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Abstract 

Basil (Ocimum basilicum L.) is one of the valuable medicinal plants. Negative effects of NaCl stress on plants 
have been reported and silicon may alleviate these negative effects through promoting antioxidant system. 
This study was conducted to investigate the effects of silicon as an elicitor and NaCl as salinity stress on some 
morphological, biochemical, and antioxidant parameters in basil. The plants were pretreated with silicon (0, 
0.5, and 1.50 mM) and submitted to NaCl stress (0, 50 and 100 mM). Results showed that NaCl stress 
decreased dry and fresh weight of shoots and roots and chlorophyll and carbohydrate contents, but 
carotenoid and hydrogen peroxide (H2O2) contents and also superoxide dismutase (SOD) and catalase (CAT) 
activities increased (p<0.05). Silicon also increased dry and fresh weights of shoots and roots and carotenoid, 
chlorophyll, and carbohydrate contents, an also CAT and SOD activities, but it decreased H2O2 contents 
(p<0.05). Based on these findings, silicon, especially 1.50 mM concentration, is recommended for protection 
of basil under NaCl stress. 
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________________________________________________________________________________

Introduction 

Plants are constantly exposed to various stresses 
and pathogens. Their survival under harmful 
conditions depends on their metabolic and 
biochemical adaptations to adverse conditions 
(Muscolo et al., 2015). Salinity stress is one of 
several factors that impair plant growth and 
development through osmosis and ion toxicity, 
causing irreparable damage to plants (Hajiboland 
et al., 2017). It is reported that about 20% of the 

world's irrigable lands are affected by salinity (Zhu 
et al., 2020). Salinity has negative effects on plant 
physiological characteristics and reduces their 
growth such as dry weight and leaf area, (Abbasi 
et al., 2016) and germination percentage and 
number of leaves (Isayenkov and Maathuis, 2019). 
On the other hand,  salinity reduces water  ion 
imbalance, ion toxicity, coding genes in the 
synthesis of nucleic acid and proteins, and 
photosynthetic activity (Yarsi et al., 2017). One of 
the reasons for plant damage in salinity stress is 
the production of reactive oxygen species (Guo et 
al., 2015), which is modified by enzymatic and 
non-enzymatic antioxidant mechanisms. 
Production of antioxidant compounds to improve 
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plant resistance to stress depends on the intensity 
of stress, plant genotype, and plant species 
(Daoud et al., 2018). The damage due to salinity or 
osmotic effect and ionic toxicity is stimulated 
under the influence of Cl- and Na+. The two ions 
prevent the absorption of ca2+, k+, and other 
nutrients (Acosta-Motos et al., 2017) since k+ is an 
essential element which plays a significant role in 
enzyme activity, turgor adjustment, cell 
expansion, adjustment of membrane electrical 
potential, and PH homeostasis (Ragel de la Torre 
et al., 2019). Therefore k+ could be considered as 
an essential element in plants' physiological and 
developmental procedures (Hasanuzzaman et al., 
2018). 

Silicon is the second most abundant element after 
oxygen (Soundararajan et al., 2017) which is 
absorbed by plants in the form of Si (OH)4 (Yavaş 
and Aydın, 2017). Studies have shown that in 
addition to plants in yellow-brown, gold and 
diatoms algae to the extent significant silicon is 
found (Tubana et al., 2016). According to the 
definition of essential elements, the necessity of 
silicon for researchers is a little questionable, 
although its absence causes damage to plants and 
reduces their growth and development (Mauad et 
al., 2016). Therefore, researchers classify this 
element in the category of semi-essential (Rios et 
al., 2017). Silicon plays a significant role in  
controlling biological and non-biological stresses 
(Delavar et al., 2016). Silicone improves water 
absorption by affecting the osmotic potential and 
promotes better growth and development of 
plants (Khorasaninejad et al., 2020). Silicon 
accumulates in the epidermal tissue to protect the 
plant from damage caused by fungi and insects 
(Shanan and El Sadek, 2017) and also from the 
adverse effects of stress conditions (Luyckx et al., 
2017). 

