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  INTRODUCTION 
 

Most of the important traits in livestock and agricultural 
products are quantitative or complex. More improvements 
in these traits have been made by selecting animals or 
plants based on their phenotypes and their relatives. In the 

last decade, the rate of genetic improvement by genomic 
selection or genomic prediction (GP) has increased 
(Meuwissen et al. 2001). Many quantitative traits are con-
trolled by thousands of variants in the DNA sequence of 
individual animals and environmental factors. The identifi-
cation of these causal variants will be useful for genomic 
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prediction, understanding the physiology and evolution of 
important traits, and genome editing. However, it is diffi-
cult to identify these causal variants because their effects 
are small and they are in linkage disequilibrium with other 
DNA variants (Meuwissen et al. 2022). Genotyping of sin-
gle nucleotide markers (SNP) and other dense markers in 
the genome has made significant genetic progress in live-
stock breeding programs (Hayes et al. 2009). The markers 
cover the whole genome all the positions of the quantitative 
traits are covered by the markers and this method has the 
potential to justify all the genetic variance (Rashedi 
Dehsahraei et al. 2017). In genomic selection, the markers 
are scattered throughout the genome, so that the entire ge-
netic variance is controlled by the markers. Genomic selec-
tion decreases the costs of genetic evaluation and increases 
genetic improvement by reducing generational distance and 
increasing the accuracy of selection (Hayes et al. 2009). In 
recent years, many many studies have been conducted using 
SNP chips to identify genetic variation. In research on 
Japanese black cattle; by Uemoto et al. (2015), heritability 
was estimated. The studies conducted to obtain the amount 
of genetic diversity in quantitative traits were carried out as 
follows: Pimentel et al. (2011) studied milk production and 
composition traits in dairy cows, Jensen et al. (2012) stud-
ied traits related to production and body fitness in dairy 
cows; Ogawa et al. (2016) Japanese black cow body 
weight; and Rashedi Dehsahraei et al. (2017) quantitative 
traits in Merino sheep. Segmentation of the allelic spectrum 
to calculate genetic variability, by Yang et al. (2010) for 
human height, Pimentel et al. (2011) for production traits 
and milk composition in dairy cows and Jensen et al. 
(2012) for traits related to production and fitness organs in 
dairy cows, Lee et al. (2013) for Alzheimer's disease, 
Abdollahi-Arpanahi et al. (2014) for broiler production 
traits, Ogawa et al. (2016) for the body weight of Japanese 
black cattle; and Rashedi Dehsahraei et al. (2017) for traits 
the body weight of Merino. This study aims to determine 
the amount of additive genetic variance, resulting from all 
SNP markers for the traits of birth weight, weaning weight, 
wool length, and wool diameter in Australian Suffolk 
sheep, as well as classifying the markers based on rare al-
lele frequency (MAF) and determining the contribution of 
each group to justify additive genetic variance. 

 

  MATERIALS AND METHODS 
Phenotypic data 
The data used in this study included phenotypic records 
from 680 Suffolk sheep, which included 380 males and 
three hundred females from 3 sires (Half-sib family). All 
animals were born at Falkiner Memorial Field Station in 
Australia. The traits studied were birth weight (BW), wean-

ing weight (WW), fibre diameter (FD), and staple length 
(SL). The descriptive statistics of traits studied are shown in 
Table 1. 
 
 
 
 
 
 
 

Table 1 Descriptive statistics of traits studied 
Trait (unit) n Mean SD Min Max 

 Birth weight (kg) 300 4.35 1.05 1.26 7.45 

Weaning weight (kg) 630 18.50 4.15 7.35 31.28 

Fibre diameter (µm) 285 23.47 2.78 17.39 30.63 

Staple length (mm) 285 81.56 12.17 46.25 124.75 

Genotypic data 
In this study, 48599 SNP markers from the Illumina 50k 
Ovine Bead chip were used after removing sexual chromo-
somes and unmapped SNPs. SNPs that departed from 
Hardy–Weinberg equilibrium (P<10−6) based on a Chi-
square test, SNPs that had a minor allele frequency (MAF) 
<0.01, or a missing rate >0.05 were excluded from the 
analysis. After quality control, 43821 markers remained for 
analysis. The quality control of SNPs was done with the 
PLINK program (Purcell et al. 2007). Table 2 shows the 
characteristics of the marker panel. 
 
