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    Accurate estimation of evaporation is important for design, planning and operation of water systems. 
In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in 
the planning and management of irrigation practices. This paper investigates the ability of artificial 
neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation. Four 
different ANNs model comprising various combinations of daily climatic variables, that is, air 
temperature, daily sunshine hours, wind speed, and relative humidity are developed to evaluate degree 
of effect of each mentioned variables on evaporation for two stations located in central part if I.R. of 
Iran. A comparison is made between the estimates provided by the ANNs model and the multiple linear 
regression models. Various statistic measures are used to evaluate the performance of the models. 
Based on the comparisons, it was revealed that the ANNs computing technique could be employed 
successfully in modeling of evaporation process from the available climatic data. The ANN also 
increased dramatically the accuracy of evaporation estimation compare to the multiple linear regression 
models.  [SH, Karimi-Googhari. Daily Pan Evaporation Estimation Using Artificial Neural Network-
based Models. International Journal of Agricultural Science, Research and Technology, 2011; 
1(4):159-163]. 
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1. Introduction 
Evaporation (E) is a complex and non-linear 

process since it depends on several interacting 
factors, such as sunshine hour, temperature, humidity 
and wind speed. Accurate estimation of E is of 
paramount importance for many studies, such as 
hydrologic water balance, irrigation system design 
and management, and water resources planning and 
management. For many years engineers and 
researchers have used loss from evaporation pans, 
multiplied by a coefficient applicable to the particular 
pan, as an estimate of the evaporation loss from 
reservoirs. The most widely used pan is the US 
Weather Bureau Class A pan which is 4 ft in diameter 
and 10 in. deep and is mounted on a timber grill 
about 6 inches above the soil surface. Pan 
evaporation has been widely used as an index of 
evapotranspiration and for estimating lake and 
reservoir evaporation (Kisi, 2006).  

It is impractical to place evaporation pans at 
every point where there is a planned or existing 
reservoir and irrigation project. It is also highly 
unlikely to have in inaccessible areas where accurate 
instruments cannot be established or maintained. A 
practical means of estimating the amount of pan 
evaporation where no pans are available is of 

considerable significance to the hydrologists, 
agriculturists, and meteorologists. A number of 
methods have developed to estimate the evaporation 
values from climatic variables and most of these 
methods require data that are not easily available 
(Stephens and Stewart, 1963; Reis and Dias, 1998; 
Irmak et al, 2002; Gavin and Agnew, 2004). Simple 
methods that are reported (Stephens and Stewart, 
1963) try to fit a linear relationship between the 
variables. However, the process of evaporation is 
highly non-linear in nature, as it is evidenced by 
many of the estimation procedures. Many researchers 
have emphasized the need for accurate estimates of 
evaporation in hydrologic modeling studies (Sudheer 
et al, 2002). This requirement could be addressed 
through better models that will address the inherent 
non-linearities in the process. 

Artificial neural networks (ANNs) are 
empirical models, which are quite perfect in 
modeling complex nonlinear phenomenon. ANN 
architecture is a massively parallel-distributed 
information processing system that has certain 
performance characteristics resembling the biological 
arrangement of neurons in human brain. The neural 
network typically consists of an input layer, an output 
layer and at least one layer of nonlinear processing 
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elements, known as the hidden layer. In many 
respects, ANNs are similar to regression-based 
models in hydrology, except that ANNs do not 
require specification of a mathematical form (Hsu et 
al., 1995). Neural networks approaches have been 
successfully applied in a number of diverse fields, 
including water resources. In the hydrological 
context, recent experiments have reported that 
artificial neural network (ANN) may offer a 
promising alternative (Kisi, 2005; Kumar et al, 2004; 
Kisi, 2005; Supharatid, 2003). Even when there are 
missing data values, ANN methods can be applied for 
infilling missing hydrological records (Khalil et al., 
2001). Some authors have compared Box–Jenkins 
and ANN methods (Hsu et al., 1995) confirming, in 
most cases, the superiority of ANNs. Using ANNs 
models for short term river flows forecasting have 
been investigated in the Xallas river (Castellano, 
2004), Winipeg river system (Zealand, 1999) and 
Geer catchment (Vos and Rientjes, 2005) and all of 
them concluded the feed forward ANNs could 
forecast the streamflows accurately. However, the 
application of ANN to evaporation modeling is 
limited in the literature. To the knowledge of the 
author, no study has been carried out to utilize the 
input–output mapping capability of artificial neural 
network technique in evaporation modeling in arid 
zones of Iran. This provided an impetus for the 
present investigation. The potential of the 
ANNs_based model for estimation of the evaporation 
using climatic variables is investigated and discussed 
in the study. The performance of the ANN is 
compared with multiple regression method. 