Ocimum basilicum L., commonly known as basil, is 
an annual herb of the Lamiaceae family. It is 
cultivated at high levels as one of the most popular 
plants in human food, which is also of interest for 
researchers in medicinal plants (Jahan et al., 
2015). Salinization of agricultural water and soil 
due to environmental problems and uncontrolled 
use of water resources poses a big challenge for 
agricultural practices. Therefore, this study was an 
attempt to investigate the possibility of increasing 

the resistance of Ocimum basilicum L. to salinity by 
using silicon under hydroponic cultivation. 

Materials and Methods 

Plant material and treatment conditions 

Seeds of O. basilicum were prepared form Pakan-
Bazr Company, Isfahan, Iran. The seeds were then 
cultivated on a bed of perlite and irrigated with 
distilled water for 6 days. After emerging, the 
seedlings were freighted with 50% Long-Ashton 
solution (pH 6.5) (Hewitt, 1966). The seedlings 
were then transferred to hydroponic condition 
with 16 h light/8 h darkness and fed with Long-
Ashton solution. The temperature program was 16 
± 2 ℃ and 24 ± 2 ℃ for night and day, respectively. 
Seedlings with 3 leaves were transferred to 
hydroponic media (Long Ashton solution) in 1.5 L 
plastic pots with 2 plants per pot, aerated by an air 
pump. Hydroponic media was changed every 5 
days. The plants were treated with different 
concentrations of silicon in the form of 
Na2SiO3.5H2O, (0, 0.5, and 1.50 mM) in hydroponic 
media (pH 6.5) (Hewitt, 1966) 30 days after 
planting and for 90 days. After that the plants 
were treated with NaCl (0, 50, and 100 mM) for 6 
days. NaCl and silicon were prepared from Merk 
Company (Munich-Germany).  

The plants were harvested and weighed to record 
fresh weight (FW). To assess enzyme activity, the 
plants were fixed in liquid azote and kept in -20 ℃. 

Assessment of morphological parameters 

Fresh weights of roots and stems were measured 
with a digital scale with 0.001 accuracy. For 
measuring dry weights, roots and stems were 
wrapped in foil and placed in an oven at 72 ℃ for 
48 hours. After drying, the dry weights of the 
samples were measured with the same digital 
scale. 

Assessment of biochemical parameters 

The amount of chlorophyll and carotenoids were 
measured and expressed in mg g-1 fresh weight 
(Porra et al., 1989). Carbohydrate contents were 
evaluated and expressed in mg g-1 fresh weight 
(Fales, 1951). 
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Assessment of enzyme activities and antioxidant 
parameters in shoots 

Hydrogen peroxide (H2O2) content was assayed 
and expressed in nM g-1 weight (Sagisaka, 1976). 
Also, superoxide dismutase (SOD) activity was 
evaluated and expressed in Um g-1 protein 
(Giannopolitis and Ries, 1977) by using p-nitro 
blue tetrazolium. Catalase (CAT) activities was 
assayed and expressed in U mg -1 protein (Kar and 
Mishra, 1976)  

Data Analysis 

The present study was conducted as a factorial 
arrangement, consisting of silicon (0, 0.5, and 1.50 
mM) and NaCl (0, 50, and 100 mM) treatments 
with 3 replications based on a completely 
randomized design. The data were normally 
distributed according to the Kolmogorov-Smirnov 
test. Analysis of variance and Duncan's test were 
used in SPSS software. 

Result 

Physiological parameters 

Findings showed that shoot fresh weights (Fig I. A) 
significantly decreased in the plants treated with 
NaCl (50 and 100 mM) compared to the plants 
grown under non-stress condition (p<0.05). 
Application of silicon significantly increased shoot 
fresh weight (p<0.05) in plants treated with 1.50 
mM silicon and NaCl (50 and 100 mM). Moreover, 
application of silicon with 0.5 mM increased shoot 
fresh weight under 100 mM NaCl, but it did not 
have a significant effect on plants treated with 50 
mM NaCl (p<0.05). 

Shoot dry weight (Fig I. B) significantly decreased 
in all levels of salinity compared to control plants 
(p<0.05). In the combined treatments of silicon 
(0.5 and 1.50 mM) and NaCl (50 and 100 mM), 
silicon caused a significant increase in shoot dry 
weight compared to non-silicon plants (p<0.05). 

