, ψ(Z, t) is underground water head at time t and

depth z; Z=z/cosα and z are proportional with the

slope angle α; D is water table fixed in the direction

β=€cosα,z where €=cosα-[Iz/Kz]LT ,Kzis hydraulic

conductivity, Izisinitial surface penetration in the

direction Z,Inzis surface penetration for the n-th time,

and LT means long-term.H(t-tn) is Heaviside func-

tion; and D1=D0cosα, where D0is saturated

hydraulic penetration coefficient andDis the total

number of intervals. In this hydraulic conductivity

model,K(ψ), Equation 2, and moisture contentθ,

Equation 3,are dependent to the pressure head.

(2)   K(ψ)=Ksexp(α∗)                                             
(3)   θ=θr+(θs−θr)exp (α∗)                                        
In the relationships, ψ, pressure head;*=–0where ψ0is

a constant;KSissaturated hydraulic conductivity;

K(ψ) is hydraulic conductivity function; θ isvolumet-

ric water moisture;θrrisradialmoisture; and θs satu-

rated moisture content.Also, α is obtained from

Equation (2) and soil characteristic curve. Moreover,

Ierfc function in Equation 1 is obtained using

Equation 4:

Ierfc is the complementary error function. By com-

bining Equation (1) with the stabilityrelationship of

theclassical infinite slope, a factor of safety (FS) is

obtained (Equation 5).

where,ϕ is internal friction angle, C is soil cohesion,

γsisweight per unit volume of soil, and yw weight per

unit volume of water. Factor of safety (FS) defined as

the ratio of displacement resistant forces to driving

forces on a given slope. If FS is 1 or less, the slope is

unstable and a landslide is probable to occur.

The first term in Equation (5) isthecohesion of soil

that leads to larger values of FS; in the second term,

the angle of friction (ϕ) also increases FS; and in the

third term, transient pressure caused by penetration

level determines thatthe increase in transient pressure

increasing leads to a decrease inFS (Liao 2010). The

model has been successfully used in some parts of the

world for quantitative assessment of rainfall-induced

landslides:

1. TRIGRS was used at acase study to explain tran-

sient rain effect onthe landslide initiation and was

compared with experimental basins such as those in

the Seattle area in America (Godt et al. 2008) and

Tenliao in Taiwan (Chen et al. 2005) and Yangju in

South Korea (Kim et al. 2010).

2. TRIGRS was implemented for landslide stability

analysis and compared with the other physical models

such as SLIP (Montrasio 2011), SHALSTAB

(Sorbino 2010), SINMAP and LISA (Morrisey et al.

2001). The results showed that Iverson's model (2000)

as the base of TRIGRS is preferred to the other men-

tioned four models because the hydrological model

transient response of Iverson can provide a stable con-

dition as a function of time and depth on a regional

scale in areas prone to rainfall-induced landslides.

3. Some researchers focused on parametric analysis

to estimate the material properties (Salciarini et al.
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2006, Vieira 2010) and produced asatisfactory

approximation of soil parameters based on a limited

number of measurements in their study areas.

4. TRIGRS model was integrated with other statisti-

cal techniques such as Monte Carlo simulations. The

results showed that the susceptibility maps of simu-

lated landslidesare similar to those obtained from

field observations (Liu and Wu, 2008).

5. TRIGRS code was reviewed and modified for spe-

cific purposes.in this regard, there is a probabilistic

version of TRIGRS-P (Raia 2013) and a version of

MATLAB MaTRIGRS (Liao et al. 2011) for specific

purposes. TRIGRS-P adopts a random method to cal-

culate and sample input parameters through a proba-

bility distribution. MaTRIGRS offers unique compu-

tational capabilities in real-time simulation and visu-

alization of multi-dimensional matrix data during

modeling.

5.     Parameters preparation
According to the described foundations of the model

shown in Table 1, TRIGRS model requires different

parameters as input information. To provide the

required parameters of the model, field investigations

and laboratory tests were performed in the study area.

In this regard, DCP test wascarried out at 25 points to

determine the depth of soil. Then, undisturbed soil

samples were extracted from each point in order to

estimate the weight per unit volume of soil,perform

shear tests to determine the angle of internal friction

(ϕ) and cohesion (C) of samples saturated for 12

hours, and also the texture and type of studied soil.To

determine soil hydrological parameters, soil particle

gradation test was performed. Next, Ks, α, θr, and θs
were obtained based on thefrequency of particles

(sand, silt, and clay) and natural weight per unit vol-

ume of soil, using Rosetta lite v.1.1 (Schaap et al.

2001) software and Van Genoghten model (1980).

According to required parameters of TRIGRS for

each zone, the area is divided into three zones includ-

ing MH, CH, and CL.

D0 (diffusion coefficient) in studies conducted earli-

er is considered 10 to 500 times for the saturated

hydraulic conductivity. Accordingly, D0 (Liu and Wu
2008) was assumed 200 times of the saturated

hydraulic conductivity; however, information about

Iz (early penetration rate) in the conducted studies is

very low. Izis affected by soil properties including

porosity, storage capacity, and transfer rates.Type of

vegetation, soil content, and soil temperature also

play a role in controlling the amount of penetration.