 
 
 
 
 
 
 
 
 

Table 2 Characteristics of marker panel used 
Total number of SNPs  48599 
SNPs with MAF < 0.01  196 
SNPs not in Hardy–Weinberg equilibrium (P<10-6) 4582 
SNPs with missing rates > 0.05 0 
SNPs used  43821 
Individuals with genotype missing rate > 0.05 0 
Mean distance (Kbp) 55.188 
Maximum distance (Kbp)  1180.886 
Minimum distance (Kbp)  4.548 

SNPs: single nucleotide polymorphisms. 

Genomic variation captured by SNP markers 
To study the relationship between allele frequency and the 
amount of additive genetic variance explained by markers, 
SNPs were classified into five groups of MAF (0.01-0.1, 
0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5). In this classification, 
the number of SNPs were 10578 for first group, 8092 for 
second group, 8822 for third group, 8096 for fourth group 
and 8233 for fifth group. To explore the genomic variance 
of the five MAF bins, five additive parametric kernels were 
constructed. To estimate the proportion of additive genetic 
variation by each group of MAFs, analyses were performed 
in two different scenarios, (1): fitting additive kernels (G) 
for each MAF-bin (i.e. five models were fitted, and one 
additive genetic variance component was considered in 
each analysis) or fitting (G matrix) for all SNPs without 
distinction of MAF-bin (2): fitting five additive kernels 
jointly (G1+G2+…+G5), with each kernel linked to one 
class of MAF. This model allowed the inference of five 
separate additive genetic variance components, each one 
assigned to special MAF groups. All additive kernels were 
parametric and kernel matrices were constructed based on 
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VanRaden's model (VanRaden, 2008). The amount of 
variation captured by all SNPs together or each MAF group 
separately or jointly was estimated using linear mixed mod-
els. These models are explained in the following. 
 
Separate analysis with additive kernels (G) 
We fitted models by considering the relationship matrix 
(kernel) within each of the five MAF groups. The following 
model was used for data analysis (denoted as model 1): 
 
yi= µ + g (xi) + ei       (1) 
 
Where: 
yi: observations of sheep i (BW, WW, FD, and SL).  
μ: intercept.  
g (xi): linear function of SNP genotypes xi.  
ei: model residual for sheep i, (Corrections were made for 
fixed effects of year of birth, sex, birth type before analy-
sis). 
 

In this model, the genetic signals (g) were represented by 
Gα, G is an n × n kernel matrix indexed by the observed 
SNP covariates such that G ~ XXT, X is an SNP genotype 
matrix.  

Here, X matrix is centered and standardized to form G 
matrix, then divided by the number of SNPs, as proposed 
by VanRaden (2008) and Yang et al. (2010), and α is the 
vector of the Reproducing Kernel Hilbert Spaces (RKHS) 
regression coefficients that are estimated as the solution 
that minimizes: 
 
l(α|λ)= (y-Gα)′ (y-Gα) + λα′Gα 
 
Where:  
α~N (0, G-1σ2g), σ2g: additive variance captured by SNPs. 
λ: regularization factor.  
g: Gα, is equal to the number of individuals, i.e. 300, 630, 
285 or 285 individuals for BW, WW, FD, and SL, respec-
tively. The matrix form of model 1 is: 
 
y= 1µ + Gα + e       (2) 
 
Where: 
1: vector of ones.  
e: vector of the residual of the models with e~ N(0, Iσ2e), 
where σ2e is the variance of the residual.  
 
The variance structure was as follows: 
 
V= Gσ2g + Iσ2e 
V= Z’GZ + R 
 

The predicted genetic values in a testing set (ĝt,test) 
were: 
 
Ĝt,test = Gt,test,train G−1t,train ĝt,train     (3) 
 
Where: 
Gtest, train: rectangular matrix of genomic relationships 
between testing and training individuals, which represents a 
subset of the total G constructed from all individuals in the 
training and testing sets.  
Gtrain: genomic relationship between individuals in the 
training set. 
ĝtrain: vector of predicted genetic signals of individuals in 
the training set. 
 
