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Abstract

 The effects of Nano-zinc oxide (ZnO), salicylic acid (SA), and 
sodium nitroprusside (SNP) were studied on sweet violets under different 
irrigation water regimes in a factorial experiment. The factors were drought 
stress at three levels including irrigation at 85 (control), 65 (moderate 
stress) and 55 (severity stress) percent of field capacity (FC) soil water 
deple-tion and foliar application of ZnO, SA, SNP, and distilled water as a 
control. Means comparison showed that the best resutls was obtained from 
interaction 200 mg L-1 SA, with irrigation and 85 % FC,  the treatment 
that influenced most traits positively. Also, 300 mg L-1 SA and both SNP 
rates significantly outperformed the control and Nano-ZnO. The lowest 
stomatal conductance was related to the 200 µM SNP at 55% FC. The low-
est malondialdehyde (MDA) content was observed in 200 mg L-1 SA and 
85 % FC treatment. The highest relative water content (RWC) was associ-
ated with the application of 1500 mg L-1, Nano-ZnO at 85% FC. The con-
trol plants at 55% FC recorded the highest proline (46.62 μg g-1 FW). The 
highest peroxidase (POD) enzyme activity was related to the treatment of 
1000 mg L-1 Nano-ZnO and the highest ascorbate peroxidase (APX) to 
the treatment of 1500 mg L-1 Nano-ZnO at 55% FC.

https://dorl.net/dor/20.1001.1.22516433.2021.11.2.6.5
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INTRODUCTION 
Sweet violets (Viola odorata L.) is a pharmaceutically valuable herbaceous perennial and 

a species of flowering plant in the violaceae family. The plant is native to Asia, North Africa, and 
Europe. Its history as a medicinal herb dates back as far as 500 BC, where it was known to be used 
to relieve pain due to cancer. In the traditional system, it has been used in anxiety, insomnia and 
to lower blood pressure (Siddiqi et al., 2012). 

In their life cycles, plants may be faced with abnormal and stressful conditions that may 
inflict devastating impacts on their growth and development, physiology, and even survival. Given 
the recent droughts or water deficit is a common stress that plants encounter during their life at 
various intensities (Gill and Tuteja, 2010). Water deficit reduces relative water content of leaves, 
causes stomatal closure, decreases stomatal conductivity (Jalili Marandi, 2010), disrupts nutrient 
uptake (Paygzar et al., 2009), increases reactive oxygen species (ROS), increases the peroxidation 
of membrane lipids (Lei et al., 2007), destroys photosynthesizing pigments, decreases photosyn-
thesis, and finally reduces plant growth (Din et al., 2011). The decline of growth during stress ex-
posure is a defensive mechanism by which plants conserve their water and counteract drought 
stress (Ahmadi et al., 2008). Some other defensive mechanisms against drought stress can be enu-
merated as increasing osmotic regulators such as proline amino acid (Bayoumi et al., 2010) and 
ROS scavenging by antioxidant systems (Gill and Tuteja, 2010). 

Researchers argue that nutrients can improve its growth status and improve its resistance 
to and adaptation to stress. Since drought stress hinders plants’ access to soil water and nutrients, 
nutrients are provided to the plants in these conditions by their foliar application (Paygzar et al., 
2009; Jalili Marandi, 2010). Zinc (Zn) is a micronutrient required for plants is a co-factor for an-
tioxidant enzymes, so it improves the resistance of plants to different stresses including drought 
stress by increasing antioxidant strength (Shojaei and Makarian, 2015).  

Nano-based fertilizers are more efficient and environment friendly than the conventional 
fertilizers and are readily absorbed by plants and meet their requirements (Naderi and Abedi, 2012; 
Shojaei and Makarian, 2015). Researchers believe that nano compounds resemble antioxidant en-
zymes so that they reinforce the antioxidant system of plants and improve their stress resistance 
(Upadhyaya et al., 2015; Mahil and Kumar, 2019). One of the nano-metal particles most commonly 
used in agriculture is Nano-Zn whose positive effects at low dosages (Liu and Lal, 2015) and its 
detrimental and toxic impacts at high dosages (Zhao et al., 2014) have been reported on various 
plants. 