Root fresh weight (Fig II. A) significantly decreased 
in all levels of salinity compared to control plants 
(p<0.05). Application of silicon significantly 
increased this parameter. In plants treated with 
silicon (0.5 and 1.50 mM) and salinity (50 and 100 

 

 

Fig. I. Effects of silicon on shoot fresh weight (A) and 
shoot dry weight (B), in basil grown under NaCl stress; the 
data are shown as means ± SE. Superscripts (a-f) show 
significant differences among groups (p<0.05). 

 

 

Fig. II. Effects of silicon on root fresh weight (A) and root 
dry weight (B) in basil grown under NaCl stress; the data 
are shown as means ± SE. Superscripts (a-f) show 
significant differences among groups (p<0.05). 
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mM) root fresh weight significantly increased 
compared to non-silicon plants (p<0.05). 

Root dray weights (Fig II. B) significantly decreased 
in the plants treated with NaCl (50 and 100 mM) 
compared to the plants grown under non-stress 
condition (p<0.05). In plants treated with silicon 
(0.5 and 1.50 mM) and salt (50 and 100 mM), root 
dry weights significantly increased compared to 
non-silicon plants (p<0.05). 

Biochemical parameters 

Analysis of the obtained data revealed that the 
concentration of chlorophyll a (Table 1) 
significantly decreased in the plants treated with 
NaCl (50 and 100 mM) compared to those grown 
under non-stress condition (p<0.05). Treatment 
with silicon (0.5 and 1.50 mM) significantly 
increased chlorophyll a contents in plants under 

50 and 100 mM salinity compared to non-silicon 
plants (p<0.05). 

Content of chlorophyll b (Table 1) did not show 
any significant change in salt stress group 
compared to control plants (p<0.05). In plants 
treated with silicon (0.5 and 1.50 mM) and salt (50 
and 100 mM) chlorophyll b content showed a 
significant increase compared to non-silicon plants 
(p<0.05). 

Content of total chlorophyll (Table 1) showed 
significant decreases under all levels of salinity 
compared to control plants (p<0.05). In addition, 
in plants treated with silicon (0.5 and 1.50 mM) 
and salt (50 and 100 mM) total chlorophyll showed 
a significant increase compared to non-silicon 
plants (p<0.05). 

Significantly decrease (p<0.05) was observed in 
root carbohydrate contents of the plants treated 

Table 1 
Chlorophyll and carbohydrate content in basil treated with silicon and NaCl 

Treatment Ch a 

(mg g-1 FW) 
Ch b 

(mg g-1 FW) 
T Ch 

(mg g-1 FW) 
Root Carbohydrate  

(mg g-1 FW) 
Shoot Carbohydrate   

(mg g-1 FW) 

Control 2.59±0.137 b 0.81±0.167 c 3.40±0.300 b 7.76±0.35a-b-c 9.70±0.556 a-b 
NaCl 1 1.15±0.165 e 0.99±0.133 c 2.14±0.040 d 6.68±0.401 c-d 8.72±0.541 b-c 
NaCl 2 0.66±0.041 g 0.86±0.818 c 1.52±0.110 e 5.07±1.004 e 6.93±1.066 d 
Si 1 2.90±0.040 a 1.76±0.172 a 4.66±0.208 a 8.13±0.251 a-b 9.76±0.907a-b 
Si 2 2.95±0.037 a 1.98±0.187 a 4.93±0.152 a 8.70±0.400 a 10.80±0.400 a 
NaCl × Silicon      
NaCl 1× Si 1 1.64±0.030 d 1.046±0.360 b 3.10±0.450 b-c 7.23±0.351 b-c 9.33±0.503 b 
NaCl 1× Si 2 1.82±0.015 c 1.39f±0.642 b 2.83±0.075 c 7.70±0.75a-b-c 9.63±0.642 a-b 
NaCl 2 × Si 1 0.93±0.020 f 1.90±0.055 a 3.22±0.077 b-c 5.76±1.05 d-e 7.73±1.040 c-d 
NaCl 2 × Si 2 1.02±0.015 e-f 1.94±0.068 a 3.30±0.52 b 6.59±0.613 c-d 8.600±0.624 b-c 

Si 1 (silicon 0.5 mM), Si 2 (silicon 1.5 mM), NaCl 1 (NaCl 50 mM), NaCl 2 (NaCL 100 mM); small letters in each column show the 
significance of mean comparison by Duncan multiple range test (P≤0.05). 