 
Joint analysis of five additive kernels (G1+G2+· · ·+G5) 
In the joint analysis of the five classes of MAFs, the linear 
model can be represented as: 
 
y= 1µ + t=1hGtαt + e    (4) 
 
y: vector of observations.  
1: vector of ones.  
μ: intercept.  
h: 5 is the number classes of MAF.  
αt~ (0, Gt-1σ2gt) with t= 1, 2, . . ., 5: regression vector in 
RKHS for MAF-bin t.  
Gt: matrix of additive genomic relationships for the tth 
MAF-bin.  
σ2gt: variance that is captured by SNPs in the tth MAF-bin. 
e ~ N(0, I σ2gt): vector from residuals of model, where σ2e 
is the variance of residual, and I is an identity matrix.  
 

Therefore, the joint density of the five random vectors 
and the residual term is: 
 
pe, g1,…,gt|σe2, σg12,…,σgt2= N(e|0,  
Iσe2)t= 1hN(gt|0, Gtσgt2) 
 

The marginal distribution of the data in the model has an 
expected value of 1 μ and the variance-covariance matrix 
is: 
 
V=t=1hGtσgt2+Iσe2 
V=Z’GZ + IS2e 
 
Where:  
G: var-covar matrix of random effects. 
GS2g: prediction of the genetic value obtained with SNPs in 
MAF t for individuals in the testing set was as follows: 
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ĝt,test = Gt, test,trainG−1t,train ĝt,train     (5) 
 
Where notations are as in (1), except that t indicates the 

G matrix of tth MAF-bins. 
 
Bayesian analysis implementation 
Variance components were estimated using the RKHS re-
gression as implemented in the BGLR package (Pérez and 
de los Campos, 2013). The Bayesian approach was con-
ducted using Gibbs sampling. A Markov Chain Monte 
Carlo (MCMC) with 100000 samples was run for each fit-
ted model and the first 10000 samples were discarded as 
burn-in and thinned at a rate of 5. Convergence diagnostics 
and statistical and graphical analysis of Gibbs sampling 
were checked by visual inspection of trace plots of some 
parameters (i.e. variance components). 

 

  RESULTS AND DISCUSSION 
The first two levels of the MDS test showed the presence of 
three subpopulations in the studied herd (Figure 1). 

Several types of research showed that by performing the 
multidimensional measurement test, the members of the 
same family are together in the same cluster (Gu et al. 
2011; Sun et al. 2013; Emrani et al. 2017). In this research, 
the first two levels of the multidimensional measurement 
test showed that the people of a step family are placed in-
side a cluster. To estimate the components of genomic vari-
ance, the first three levels of the multidimensional meas-
urement test were included as auxiliary variables in the 
model. 

Variance components for wool and growth traits using 
the RKHS model with univariate analysis in Suffolk sheep 
are shown in Table 3. The values of genomic variance ob-
tained in this research were estimated as 0.74, 4.41, 2.50, 
and 55.95 for the traits of birth weight, weaning weight, 
fibre diameter, and staple length, respectively. The genomic 
heritability estimated in this study is 0.46 ± 0.16 for birth 
weight, 0.19 ± 0.11 for weaning weight, 0.75 ± 0.05 for 
fibre diameter, and 0.48 ± 0.06 for staple length (SL). The 
heritabilities estimated for Suffolk sheep in this study, for 
birth weight and weaning weight traits, were almost equal 
of the estimates reported for these traits in Rashedi Dehsah-
raei et al. (2017). Using a 50K marker panel of Suffolk 
sheep, these researchers reported a genomic heritability of 
0.45 for birth weight and 9.19 for weaning weight. Ge-
nomic heritability in Border sheep for production traits 
(body weight and wool) reported by Taheri Yeganeh et al. 
(2022), was different from the values estimated in this 
study. These researchers reported a genomic heritability 
value of 0.58 for birth weight, 0.47 for weaning weight, 

0.59 for wool yarn diameter, and 0.20 for wool yarn length 
in Border sheep. 