 Salicylic acid (SA) is a plant phenol and a plant hormone that is involved in the regulation 
of plant physiological processes (Miura and Tada, 2014; Fayez and Bazaid, 2014). SA makes a 
balance between growth and senescence and enhances resistance to environmental stresses (Yavas 
and Unay, 2016). Sepehri et al. (2015) showed that SA is an anti-transpiration compound and is 
effective in alleviating the destructive impacts of drought stress. Some researchers argue that SA 
contributes to maintaining plant growth and development under drought stress conditions by re-
ducing transpiration, enhancing water use efficiency, increasing antioxidant capacity, and improv-
ing photosynthesis (Singh and Usha, 2003). Some effects of SA application on drought-stressed 
plants include improving relative water content of leaves (Naghizadeh and Kabiri, 2017), increasing 
leaf and petal pigments (El Tayeb, 2005), enhancing photosynthesis (Sakhabutidnova et al., 2003), 
reducing electrolyte leakage (Naghizadeh and Kabiri, 2017), increasing proline content (Alexieva 
et al., 2001), and increasing the activity of antioxidants (Horvath et al., 2007). 

Nitric oxide (NO) is a plant growth regulator that is involved in plants’ responses to biotic 
and abiotic stresses (Xiong et al., 2012) in addition to participation in physiological processes (Del 
Rio et al., 2004). In stressful conditions, the application of NO induces stomatal closure and pro-
tects plant cells against the destructive effects of oxidative stress (Neill et al., 2003). It has been 
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established that NO strengthens the antioxidant system of plants and improves their drought re-
sistance (Laspina et al., 2005). 

Sodium nitroprusside (SNP) is a compound that releases NO and contributes to plant re-
sistance to various stresses. SNP acts as a growth regulator and an antioxidant and mitigates the 
effects of stresses on plants (Yadollahi et al., 2017; Narimani et al., 2017). Tan et al. (2008) reported 
that SNP application under stress conditions increased the antioxidant activities, reduces lipid per-
oxidation, and improved photosynthesis in wheat. According to Tian and Lei (2006), SNP appli-
cation contributed to water retention, ROS reduction, and better growth and yield of wheat under 
drought stress. There are reports about the positive effect of SNP in reducing electrolyte leakage 
(Shallan et al., 2012), improving growth (Yadollahi et al., 2017), improving water relations, re-
ducing water loss (Omidi and Sepehri, 2015), increasing chlorophyll (Asadi Sanam et al., 2014), 
and increasing antioxidant activity (Gorgini Shabankareh and Khorasaninejad, 2017) in plants ex-
posed to drought stress. 

Sweet violet is native to Iran (Guilan, East Azarbaijan, etc.). So far, no research has focused 
on the resistance of this plant species to water deficit (Baradaran Rahimi et al., 2017). Therefore, 
the present study aimed to evaluate the effect of ZnO, SA, and SNP on physiological and enzymatic 
traits of sweet violet (Viola odorata L.) under different irrigation water regimes. 

 
MATERIALS AND METHODS 
Experimental design and treatments 

The study was done as a factorial experiment based on randomized complete block design 
in three replications. The factors were drought stress at three levels including irrigation at 85 (con-
trol), 65 (moderate stress) and 55 (hard stress) percent of field capacity soil water depletion and 
foliar application of distilled water as the control treatment, Nano-ZnO (1000 and 1500 mg L-1), 
SA (200 and 300 mg L-1), and SNP (200 and 300 μM).  