If the soil is saturated, Iz can be considered equiva-

lent to hydraulic conductivity of the soil while for dry

soil this parameter will be zero. In this study, Iz was

considered one-tenth (0.1) of the saturated hydraulic

conductivity (Salciarini et al. 2008; Liu and Wu,

2008; Kim et al. 2010).

Necessary topographic Information including digital

altitude maps of 20 m × 20m, slope angle and direc-

tion of flow of topography maps were prepared in

ArcGIS (ESRI, Inc., Ver. 9.3) environment for the

south-southeast of Safal-Mianvillage.Also, a soil

depth map was prepared using interpolating of 25

sampling points for the entire study area. The initial-
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Geological parameters Rainfall parameters Soil mechanical 
parameters

Morphological 
parameters

Soil hydraulic

parameters
γs weight per unit of

volume of soil Soil

depth Underwater

ground water

Rainfall intensity
Rainfall duration

Cohesion (c)
Internal friction

angle (ϕ)

Digital elevation
model(DEM)

Slope
Flow direction

(Ks) saturated hydraulic conduc-

tivity

(D0) the hydraulic diffusion coef-

ficient

Saturated volume moisture(θs)

Remained volumemoisture(θr)

(Iz)early penetration rate

Table 1. The necessary input parameters of the TRIGRES model.
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groundwater level in this model was assumed to be

constant; which is acceptable since the running time

of model is relatively short. According to field obser-

vations, the slope of the area and thickness of soil, the

groundwater level in the model was considered 10

cm above the bedrock. The output files were raster-

ized in ArcGIS software and the output was finally

obtained in ASCII format. 

6.     Results and discussion
DCP test results in the field studies show that soil

depth in the area varies between 1 and 3.5 m. In addi-

tion, regarding that the TRIGRS allows different

zones to be determined by the spatial variations of

soil characteristics, based on experimental results,

three zones in the region definedfor the soil typein-

cluding zones 1 (MH), 2 (CH ), 3 (CL). The corre-

sponding soil cohesion for zones 1, 2, and 3 is 5-15,

15-20, and18-24 kPa, respectively. According to

these results, thec and ϕhavea valuerange and those

presented in Table 2 indicatethe best response and

appliedin the model.Other required values are pre-

sented as well.

TRIGRS model evaluates the slope stability and

determines time and place of instability using precip-

itation influence simulation and runoff routing. The

aim of this study is to evaluate TRIGRS model to

predict landslides occurred within the Nekarood

basin (especially in Safal-Mianvillage). Index land-

slide occurred in the region was caused by a rainfall

with theintensity of 1.27 mm/hour and duration of 24

hours. Therefore,the simulation was performed based

on these rainfall parameters and parameters related to

soil propertiesobtained from field observations and

laboratory experiments. The results obtained after

analyzing the data and penetration modeling and

runoff routing show that the cells predicted as unsta-

ble (FS<1)are consistent with the location of

occurred landslides (Fig. 3).

As can be seen in the figure, at the end of a 24 hours

rainfall, the unstable points with FS<1are located

mainly in zone 1 (MH) rather than two other zones

(CH, CL). These points indicate lower resistance

parameters as well as a hydraulic conductivity and

hydraulic diffusion coefficient. Thus, the rainwater

during rainfall penetrates more in the soil of this

region and causes soil saturation.Furthermore,it

increases pore water pressure and reduces shear

strength and finally increasesslope instability. 

It is noteworthy that during low-intensity rainfalls

small soil collapses make the slope around forest

streams stable. Hence, these areas show relatively

high stability in larger precipitations.

Generally, it can be stated that in the forest area land-

slides generally occurwith slope angle changes.In

thestudied area, almost all unstable points indicate

landslide occurrence andpoints predicted as unstable

are on slopes greater than 19°, which stimulates the

instability driving forces. Because of using Google

feature maps to prepare topography maps in this

study,the topography data used to run the model with

an accuracy of 10 m are related to before the recent

landslide in the area. For this reason, in addition to

the area where the index landslide occurred, the

model also indicates two other unstable points that

were surveyed in the field observations as slightly

older landslides. So, the instability in these points is

not associated with the studied rainfall period. 

To investigate the effect of duration of precipitation

on changes of the FS predicted by TRIGRS, the

model was run at the first, sixth, twelfth, eighteenth

and twenty-fourth hours after rainfall (Fig. 5). The

results show that after the onset of rainfall and with

the passage of time, the FS in some places decreases-
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αα θθs θθr Ks(m/s) D0(m2/s) ϕϕ c(kpa) γγs((ΝΝ//m33 )) Zone

1.36 0.472 0.091 3.6×10-7 7.2×10-5 10 9 1.61×104 1

1.59 0.39 .09 2.09×10-7 4.18×10-5 11 17 1.72×104 2

1.2 0.36 0.076 1.42×10-7 2.8×10-5 15 20 1.79×104 3

Table 2. The input values of applied parameters in TRIGRS model.



significantly and the slopebecomes unstable at the

end of precipitation.