Many studies using genome-wide SNP data have shown 
that a large proportion of heritability for quantitative traits 
can be explained by common SNPs. For example, Yang et 
al. (2010) showed in their study for human height that 45% 
of the variation could be explained by fitting all SNPs si-
multaneously. Lee et al. (2012) noted that a significant pro-
portion of overall variation for common human diseases is 
accounted for by common SNPs. For example, in their 
study, the estimated genomic heritability was 0.24 for Alz-
heimer's disease, 0.26 for endometriosis, and 0.30 for MS. 
Rashedi Dehsahraei et al. (2018) estimated the amount of 
genomic variance for Merino sheep using the Bayesian 
method and the RKHS model for birth weight of 0.45 and 
weaning weight of 5.27. These researchers obtained the 
genomic heritability value of 0.58 for birth weight and 0.46 
for weaning weight. In research for wool yarn diameter and 
wool yarn length of Australian Merino sheep, genomic 
heritability values using the Bayesian method were reported 
as 0.72 and 0.47, respectively (Rashedi Dehsahraei et al. 
2017). 

In a model using the SNP panel, 50K, 32% of the total 
additive genetic variance was for fertility trait (Ogawa et al. 
2016) and approximately 80% for milk production traits 
(Haile-Mariam et al. 2013), captured by SNPs in dairy cat-
tle. The amount of the explained variance and estimated 
heritability depends on factors such as the number of mark-
ers, the amount of linkage disequilibrium (LD) between 
markers and causal mutations as a result of recombination 
at the population level, the amount of LD between markers 
and genes at the family level as a result of family structure 
in the population, and it depends on action of the gene. 

Genomic variance components associated with different 
MAF groups: To consider the contribution of markers in 
different allelic spectra in justifying genetic variance, five 
different MAF groups were defined for the studied traits. 
Figure 2 shows the amount of genomic heritability for the 
traits of birth weight, weaning weight, diameter, and length 
of wool in separate and combined analyses, for five differ-
ent rare allele frequency groups. In combined analysis, the 
total heritability estimated for different rare allele frequency 
groups was almost similar to the value obtained from all 
SNPs, for all traits.  

Although the number of SNPs in different groups were 
similar, the amount of genetic variance explained by MAF 
groups were different. In the combined analysis, the ge-
nomic heritability of birth weight at the allelic frequency 
threshold of MAF > 0.01 ranged from 0 to about 0.33 in 
five MAF groups. The highest estimated value in the first 
group with allelic frequency was 0.01-0.1. 
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Figure 1 Determining the population structure by multidimensional measurement test (MDS) for genotyped sheep 

 
 
 
 
 
 
 
 

Table 3 Genomic variance components1 for body weight and wool traits with univariate analysis using the Reproducing Kernel Hilbert Spaces (RKHS) 
method by all set of single nucleotide polymorphisms (SNPs) together in Suffolk sheep 

σ2
g (SE) σ2

e (SE) σ2
p (SE) h2

m (SE) Trait (unit) 

Birth weight (kg) 0.74 (0.34) 0.88 (0.24) 1.62 (0.05) 0.46 (0.16) 

Weaning weight (kg) 4.41 (2.39) 19.18 (2.15) 23.59 (0.45) 0.19 (0.11) 

Fibre diameter (µm) 2.50 (0.30) 0.85 (0.20) 3.35 (0.21) 0.75 (0.05) 

Staple length (mm) 55.95 (14.07) 61.82 (9.55) 117.77 (6.61) 0.48 (0.06 
σ2

g: genomic variance; σ2
e: residual variance; σ2

p: phenotypic variance and h2
m: direct genomic heritability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 2 Contribution to genetic variance of single nucleotide polymorphisms (SNPs) partitioned into five bins of minor allele frequency 
MAF for birth weight (BW), weaning weight (WW), Fibre diameter (FD) and Staple length (SL)  
The number of SNPs included in each MAF bin is as follows: 0.01-0.1, n= 10578; 0.1-0.2, n= 8092; 0.2-0.3, n= 8822; 0.3-0.4, n= 8096; 0.4-
0.5, n= 8233  
The whiskers represent 95% asymptotic confidence intervals 
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For weaning weight at this threshold, the amount of ge-
nomic heritability ranged from 0 to 0.16. The allelic fre-
quency group of 0.01-0.1 accounted for the highest amount 
of genomic variance. For the two traits of birth weight and 
weaning weight, the first group with an allelic frequency of 
0.01-0.1 had the highest amount of genomic heritability. 
The third rare allele frequency group had the lowest ge-
nomic heritability value for birth weight, 0.2-0.3. For the 
weaning weight of the fourth and fifth groups, they esti-
mated the lowest amount of genomic heritability. 