 
2. Materials and methods 
Artificial neural networks (ANNs) are 

essentially semi-parametric regression estimators and 
are suitable for simulate the behavior of complicate 
physical phenomena. A significant advantage of the 
ANN approach in system modeling is that there is no 
need to have a well-defined physical relationship for 
systematically converting an input to an output. It is 
needed for most networks provide a collection of 
representative examples (input–output pairs) of the 
desired mapping. The ANN then adapts itself to 
reproduce the desired output when presented with 
training sample inputs. One of the most popular ANN 
architectures is multi layer perceptron (MLP). A 
typical MLP has neurons arranged in a distinct 
layered topology, as shown in Figure 1. The input 
layer simply sends the values of the input variables 
into the hidden layer. The hidden and output-layer 
neurons are fully connected to all of the units in the 
preceding layer. Each hidden neuron in an ANN 
receives a number of inputs from original data or 
other layer nodes. Each input comes via a connection 

that has a strength (or weight) attached. The weighted 
sum of the inputs is formed, to compose the 
activation of the neuron. The activation signal is 
passed through an activation (transfer) function 
produce the output of the neuron. A feed-forward 
MLP network, where nodes in one layer are only 
connected to nodes in the next layer, was used for 
modeling.  

 
 
 
 
 
 
 
 
 
 

    Figure 1: Structure of a typical MLP 
Network geometry determines the number of 

connection weights and how these are arranged. This 
is generally done by fixing the number of hidden 
layers and choosing the number of nodes in each of 
these.  It has been shown that ANNs with one hidden 
layer can approximate any function. The number of 
nodes in the input layer is fixed by the number of 
model inputs, whereas the number of nodes in the 
output layer is equal to the number of model outputs. 
In this study, there was only one output (reservoir 
inflow). For selecting the final structure of the ANN 
model, it being a trial and error procedure, started 
with a minimum number of nodes in the hidden layer 
and the network was trained until a minimum mean 
square error will be attained. The number of nodes in 
a hidden layer has been increased gradually until such 
an increase did not significantly improve the 
performance of the neural network. The process of 
optimizing the connection weights is known as 
‘training’ or ‘learning’. Here, the Levenberg–
Marquardt backpropagation training (LMBP) has 
been used for train a Feed-forward Neural Network 
(FNN) where nodes in one layer are only connected 
to nodes in the next layer. The sigmoidal transfer 
functions that are most common, was used. 

 
3. Results and discussion 
The daily climatic data of two weather 

stations, Esfehan Station (latitude 32˚ 37΄ N, 
longitude 51˚ 40΄ E) and Kashan station (latitude 33˚ 
59΄ N, longitude 51˚ 27΄ E) operated by Iranian 
meteorological organization are used in the study. 
The elevations are 1550 and 982 m for the Esfehan 
and Kashan Stations, respectively. The data sample 
consisted of ten years (1995–2005) of daily records 
of air temperature (T), sunshine hour (SH), wind 
speed (W), relative humidity (RH) and pan 
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evaporation (E). For each station, the 70 percent if 
data were used to train the models and the remaining 
data were used for validation and testing. The 
statistics properties of collected data are presented in 
Table 1. 

A- Kashan  station 
The weather parameters considered in this 

study were the air temperature (T), sunshine hour 
(SH), wind speed (W), and humidity (H). The study 
examined various combinations of these parameters 
as inputs to the ANN models so as to evaluate the 
degree of effect of each of these variables on 
evaporation. Building the ANN model several times 
with one different variable added into the input 
combination per time. Thus, the input combinations 
evaluated in the present study are: (i) T; (ii) T and 
SH; (iii) T, SH and W; (iv) T, SH, W and RH.  
The ANN model implementation was carried out 
using the MATLAB routines. The connection 
weights, threshold and the number of neurons in the 
hidden layer, which can be interpreted as the model 
parameters, were adjusted during the calibration or 
training process through minimization of the mean 
square error (MSE) using the Traingdm function in 
MATLAB which is based on the gradient descent 
method using the error back-propagation algorithm 
whit considering the momentum. Each network has 
been trained many times to obtain minimum of MSE 
for a fixed number of neurons in hidden layer. Each 
network was trained at least 15 times and the number 
of neurons was varied between 2 to 10. The best 
model was selected for each subset using raw and 
transformed data and results were compared. The 
performance of selected models which were 
developed in this study was evaluated by using a 