 
Plant materials and treatment application 

The seedlings of sweet violets were collected at the 2-4-leaf stage from the Mikandi valley 
in Kaley bar County, Eastern Azerbaijan province (Long. 38°52’ N., Lat. 47°02’ E., Alt. 1144 m) 
on March 28, 2018. Then, they were immediately transferred to the research farm of Agricultural 
and Natural Resources Research and Education Center of Eastern Azerbaijan province to be planted 
in pots containing garden soil with a loam-sandy texture. The physical and chemical characteristics 
of the substrate are presented in table 1. The agronomic and irrigation requirements of the plants 
were completely provided until their establishment. Two weeks after their establishment, the foliar 
application was performed at two stages in an interval of one week. Drought stress was initiated 
one week after the second foliar application based on the field capacity of the substrate by the 
weight method. Drought stress continued until the end of the experiment (October 10, 2018) when 
the leaves are beginning to turn yellow and the end of flowering. 

Effects of Nano-Zinc Oxide.../ Bagheri et al.

Clay 
(%)

Silt 
(%)

Sand 
(%)

K 
(ppm)

P  
(ppm)

Total N 
(%)

Organic C 
(%)

Total  
neutralizable 

value
pH EC 

(dS m-1)

12 32 56 375 51.6 0.34 3.39 7.25 7.35 4.54

Table 1. Physical and chemical properties of the substrate.
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Assessment of traits 
Leaf and stolon number: At the end of the trial, leaves and stolons of three plants were 

counted in each plot and their average was recorded as the number of leaves and stolon’s per plant. 
 
Leaf area index (LAI): LAI was measured with a leaf area measurement device (LI-3100C, 

Licor) in mid flowering. 
 
Leaf relative water content (RWC): The top adult leaves of the stems were sampled at 4 

steps at the hot hours of the day (between 12:00 and 14:00); and average 4 steps was measured. 
Then, the following equation was used to calculate leaf RWC (Pasban Eslam, 2004). 

 
 
 
 

In which F.W: the fresh weight of the sample, T.W: the turgor weight of the sample after immersion 
in distilled water for 24 hours, and D.W. is the weight of the sample dried at 80°C. 

 
Stomatal conductance: It was measured on fully-grown leaves at the top of the stem for 

which the stomatal conductance was measured on both sides of the leaves with an AP4 promoter 
(Delta-t Devices, UK) (Kumar and Singh, 1998). 

 
Leaf nitrogen content: It was measured by titration after digestion and distillation by the 

Kjeldahl system (Waling et al., 1989; Rowell, 1994). 
 
Total chlorophyll and carotenoids content of petals: To measure them, fully-grown leaves 

and fresh petals were sampled at the end of the experiment. Then, the following equations were 
used to estimate those (Mazumdar and Majumdar, 2003). 

 
Total chlorophyll=7.12 (A660 )+16.8 (A643) 

Carotenoids in petals=(4.69×A440)-(0.286 ×20.2×A645)+(8.02×A663) 
 
Proline: To measure leaf free proline content, the leaves were sampled at the end of the 

experiment and the proline accumulated in their tissue was measured by Bates et al. (1973)’s 
method. 

 
Malondialdehyde (MDA): It was determined by sampling fresh petals at the end of the 

experiment and using de Vos et al. (1991)’s method to find out MDA accumulation in petals. 
 
The activity of antioxidant enzymes: Peterson (1977)’s method was used to measure per-

oxidase (POD) activity and Chen and Asada (1989)’s method was used to find out ascorbate per-
oxidase (APX) activity. 

 
Data analysis  

Data were analyzed with the SAS9.2 software package. Means were compared by the LSD 
(Least Significant Difference) test with P<0.05 accuracy, and the graphs were drawn in MS-Excel.   
 