Table 2 
Carotenoid and H2O2 contents and enzyme activities in basil treated with silicon and NaCl 

Treatment 

 

Carotenoid 

)F.W 1-mg g( 
2O2H 

)F.W1-l gnM(  
Catalase 

)inprote 1-Umg (  

Superoxide  dismutase  
) protein 1-Umg (  

control 0.406±0.015 g 58.56±0.305 d 0.963±0.152 d 120.40±0.916 i 
NaCl 1 0.443±0.020 e-f 63.73±0.152 c .0826±0.020 f 136.76±0.152 d 
NaCl 2 0.460±0.010 d-e 75.76±0.152 a 0.630±0.010 g 149.66±0.471 b 
Si 1 0.433±0.015 f 49.20±0.264 g 1.076±0.015 b 123.86±0.251 h 
Si 2 0.440±0.010 e-f 47.86±0.251 h 1.483±0.025 a 125.40±0.200 g 
NaCl × Silicon     
NaCl 1× Si 1 0.470±0.010 c-d 58.96±0.513 d 0.966±0.020 d 134.70±0.173 e 
NaCl 1× Si 2 0.520±0.010 b 57.43±0.152 e 1.040±0.020 c 132.36±0.152 f 
NaCl 2 × Si 1 0.486±0.015 c 70.20±0.264 b 0.890±0.020 e 144.33±0.152 c 
NaCl 2 × Si 2 0.580±0.010 a 54.40±0.100 f 0.910±0.222 e 150.50±0.360 a 

Si 1 (silicon 0.5 mM), Si 2 (silicon 1.5 mM), NaCl 1 (NaCl 50 mM), NaCl 2 (NaCL 100 mM); small letters in each column show the 
significance of mean comparison by Duncan multiple range test (P≤0.05). 
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with NaCl (100 mM) compared to those grown 
under non-stress condition (Table 1). Application 
of silicon at the highest concentration (1.50 mM) 
increased root carbohydrate in plants treated with 
100 mM NaCl (p<0.05). 

Concentration of shoot carbohydrate (Table 1) 
showed a significant decrease under salt stress 
treatment (100 mM) compared to control 
condition (p<0.05). In plants treated with silicon 
(1.5 Mm) and NaCl (100 mM) shoot carbohydrate 
contents significantly increased compared to non-
silicon plants. On the other hand, application of 
silicon with 0.5 mM concentration did not result in 
any significant change on carbohydrates contents 
of shoots  (p<0.05). 

Significant increases (p<0.05) were recorded in 
carotenoid contents of the basil plants under all 
levels of salinity compared to the control (Table 2). 
In plants treated with silicon (0.5 and 1.50 mM) 
and salt (50 and 100 mM) carotenoid contents 
significantly increased compared to non-silicon 
plants (p<0.05). 

Enzyme activity and oxidative parameters 

Results of the study showed that hydrogen 
peroxide content (Table 2) significantly increased 
in salt-stressed plant while application of silicon 
(0.5 and 1.5 mM) significantly decreased hydrogen 
peroxide contents (p<0.05) 

Catalase activity (Table 2) showed a significant 
decreased in all levels of salinity compared to 
control plants (p<0.05). In basil plants treated with 
silicon (0.5 and 1.50 mM) and salt (50 and 100 
mM) catalase activity showed a significant 
increase compared to non-silicon plants (p<0.05). 

Moreover, a significant increase (p<0.05) was 
observed in activity of the plants under all levels of 
salinity compared to control plants (Table 2). 
Application of silicon in non-salinity conditions 
significantly increased this parameter. Silicon at a 
concentration of 0.5 mM resulted in a significant 
decrease in the activity of superoxide dismutase 
under all levels of salinity. Furthermore, 
interaction of salinity (100 mM) and silicon (1.50 
mM) showed the highest increase in SOD activity 
(p<0.05). 