variety of standard statistical performance evaluation 
measures. Specifically, 4 different statistical 
performance indices have been employed: average 
absolute relative error (AARE), Pearson's correlation 
coefficient (R), Nash–Sutcliff efficiency (CE), and 
normalized root mean square error (NRMSE). For 
more information about these indices you can refer to 
Karimi and Lee (2011). The final architectures of the 
ANN models and R, AARE, CE and NRMSE 
statistics of each ANN model in train and test period 
for the Kashan station are given in Table 2. Result 
indicates that the number of neurons in hidden layer 
is more than input variables for all models. The table 
2 indicates that the ANN model whose inputs are the 
T, SH, W and RH (EANN4) has the smallest AARE 
(0.287), NRMSE (19.96), the highest R (0.0.918) and 
CE (0.843) during training process. This emphasizes 
the factors influencing evaporation, since the model 
considered all the parameters. The statistics increase 
non-significant during test process with superiority of 
KANN4 model like training process. In order to 
assess the ability of ANN model compare to the 
multiple regression model a linear model is 
developed using the KANN4 model inputs. The 
linear model for Kashan station is (KMLR):  
E=-1.17+0.402(T)+0.055(SH)+0.353(W)+0.022(RH)    (1)             
(R=0.9) 

The R in training period for linear model 
using all four input variables is equal to KANN1 
which uses only temperature variable. The results of 
estimating evaporation for testing period are 
illustrated in figure 2 and 3 for neural network and 
linear models. Results show that the KANN1 model 
performs better than KMLR model. 

Table 1. The statistics properties of the data 

Parameter Unit Kashan station Esfehan station 
Ave. Min. Max Std. Skewness Ave. Min Max Std. Skewness 

T ˚C 23.36 0.1 38.5 8.22 -0.441 20.1 0.1 38.4 7.15 -0.4 
H % 33.98 7 93 15.8 1.217 29.83 8 88 13.5 1.33 

SH hour 9.3 0.1 13.5 2.98 -1.39 10.16 0.1 13.9 2.64 -1.63 
W m/sec 0.348 0 4.59 0.6 2.45 1.16 0.1 9.95 1.2 1.56 
E mm 8.02 0.1 17.3 4.14 -0.092 8.007 0.1 18.2 3.84 -0.04 

T=Air Temperature, SH=Sunshine Hour, W=Wind Speed, RH=Relative Humidity, E=Pan Evaporation 
Table 2. Final architectures of the ANN models and their statistics values for Kashan station 

During Training 
Model Inputs Best Architecture Name R CE AARE NRMSE 

T 1-6-1 KANN1 0.903 0.816 0.35 21.57 
T, SH 2-6-1 KANN2 0.915 0.836 0.333 20.39 
T, SH, W 3-4-1 KANN3 0.914 0.833 0.334 20.6 
T, SH, W, RH 4-7-1 KANN4 0.918 0.843 0.287 19.96 

During Testing 
Model Inputs Best Architecture Name R CE AARE NRMSE 

T 1-6-1 KANN1 0.914 0.83 0.43 21.3 
T, SH 2-6-1 KANN2 0.92 0.845 0.418 20.59 
T, SH, W 3-4-1 KANN3 0.923 0.847 0.416 20.43 
T, SH, W, RH 4-7-1 KANN4 0.923 0.848 0.36 20.37 

T=Air Temperature, SH=Sunshine Hour, W=Wind Speed, RH=Relative Humidity, E=Pan Evaporation R= Pearson's Correlation Coefficient, 
CE= Nash–Sutcliff Efficiency, AARE= Average Absolute Relative Error, NRMSE= Normalized Root Mean Square Error 
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Table 3. The final architectures of the ANN models and their statistics values for Esfehan station. 
During Training 