RESULTS AND DISCUSSION 
Leaf number 

Leaf number was significantly (P< 0.01) influenced by the interaction of drought stress and 
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foliar spray (Table 2). Based on the comparison of means, leaf number at the 85% FC did not differ 
from the application of 200 or 300 mg L-1 SA and 200 or 300 μM SNP, significantly. They were 
all related to the highest leaf number. At 65% FC, the plants treated with 200 mg L-1 SA produced 
most leaves (107.9 leaves). At 55% FC, the application of 200 mg L-1 SA (in which plants produced 
103.1 leaves) increased leaf number, significantly (Table 3). Prolonged water deficit period reduced 
leaf number in Sesuvium portulacastrum (Slama et al., 2006) and almond (Zokaee Khosroshahi et 
al., 2014), which is consistent with our results. Jones and Cortlett (1992) revealed that when plants 
are faced with water deficit for a prolonged period, the number of leaf was reduced to avoid water 
loss and ensure their survival. In the present study, SA and SNP application increased leaf number 
in the sweet violets by mitigating stress and contributing to the preservation of water uptake. 
Ghaderi et al. (2015) showed that the treatment of strawberries with SA increased leaf number in 
stressful conditions, which is consistent with our findings.  

Effects of Nano-Zinc Oxide.../ Bagheri et al.

S.o.V df
MS

Leaf no. Stolon no. Leaf area 
index

Total  
chlorophyll

Petal 
carotenoids

Leaf  
nitrogen

R 2 125.5ns 0.8253ns 7619ns 1.007ns 14.7** 0.656**

A 2 902** 0.777ns 38441* 9.74** 2.99** 0.680**

B 6 508** 5.904** 69832** 2.59* 0.856** 1.28**

A × B 12 415** 7.666** 70686** 3.124** 1.017** 0.595**

Error 40 54.03 0.375 7619 1.367 0.0606 0.0862

CV (%) 8.29 5.41 9.54 10.08 3.48 5.61

S.o.V df
MS

Relative 
water content

Stomatal con-
ductance Proline MDA POD APX

R 2 68.2ns 0.00054ns 9.33ns 0.428ns 0.00038ns 0.0019ns

A 2 8157** 0.46681** 590** 4.117** 0.00360** 0.00701**

B 6 8566** 0.0142** 883** 8.145** 0.00368** 0.05891**

A × B 12 3980** 0.00079* 210** 2.569** 0.00362** 0.02837**

Error 40 172 0.00038 9.33 0.428 0.0003857 0.000904
CV(%) 3.23 3.22 11.34 14.37 15.54 12.09

Table 2. ANOVA of effect of drought stress and foliar application of salicylic acid (SA), Nano-zinc oxide (ZnO), 
and sodium nitroprusside (SNP) on the recorded traits.

*, ** and ns: Significant at P < 0.05, P < 0.01 and insignificant, respectively. A: Water stress, B: Foliar application of 
SA, ZnO, and SNP.

Table 2. Continued.

*, ** and ns: Significant at P < 0.05, P < 0.01 and insignificant, respectively. A: Water stress, B: Foliar application of 
SA, ZnO, and SNP.
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Leaf area 
The effect of interaction treatments was significant (P < 0.01) on leaf area (Table 2). When 

the drought stress was intensified, leaf area of the control started to decline. At all three levels of 
FC, the highest leaf area was obtained from the application of 200 mg L-1 SA (Table 3). The de-
creased leaf area is a reaction to improve tolerance to water deficiency. It is, indeed, a mechanism 
by which plants reduce transpiration to maintain water in their tissues when they are faced with 
water deficit (Jalili Marandi, 2010). In addition to water retention, the decline of leaf area con-
tributes to reducing photosynthesis and plant growth under stressful conditions, which is per se a 
factor for resistance against the adverse conditions that arise from water deficiency (Tu et al., 
2003). In our study, the foliar application of SA increased the leaf area of drought-affected sweet 
violets. In a study reported by Naghizadeh & Kabiri (2017), foliar application of SA on maize 
plants improved their leaf area. Similarly, increases have been reported in the leaf area of guar 
(Chamani et al., 2018) and alfalfa (Dolatmand Shahri and Haghshenas, 2017), which is in line 
with our findings. Bayat et al. (2011) and Bagheri and Mohammadalipour (2011) attributed the 
SA-related increase in leaf area under drought stress to the impact of this compound on stimulating 
Rubisco activity and photosynthesis. Also, some researchers suggested that by contributing to the 
preservation of root health and growth, SA increases water and nutrient uptake through roots, 
thereby increasing plant growth by which new leaves are grown and leaf area is increased (Du et 
al., 1998; Ahmadi et al., 2008; Tohidi Nejad et al., 2015). 