Discussion 

Plant growth and development are affected by 
various factors and environmental stresses 
(Farzamisepehr et al., 2021). Salt stress is one of 
the damaging factors affecting morphological, 
physiological, and biochemical traits in plants. The 
results of this study showed that salinity reduced 
fresh and dry weights of roots and shoots, which 
was similar to the results of a number of other 
studies (Heidarian and Roshandel, 2020; 
Hoffmann et al., 2020; Yarsi et al., 2017). Reduced 
fresh and dry weights of plants under salt stress 
seems to be due to osmotic effects, reduced water 
absorption, and reduced osmotic potential against 
salinity (Rezende et al., 2017). Accumulation of 
sodium ion in plants that are exposed to salinity 
causes osmotic changes and reduces the water 
potential in the root zone, which in turn reduces 
water absorption in roots and impedes the entry 
of water into the plant. Under salt stress, the 
relative water content, leaf water potential, water 
retention, and optimal water use capacity are 
reduced. Plants that are not able to adapt and 
regulate osmotic conditions cannot maintain the 
turgor pressure. Numerous studies have pointed 
out that the growth and development of plants 
depend primarily on the turgor pressure. When 
turgor pressure decreases, stomata are closed, 
photosynthesis is reduced, and cell divisions are 
reduced (Abbasi et al., 2016; Abdel-Latif and El-
Demerdash, 2017). Studies have revealed that 
under saline conditions salt accumulates in old 
leaves and causes a decrease in carbohydrates and 
growth hormones in meristematic zone and 
consequently leads to growth decline. In other 
words, as a result of reduction in photosynthesis 
and nutrient uptake, the synthesis of specific 
metabolites decreases, eventually impeding plant 
growth (Acosta-Motos et al., 2017).  

Application of silicon nanoparticles was found to 
improve the growth of strawberry under salinity 
stress  (Avestan et al., 2019). Also, in their study on 
Borago  officinalis  (Torabi et al., 2015) reported 
the positive effects of silicon against salt stress. In 
another study on cucumber (Wang et al., 2015) it 
was shown that the use of silicon improved 
hydrolytic conductivity and root access to water. 
Also, in another study on Oryza sativa silicon was 
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reported to cause lignin and suberin deposition 
cell wall, and then root growth and development 
was stimulated (Zhu et al., 2019). Lignification in 
sorghum species increases xylem resistance to 
water loss and also maintains leaf turgor pressure 
by increasing leaf surface cuticle (Abdel-Latif and 
El-Demerdash, 2017). A similar study showed that 
in wheat, the negative effects of salt stress on 
growth, tillering and nutritional parameters were 
reduced by silicon (Daoud et al., 2018). 

In the present study, the amount of chlorophyll a, 
total chlorophyll, and soluble carbohydrates in salt 
stress treatments decreased. A similar result was 
reported in a study on Physalis peruviana exposed 
to 0.5% and %1 sodium chloride, where total 
chlorophyll content reduced(Rios-Lozano et al., 
2023). This may be due to the decreased 
absorption of essential nutrients, increased 
chlorophyllase enzyme, decreased chlorophyll 
synthetase, production of active oxygen, and 
degradation of photosynthetic pigments, resulting 
in reduced soluble sugars (Rezende et al., 2017).  

The use of silicon in the present study modulated 
the reduction of chlorophyll and thus modulated 
the reduction of soluble sugars under salinity 
stress. Salinity reduces photosynthesis by causing 
osmotic stress, and ion imbalance and toxicity. 
Silicon increases photosynthesis by improving 
water absorption and transport (Rios et al., 2017). 
Research showed that silicon increased total 
chlorophyll and carotenoids in Zea mays (Moussa 
and Galad, 2015). Also, chlorophyll content under 
salinity reduced by 0.5% in Physalis peruviana, and 
the use of silicon at a concentration of 0.5 (g l-1) 
improved the reduction of chlorophyll a, b, and 
total (Rezende et al., 2017). Silicon is an element 
that prevents chlorophyll degradation by 
maintaining water balance (Shanan and El Sadek, 
2017). Photosynthesis and especially the 
preservation of the structure of photosystem II 
was reported to improve and increase 
photosynthesis and thus increase soluble 
carbohydrates (Zhu et al., 2019). On the other 
hand, silicon has a positive effect on the pentose 
cycle of phosphate and Kelvin, thereby increasing 
the efficiency of photosynthesis and modulating 
the negative effects of stress (Soundararajan et al., 
2017).  