As presented in Table 3 and can be seen in Fig. 4, six

hours after arainfall, the percentage of cells with a

FS<1 is0.4% in the study area which is increased com-

pared tothe first hour that is 0.19%, but the increase is

not sharp. This case could occur in the early hours of

precipitation, during which infiltration continues but is

not severe and soil is not saturated yet.

With the passage of time, rain causes soil saturation

and thus the increase in the number of cells with

FS<1indicates an almost exponential trend from12 to

24 hours. These changes areillustrated in Fig. 5.

However, if the soil is allowed to drain the water pen-

etrated to the soil and excess water in the soil, satu-

ration and weight gain of soil mass occurs as well as

an increase in penetrated water pressure emitted from

inside, leading to the reduced number of unstable

cells predicted by TRIGRS (Table 4).

When performing the model foradurationof 48 hours
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Figure 3.The factor of safety at the end of a 24hour precipitation (drawn circles represents observed landslides that are
also predicted by the model).

Cell percentage with
FS<1

Cell number with FS<1 hour

0.19 26 1

0.4 56 6

1.37 19 12

2.73 379 18

4.08 569 24

Table 3. The percentage and number of cells with FS<1
with the rainfall time period.

Table 4. percentage and the number of cells with factor of
safety by increasing penetration time

The percentage of
cells with FS<1

The number of
cells with FS<1

Penetration
period

4.08 569 24

3.32 464 48

1.1 154 72

Figure 4. Percentage change of cells with FS<1 during
the rainfall hours.
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and two 24-hour rainfall periods with the intensity

of1.27 mm/hour (Fig. 6 (a)), the results indicated a

lower instability than the case ofapplying only one

24-hour period, with the same rainfall intensity (Fig.

6 (b)).In the case where the duration of the penetra-

tion period continues for 48 hours, the reduction

trend also continues (Fig. 6 (c)).As mentioned earli-

er, by increasing the drainage period, the reducer fac-

tors of FSareweakened and its changes indicate a

considerable increase.

To investigate the effect of initialgroundwater level

and the sensitivity to changes in water table, the

models were run with water tables of 0, 10, 20, and

30 cm above bedrock.As expected, it was observed

that the FS fell with as water table rises (Table 5 and

Fig. 7), because of the increased pore water pressure;

leading to an increase in the driving forces of slope

instability, and its resistance decreases. Nevertheless,

the FS changes are not high, implying the more effect

of rainfall compared to underground level on slope

instability.

7.     Conclusion
In order to predict time and location of a landslide,

TRIGRS model was applied as a tool capable of

modeling the influence of precipitation, runoff, and

finally the slope stability. The aim of this study is to

investigate the possibility of using this model for pre-

dicting landslides in Iran. For this purpose, the
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Table 5. Percentage and the number of cells with afactor
of safety with the rise ofwater table. 

The percentage of
cells with FS<1

The number of
cells with FS<1

Water level of
floor(cm)

0.19 26 10

0.30 42 20

0.38 53 30

Figure 5. FS in: a)  one hour, b) six hour, c) 12 hours, d)
18 hours, and e) 24 hours after rainfall.

Figure 6. The impacts of penetration period increase on
FS: a) an FS for 24 hours precipitation with the rainfall
intensity of 1.27 mm/h; b) an FS for 48 hours rainfall
with two periods of rainfalls with an intensity of 1/27

mm/h and 0 mm/h; and c) an FS of 72 hours rainfall with
periods of 24 hours and intensity of 1.27 mm/h and pene-

tration for 48 hours.



requiredinput parameters were determined through

the field and laboratory studies.The rainfall simula-

tion results and its impact on slope instability indi-

cated that thepredicted instabilities and theoccurred

instabilities after 24 hours of rainfall all fall in zone 1

(MH) thatcompared with the other two zones (CH,

CL) has alower resistance and higher hydraulic con-

ductivity and the diffusion coefficient.Moreover, in

zone 1 the unstable areas are those with aslope

greater than 19° and also thickersoils. The rainfall

effect on the instabilities predicted by the modelis

presented by the soil mass weight gain due to soil sat-

uration. The impact ofwater table variations on the

created instability, unlike the effect of rainfall, is not

significant and the changes in the factor of safety(FS)

are not significant due to the rise of thewatertable. It

is noteworthy that TIRGRS can accurately predict the

space development of regional characteristics such as

slope, soil depth, water table depth, and soil type and

simulate theoccurrenceof landslidesthat few numeri-

cal models are capable of. Accordingly, and consid-

ering the ability of TRIGRS to predict landslide on a

regional scale, it can be implemented to predict the

time and location of landslides and prevent the occur-
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Figure 8. The percentage changes of cells with FS<1. 

Figure 7. The FS for different water table levels: a) 10
cm b) 20 cm, andc) 30 cm above the floor.
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rence of damage such as the loss of forests, increased

sedimentation, destruction of homes, blocked roads,

and disconnection between villages by slope stabi-

lization. Furthermore, by applying slope stability

reinforcements it would be possible to prevent land-

slides and preserve agricultural soils that are the nat-

ural assets and the only available soils in hilly areas.
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