 
Leaf relative water content (RWC) 

The interaction of drought stress and foliar spray was significant (P < 0.01) on leaf RWC 
(Table 2). Means comparison showed that the irrigation at 55% of FC reduced RWC versus the ir-
rigation at 85% and 65% of FC, significantly. The application of 1500 mg L-1 ZnO at 85% of FC 
had the highest leaf RWC (0.830 %) (Fig. 1). Drought stress reduces osmotic potential, which 
causes the decline of leaf RWC. As leaf RWC is reduced, stomata start to close and this reduces 
stomatal conductance, photosynthesis, and plant growth (Jalili Marandi, 2010; Ahmadi et al., 2008). 
At more severe drought stresses, leaf RWC declines to an extent that the cells shrivel and cell walls 
lose their stability (Taiz and Zeiger, 1998). Overall, RWC is an important indicator of water status 
in plants; it reflects the balance between water supply to the leaf tissue and transpiration (Colom 
and Vazzana, 2003). There are reports on the loss of leaf RWC in savory (Gorgini Shabankareh 
and Khorasaninejad, 2017), Hibiscus sabdarifa (Sanjari Mijani et al., 2015), and Melissa officinalis 
L. (Abbaszadeh et al., 2007) with the increase in the intensity of drought stress, which is consistent 
with our findings. Adjusting and making a balance in osmotic pressure of drought-tolerant plants 
contributes to preserving and increase leaf RWC (Gorgini Shabankareh and Khorasaninejad, 2017). 
Researchers suggested that SA increases the synthesis of adaptive osmolytes, e.g. proline, in plants 
exposed to drought stress. These adaptive osmolytes, with osmotic adjustment, help to cells for 
absorb and keep water in stressful conditions (Naghizadeh and Gholami Tooran Poshti, 2014). 
Leaf RWC has been reported to increase by SA application under drought stress in wheat 
(Naghizadeh and Gholami Tooran Poshti, 2014), fenugreek (Tohidi Nejad et al., 2015), maize (Rao 
et al., 2012), and strawberries (Ghaderi et al., 2015), which is in line with our findings. 

 
Stomatal conductance 

The interactive effect of drought stress and foliar application was significant (P < 0.05) on 
stomatal conductance (Table 2). Comparison of means revealed that 300 µM SNP showed the 
highest stomatal conductance at all three FC levels. The lowest stomatal conductance was related 
to 200 µM SNP (11.88 cm/s), 200 mg L-1 SA (12.89 cm/s) at 85% of FC, which were not signifi-
cantly different (Fig. 1). Overall, drought stress exerts its impacts on reducing plant growth and 
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yield through reducing leaf area, decreasing relative water content, decreasing stomatal conduc-
tance, and reducing photosynthesis (Shojaei and Makarian, 2015). Bota et al. (2004) stated that 
the decline of leaf water potential under drought stress is responsible for the decline of stomatal 
conductance. There is a report as to the loss of stomatal conductance in drought-affected sunflowers 
(Siosemardeh et al., 2011). According to findings of Mardani et al. (2011), the application of SA 
on cucumber plants under drought stress reduced their stomatal conductance. Researchers sug-
gested that the foliar application of SA in stressful conditions has some anti-transpiration activity, 
thereby reducing stomatal conductance. It should be noted that plants vary in their responses to 
foliar applications and in their adaptability to stresses. Furthermore, the stomatal conductance did 
not decrease in the control sweet violets and those treated with 300 mg L-1 SA, while they were 
the best in leaf number and area under the 55% FC.  

SNP plays a role in reducing the stomatal conductivity, transpiration and stomatal closure 
by releasing nitric oxide (Farooq et al., 2009). In the present study, the lowest stomatal conductance 
(16.83 cm s-1) at the 55% FC was related to the application of 200 μM SNP. Yazdandoost Hamedani 
et al. (2019) found that the treatment of sunflowers with SNP at different drought levels reduced 
stomatal conductance, which is consistent with our findings. 