Carotenoids are a type of photosynthetic pigment 
that also play as an antioxidant against stress. In 
this study, carotenoids increased under salinity 
stress. There was a similar result in Salvinia 
auriculate (Pervaiz et al., 2023).Perhaps the 
reason for the increase in carotenoids can be 
attributed to their antioxidant effect and 
protection of its plasma membrane (Gomes et al., 
2017; Soundararajan et al., 2017). 

In this study, the amount of H2O2 as an indicator of 
antioxidant damage and the activity of catalase 
and superoxide dismutase enzymes were 
measured as it modulates antioxidant damage. 
Results showed that hydrogen peroxide increased 
in plants under salinity stress. Many studies 
indicate that salinity stress is a stimulus in the 
production of reactive oxygen species such as O2

-, 
H2O2, and OH-, and increasing these compounds 
causes cell damage such as peroxidation of lipids 
and damage to proteins, chloroplast membranes, 
mitochondria, and cells. Applying silicon reduces 
Na+ contents in roots and stems and increases the 
K+/Na+ ratio (Zhu et al., 2020). One of the reasons 
for increasing K+/Na+ by silicon is plasma 
membrane H+ ATPase, H+ pyrophosphates plasma 
membrane, and tonoplast amplification. Silicon 
increases potassium and potassium is an essential 
element in the structure of 160 enzymes (Abdel-
Latif and El-Demerdash, 2017). Also, silicon 
produces enzymatic antioxidants such as CAT and 
SOD to fight ROS and protects the plant against 
these damages (Abbasi et al., 2016). 

Other studies have shown that the application of 
silicon in Zea mays under salinity stress increased 
the activities of CAT and SOD (Moussa and Galad, 
2015) which is similar to the results obtained in 
the present study. Similar studies reported the 
positive effect of silicon on increasing antioxidant 
enzymes in rice, cucumber, and tomato plants 
under salinity stress (Hoffmann et al., 2020; 
Mauad et al., 2016; Zhu et al., 2020). On the other 
hand, the amount of H2O2 in Rose hybrida 
decreased under silicon treatment (Soundararajan 
et al., 2017), which is similar to the results 
obtained in the present study. SOD converts O2 to 
H2O2 and then in a biochemical reaction H2O2 is 
converted through POD enzyme to O2 and H2O, 
and its toxic effect is reduced (Zhang et al., 2017). 
(Alves et al., 2020) showed that H2O2 levels in 
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silicon-treated lettuce reduced,  and this is similar 
to a study(Sattar et al., 2019) on Triticum aestivum 
treated with both silicon and drought. Also 
decreased H2O2 levels were reported in 
Glycyrrhiza glabra plants treated with silicon 
(Yazdani et al., 2021). 

From this research it is concluded that salt stress 
reduces plant growth while the use of silicon 
mitigates the adverse effects of salinity. Silicon 
stimulates multiple responses such as nutrient 
uptake, production of antioxidants, synthesis of 
osmolytes, and production of phenolic 
compounds (Khan et al., 2019). In general, in this 

study, the positive effects of using silicon to 
ameliorate the negative effects of salinity was 
observed especially at 1.50 mM concentration, 
where the negative effects of salinity on 
photosynthesis pigment and antioxidant enzyme 
were mitigated. Applying silicon as an oscillator in 
this study moderated the effects of salinity stress 
by affecting photosynthetic pigments and 
antioxidant enzymes and improving the 
morphological and biochemical properties of basil 
under salinity stress. The optimal concentration of 
silicon in the study, i.e. 1.5 mM, enabled the basil 
plant to withstand the damage caused by salinity 
stress. 
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