Model  
Inputs Best Architecture Name R CE AARE NRMSE 

T 1-7-1 EANN1 0.823 0.68 0.413 26.91 
T, SH 2-5-1 EANN2 0.845 0.712 0.382 25.41 
T, SH, W 3-5-1 EANN3 0.856 0.733 0.37 24.4 
T, SH, W, RH 4-7-1 EANN4 0.868 0.754 0.345 23.5 

During Testing 
Model 
 Inputs Best Architecture Name R CE AARE NRMSE 

T 1-7-1 EANN1 0.817 0.642 0.453 27.43 
T, SH 2-5-1 EANN2 0.842 0.69 0.405 25.52 
T, SH, W 3-5-1 EANN3 0.838 0.613 0.46 28.5 
T, SH, W, RH 4-7-1 EANN4 0.85 0.695 0.40 24.53 

T=Air Temperature, SH=Sunshine Hour, W=Wind Speed, RH=Relative Humidity, E=Pan Evaporation 
R= Pearson's Correlation Coefficient, CE= Nash–Sutcliff Efficiency, AARE= Average Absolute Relative Error, NRMSE= Normalized Root 
Mean Square Error 
 
The linear model for Esfehan station (EMLR) is: 
                     E= 0.541+0.35 (T)+0.102(SH)+0.508(W)+0.046(RH)                  (2)                                     (R=0.827) 
 
 

y = 0.8174x + 1.3551
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Figure 2: The observed and estimated evaporation of 
Kashan station in the test period using KANN4 
model 

y = 0.6835x + 4.0964
R2 = 0.81
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Figure 3: The observed and estimated evaporation of 
Kashan station in the test period using linear model 
 

B- Esfahan station 
The final architectures of the ANN models 

and R, AARE, CE and NRMSE statistics of each 
ANN model in train and test period for the Esfehan 
Station are given in Table 3. This table indicates the 
number of neurons in hidden layer of each input 
variable. The number of neurons in hidden layer is 
more than input variables for all models. The table 

indicates that the ANN model whose inputs are the T, 
SH, W and RH (EANN4) has the smallest AARE 
(0.345), NRMSE (23.5), the highest R (0.868) and 
CE (0.754). This emphasizes the factors influencing 
evaporation, since the model considered all the 
parameters.  

The R in training period for linear model 
using all four input variables is equal to EANN4 
which uses same variables. The results of estimating 
evaporation for testing period are illustrated in figure 
3 and 4 for neural network and linear models. Results 
show that the both models, EANN4 and linear model, 
could not estimate evaporation as well as Kashan 
station. The generalization of EANN4 is superior and 
in term of using less input data the ANN models 
could perform better.  

Although this study was locally applied and 
its results could not be implemented to other 
locations, the ANNs model with temperature-based 
data as only climatology variable which can be found 
in any area, could be used in irrigation management 
problem when sufficient or reliable data were not 
available to estimate reference evapotranspiration 
Models or evaporation from water bodies. The ANN 
technique could also be of use in water budgeting of 
basins, design of reservoirs and various other 
hydrological analyses where other models may be 
inappropriate. The study only used data from two 
areas and further work using more data from various 
areas may be required to strengthen the results of this 
study. 
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y = 0.8267x + 2.2222
R2 = 0.72
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Figure 4: The observed and estimated evaporation of 
Esfehan station in the test period using EANN4 
model. 

y = 0.6853x + 2.7625
R2 = 0.7056
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Figure 5: The observed and estimated evaporation of 
Esfehan station in the test period using linear model. 

 
4. Conclusion and Recommendations 
The present study demonstrates the 

capabilities of artificial neural networks technique 
(ANNs) for evaporation modeling, however the 
choice of ANNs architecture and input parameters are 
crucial for obtaining good estimate accuracy. The 
ANN model whose inputs are the air temperature, 
sunshine hour, wind speed, and relative humidity 
performed the best among the input combinations 
tried in the study. Results indicate that all these 
variables are needed for better evaporation modeling. 
It was found that using only the air temperature input 
gives poor estimates. In order to assess the ability of 
ANN model relative to that of the linear regression 
technique, the comparison was made. The ANN 
model in both stations that using air temperature, 
sunshine hour, wind speed, and humidity  were found 
to perform better than the multiple linear regression 
model that using same meteorological variables.  
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