Fig. 1. Mean comparison of interaction effect of drought stress and foliar application on leaf relative 
water content and stomatal conductance.  

Leaf nitrogen (N) content 
The analysis of variance indicated that the interaction effect of drought stress and foliar ap-

plication was significant (P < 0.01) for leaf N content (Table 2). Based on the comparison of means, 
the highest leaf N content at 85% of FC was related to the treatments of 200 μM SNP (6.066%) 
and 200 mg L-1 SA (5.80 %), not differing to one another significantly. The lowest leaf N (4.41%) 
at this level of FC was observed in the plants exposed to 1500 mg L-1 Nano-ZnO. The treatments 
of 200 or 300 μM SNP and 300 mg L-1 SA exhibited the highest leaf N at 65% of FC. At 55% of 
FC, the control (4.59%) had the lowest and the plants treated with 200 mg L-1 SA (5.513%) had 
the highest leaf N content (Table 3). Nutrient uptake from the soil is decreased in plants exposed 
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to drought or water deficit conditions (Jalili Marandi, 2010). Pandy et al. (2000) reported that 
water deficit reduced N uptake and biomass production in maize. Jalili Marandi (2010) stated that 
the reasons for the decline of nutrient uptake by plants in drought conditions are the decline of 
transpiration, membrane permeability, and root uptake capacity, as well as the disruption of active 
mobilization system. Some researchers suggested that plant N content increases in stressful con-
ditions (Yadollahi et al., 2017). The accumulation of free amino acids such as proline has been 
noted as a cause of N increase in plants under drought stress (Narimani et al., 2017). However, 
there are reports on the increase (Yadollahi et al., 2017) or decrease (Jalili Marandi, 2010) in N 
content under drought stress. 

 
Stolon number 

The results in table 2 show that the interaction of drought stress and foliar application was 
significant (P < 0.01) for the number of stolons. Based on the results of means comparison, plants 
treated with 200 mg L-1 SA at the three levels of FC produced the highest number of stolons (14.10). 
The lowest number of stolons at 85% (9.33) and 65% (9.00) of FC belonged to the control and 
1000 mg L-1 ZnO treatments (Table 3). An increase was reported in the growth of roots in peas 
under drought stress (Shojaei and Makarian, 2015). Paygzar et al. (2009) reported that the plants 
that have a stronger root system are more resistant to drought conditions. Haverkort et al. (1990) 
observed that drought stress increased the growth of stolons and tubers in potatoes but reduced 
the number of them, which is consistent with our findings. 

 
Total chlorophyll 

Total chlorophyll was significantly (P < 0.01) influenced by the interaction of drought stress 
and foliar application (Table 2). The results showed that the highest total chlorophyll content (13.56 
mg g-1 F.W) at 55% of FC was obtained with the application of 1000 mg L-1 ZnO. The lowest total 
chlorophyll (9.93 mg g-1 F.W (at 65% of FC was obtained from the control. The plants treated with 
300 mg L-1 SA, and 200 µM SNP at 55% of FC had the highest total chlorophyll content (Table 
3). At the 55% FC, the increase in the ZnO level increased total chlorophyll (Table 3). Thalooth et 
al. (2006) reported that the foliar application of Zn had significant impact on chlorophyll content 
under drought stress. In the present study, SA increased total chlorophyll at the 55% FC (Table 3). 
Researchers reported that SA prevents damage to photosynthetic pigments and improves photo-
synthesis under drought stress (Khan et al., 2003). The positive impact of SA on increasing chloro-
phyll has been reported in canola (Faridoddin et al., 2003) and barley (El Tayeb, 2005), which is 
in agreement with our findings. Total chlorophyll at the 55% FC was increased by the application 
of 200 μM SNP, while SNP at the rate of 300 μM reduced (Table 3). It is believed that the capability 
of nitric oxide in suppressing ROS is the reason for chlorophyll stability in stress-affected plants. 
As such, free oxygen radicals increase with stress and destroy photosynthetic pigments and struc-
tural proteins of the photosynthesis system (Laspina et al., 2005). Neill et al. (2003) attributed 
chlorophyll preservation in the plants treated with nitric oxide to more Fe availability. There are 
reports about the preservation and improvement of chlorophyll and delayed senescence in the 
leaves of tomatoes (Shehab et al., 2010) and sunflowers (Laspina et al., 2005) by the application 
of SNP. 