The estimates obtained from five different MAF groups 
were different from each other in separate and combined 
analyses for two attributes of diameter and yarn length. In a 
separate analysis, the variances for each group were skewed 
due to (LD). For both traits, the values estimated in separate 
analyzes were higher than the values obtained in the joint 
analysis for all groups. In the separate analysis of different 
MAF groups, the amount of genomic variance obtained for 
different groups was somewhat similar. In the combined 
analysis, there was a high variation between the genetic 
variance identified by different subgroups. 

The total estimated heritability in the combined analysis 
was similar to the value obtained from all SNPs, for both 
traits, but in the separate analysis, the total heritability in 
five different rare allele frequency groups was much higher 
than the value obtained from all SNPs. The amount of ge-
nomic heritability of fibre diameter was variable in five 
MAF groups. The highest estimated value in the fifth group 
with rare allele frequency was 0.4-0.5 (about 0.21), and the 
lowest value was in the third group (0.2-0.3), which was 
estimated at 0.098. The staple length trait, the genetic vari-
ance distribution pattern justified by SNPs, fluctuated be-
tween the five MAF groups, and the heritability value var-
ied from zero in the second and fourth groups to about 0.16 
in the third group. Since selection takes place in livestock 
populations, the distribution of genetic variance varies ac-
cording to allelic frequency. Abdollahi-Arpanahi et al. 
(2014) reported in a study on broiler chickens that 75% of 
the genomic variance for body weight and breast muscle 
traits was explained by markers with a frequency of less 
than 0.2. Results on the amount of genomic heritability in 
human populations have also been reported. In a study of 
schizophrenia patients, about 70% of the total variance re-
lated to common SNPs was explained with MAF < 0.1 (Lee 
et al. 2012). Rashedi Dehsahraei et al. (2017), in a study on 
Australian Merino sheep, reported that about 80% of the 
genetic variance of birth weight and about 86% of the ge-
netic variance of weaning weight was explained by com-
mon SNPs with MAF < 0.18. 

In research conducted by Rashedi Dehsahraei et al. 
(2017) for Merino sheep wool traits, results similar to those 
reported in this research showed different frequency groups 

of rare alleles. For the length of the wool warp, the herita-
bility value varied from zero in the second and fourth 
groups to about 0.15 in the third group. For wool warp di-
ameter, the highest heritability value was estimated in 
group five with an allelic frequency of 0.43-0.5. The lowest 
heritability value was calculated in the third group of com-
bined allele frequencies. As suggested by Lee et al. (2013), 
a large, ideal sample size and better coverage of low-
frequency variants are needed to obtain stronger and more 
reliable inferences. 

In this study, for quantitative traits in Suffolk sheep, we 
tried to partition the additive genetic variances captured by 
genome-wide SNP markers into two different components, 
based on the information on their MAFs. Results indicated 
that the whole additive genetic variance captured by all 
available SNPs could be separately estimated as the two 
components. Using SNPs in different MAF ranges might 
explain different parts of the additive genetic variance for 
the quantitative traits. 

The results could have provided some information on the 
genetic architecture for the quantitative traits in Suffolk 
sheep, although its validity may be limited, mainly due to 
the sample size and the use of simpler statistical models in 
this study. There will be other sources to characterize each 
of SNP markers (e.g., genome position information, gene 
function information and so on), and then these could give a 
chance to analyze with a different way to partition all avail-
able SNPs. 

 

  CONCLUSION 
Our results showed that a significant part of the genetic 
variance can be explained by the common variants of body 
weight and wool traits in Suffolk sheep. All MAF groups 
contribute to additive genetic variance regardless of the 
studied trait. When grouping the markers, it was found that 
the contribution of different groups of SNPs with rare allele 
frequency in explaining the genetic variance for the four 
examined traits was different, and in general, a significant 
part of the genetic variance was explained by SNPs with 
MAF > 0.20. 
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