  
Petal carotenoids 

The interaction of drought stress and foliar application was significant (P < 0.01) for petal 
carotenoids (Table 2). The highest petal carotenoid (8.36 and 8.166 mg g-1 FW) was obtained at 
55% of FC from the application of 200 and 300 mg L-1 SA, respectively. At 65 % FC, the 1500 mg 
L-1 ZnO exhibited the lowest petal carotenoid content (6.14 mg g-1 FW) (Table 3). Carotenoids are 
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a major group of pigments in plant antioxidant systems, which are susceptible to oxidative de-
struction (Makarian et al., 2017). It is believed that mild water deficit increases but severe water 
deficit decreases carotenoids in plants (Jeyaramraja et al., 2005). According to El Tayeb (2005), 
the foliar application of SA to barley plants increased carotenoids. Zangani et al. (2017) reported 
that SNP increased carotenoids in milk thistle. But, Makarian et al. (2017) found that the foliar 
application of Zn to mung beans had no significant impact on petal carotenoids content.  

 
Proline 

The effect of treatments was significant (P < 0.01) on proline (Table 2). With the decrease 
in FC, proline content was increased in the control. Proline content was the highest in the plants 
treated with 300 mg L-1 SNP at 55% (52.47 µg g-1 FW) and 55% (46.62 µg g-1 FW) in control 
plant. The lowest of proline (11.88 µg g-1 FW) was obtained at 85% of FC from the application of 
200 mg L-1 SA (Fig. 2). Some researchers believe that the increase in proline in stress-affected tis-
sues reflects the activation of osmotic adjustment systems. In fact, proline serves to increase water 
and nutrient uptake through osmotic adjustment (Abbaszadeh et al., 2007; Jalili Marandi, 2010). 
Jalili Marandi (2010) suggested that when a plant is faced with water deficit stress, its leaf RWC 
is decreased and its proline content is increased. Similarly, our results showed that the proline con-
tent of the control plants was increased with a decrease in leaf RWC. Proline accumulation has 
been reported to increase in sunflowers (Sanjari Mijani et al., 2015) and savory (Gorgini Sha-
bankareh and Khorasaninejad, 2017) under drought stress. According to Makarian et al. (2017), 
proline accumulation under water deficit stress reduces water waste. In drought stress conditions, 
SA application contributed to enhancing proline content and improving resistance in savory (Yaz-
danpanah et al., 2011). Jalili Marandi (2010) argues that SNP protected plants against oxidative 
injuries under stressful conditions, increased proline synthesis, and reduces water loss from the 
leaves. 

 
Malondialdehyde (MDA) 

The ANOVA showed that the interaction effect of drought stress and foliar application was 
significant (P < 0.01) on MDA accumulation (Table 2). Means comparison indicated that the high-
est MDA content was obtained at 55% of FC from the control (6.21 nmol g-1 F.W) and 200 µM 
SNP. The highest MDA content at 65% of FC was related to the 300 µM SNP (6.15 nmol g-1 F.W) 
and 1500 mg L-1 ZnO (6.02 nmol g-1 F.W), but the differences were not significant. At 55% of FC, 
the 200 µM SNP (6.63 nmol g-1 F.W) did not show any significant differences with control (6.58 
nmol g-1 F.W) and they had the highest MDA content (Fig. 2). Researchers believe that the increase 
in MDA markers the increase in membrane peroxidation by ROS (Dolatmand Shahri and 
Haghshenas, 2017; Munns and James, 2003). Plants faced with drought stress use antioxidant sys-
tems to inactivate ROS and counteract lipid peroxidation and MDA accumulation (Zhang et al., 
2004). It has been documented that the exogenous application of SA to stress-affected plants con-
tributes to preserving membrane structure. SA serves to inhibit lipid peroxidation and the increase 
in MDA in plant tissues by preventing the activity of lipoxygenase and reducing H2O2 (Janda et 
al., 2007; Noctor and Foyer, 1998). Similar to our findings, MDA reduction has been reported 
in Satureja hortensis L. (Yazdanpanah et al., 2011) and alfalfa (Dolatmand Shahri and Haghshenas, 
2017) with the application of SA. 
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Activity of antioxidant enzymes 
The activity of the antioxidant enzymes (POD and APX) was significantly (P < 0.01) af-

fected by the interaction of drought stress and foliar application (Table 2). The comparison of 
means showed that POD activity at 85 and 65% of FC with application 200 and 300 mg L-1 SA 
and 1500 mg L-1 ZnO decreased compared to control. The highest POD activity (0.192 unit mg-1 
Pro. min) was registered in the plants treated with 1000 mg L-1 ZnO and the control plants (0.170 
unit mg-1 Pro. min-1) at 55% of FC. The lowest POD activity (0.088 unit mg-1 Pro. min) was ob-
tained from the application of 200 µM SNP at the 55% FC (Table 3).  

The comparison of means showed that APX activity at 85% and 65% of FC was higher in 
the treatment of 1500 mg L-1 Nano-ZnO than in the other treatments. At 55% of FC, the control 
(0.424 unit mg-1 Pro. min) and 1000 mg L-1 Nano-ZnO (0.463 unit mg-1 Pro. min) had the highest 
APX enzyme activity and 200 mg L-1 SA (0.178 unit mg-1 Pro. min) had the lowest one (Table 3). 
Expectedly, the activity of the antioxidant enzymes was increased in the control treatment with 
the increase in drought stress. Drought stress increases ROS in plant tissues. Plants scavenger ROS 
by diverse antioxidant systems and alleviate their detrimental impacts (Lei et al., 2007; Agarwal 
and Pandey, 2004). Nasibi (2011) reported that drought stress increased the activity of APX, gua-
iacol peroxidase, and CAT in tomatoes. The increase in the activity of antioxidant enzymes was 
also reported for barley under drought stress (Amini et al., 2008). In the present study, the activity 
of the APX and POD were increased in the control treatment with the decrease in FC. Therefore, 
it seems that violets alleviate the activity and detrimental impacts of ROS by increasing antioxi-
dants and improve the plant resistance to water deficit by preserving membrane structure and re-
ducing MDA, which is evident in these treatments. An increased activity has been reported for 
POD in Kentucky bluegrass (Fu and Huang, 2001) and for APX in rice (Sharma and Dubey, 2005) 
with the progress of drought stress, which is consistent with our findings. Tan et al. (2008) reported 
that the application of SNP enhanced the activity of antioxidant enzymes and prevented lipid per-
oxidation. 

Fig. 2. Mean comparison of interaction effect of drought stress and foliar application on proline and 
malondialdehyde.
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CONCLUSIONS 
The finds of presence study revealed that foliar application of anti-stress compounds cased 

to improved growth and enzymatic activities of sweet violet plant under water deficit conditions. 
However foliar application of Nano-ZnO had no significant effects on plant resistance to water 
deficit but SA and SNP had a positive impact on plant functions under both normal and stress con-
ditions. Therefore, to maintain growth, it is recommended to reduce the irrigation interval of sweet 
violets to 65% of field capacity soil water depletion and even to 55% soil water depletion if water 
resources are limited. Further research is, however, suggested on the impact of interaction effect 
of anti-stress compounds (SA and SNP) and water deficit on the active ingredients for pharma-
ceutical uses. It is also recommended to study more irrigation levels to find the most effective 
treatments and to identify the range of plant tolerance to water deficit. 
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