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  INTRODUCTION 
Oxidative stress is “the state at which oxidative forces ex-
ceed the antioxidant system due to loss of balance between 
them” (Yoshikawa and Naito, 2002). An imbalance of this 
nature may result in reduced concentrations of antioxidants 
or increased production of free radicals. Free radicals are 
oxidative forces; they are atoms, molecules or compounds 
with a short life and an unpaired electron that makes them 
unstable and highly reactive (Bhattacharya, 2014), capable 
of treating life in high and uncontrolled concentrations. 
Fortunately, living organisms counteract free radicals with 
antioxidants, which significantly delay, prevent or inhibit 
damage of a substrate by free radicals (Halliwell and Gut-
teridge, 1995). The term “substrate” includes everything 
found in a live organism (Halliwell et al. 1995). 

There are several types of free radicals (Halliwell and 
Whiteman, 2004), but the most relevant in biological sys-
tems are reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) (Aprioku, 2013). A regulated amount of 
free radicals is normally produced in living organisms; 
these are not harmful, but they are used as signal transduc-
tion molecules. Common endogenous sources of free radi-
cals include mitochondrial production of ATP (Jastroch et 
al. 2010), degradation of purines by xanthine oxidase 
(Kuppusamy and Zweier, 1989), phagocytosis of microor-
ganisms (Knight, 2000), inflammation (Mittal et al. 2014) 
and oxidation of very long-chain fatty acids (Reddy, 2001). 
Situations leading to additional production of ROS and 
consequently to oxidative stress in farm animals include 
heat stress, inflammation, dietary imbalances, respiratory 
diseases, and parasites (Celi and Gabai, 2015). Once pro-
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duced, additional free radicals will damage cells by extract-
ing an electron from a substrate (lipids, proteins or DNA), 
making them more stable and less reactive. 

Oxidative stress opens a novel field of research in rumi-
nant medicine (Celi, 2011). However, there is evidence of 
oxidative stress involved in events that compromise dairy 
cattle welfare. The objective of this paper is to review exist-
ing knowledge related to oxidative stress and to provide 
information on the situations leading to this type of stress. 
 
Oxidation of lipids 
Damage by ROS or lipid oxidation also termed peroxida-
tion, occurs when a free radical steals an electron (hydro-
gen) from a lipid. Polyunsaturated fatty acids (PUFA) from 
the cell membrane are highly susceptible to oxidative dam-
age due to the presence of methylene groups, which are 
characterized by a weak carbon-hydrogen bond (Bochkov 
et al. 2010). Basically, a ROS will generate a lipid radical 
by abducting a hydrogen molecule from PUFA. The lipid 
radical that reacts with oxygen will generate a lipid peroxy 
radical, which will abstract another electron from the near-
est PUFA creating a new lipid radical and a lipid hydroper-
oxide. The new lipid radical will react with oxygen as indi-
cated above. This is a self-sustained process that could con-
vert all the cell membrane PUFA into lipid hydroperoxides. 
Additionally, hydroperoxides can react with free transi-
tional metals such as Fe2+ and Cu+ to produce a lipid al-
coxyl radical, which can abstract an electron from another 
PUFA, creating a new lipid radical (Esterbauer et al. 1990). 

Peroxidation results in structural changes in the cell 
membrane. According to Greenberg et al. (2008), fatty acid 
peroxidation will change the normal fluid mosaic of the cell 
membrane to one with protruded fatty acids known as the 
whisker model, which may serve to elicit cell phagocytosis 
from macrophages. 

In addition to hydroperoxides, peroxidation will render 
endoperoxides (Valko et al. 2006) that can be fragmented 
to generate reactive carbonyl species such as malondialde-
hyde (MDA) and 4-hydroxy–trans-2-nomenal (HNE), de-
pending on the type of fatty acid oxidized. Oxidation of 
lipids containing ω-6 PUFAS will give rise to HNE, while 
those containing three or more methylene interrupted dou-
ble bonds will produce MDA (Esterbauer et al. 1991). Due 
to its short life, ROS will normally react with the nearest 
substrate, but reactive carbonyl species have a longer half-
life and are able to migrate through membranes and cytosol, 
extending damage to other cell constituents as well as the 
membrane (Pamplona, 2008). MDA is mutagenic 
(Niedernhofer et al. 2003); it impedes the mechanism of 
DNA repair after damage (Feng et al. 2006) and alters 
physiological functions of proteins (Rittié et al. 2002) by 
forming adducts with DNA and proteins. 

Elevated concentrations of MDA have been reported in 
cows affected with mastitis (Ranjan et al. 2005). In fact, a 
positive correlation between MDA and somatic cells counts 
was reported by Suriyasathaporn et al. (2006), indicating 
that antioxidant capacity of cows is compromised during 
mastitis. Interestingly, Weiss et al. (2004) found that udder 
infection leads to decreased concentrations of the antioxi-
dant vitamin C, evidence that oxidative stress is involved in 
the pathology of mastitis (Atakisi et al. 2010). A source of 
ROS leading to lipid peroxidation and formation of MDA 
could be bacterial lipopolysaccharides. Lipopolysaccharides 
are components of the outer cell membranes of bacteria and 
are considered endotoxins, capable of inducing an inflam-
matory response in animal cells (Raetz and Whitfield, 
2002). They are released during bacterial growth, division, 
and lysis. Clinical mastitis has been induced in cows chal-
lenged with intra-mammary infusion of lipopolysaccharides 
(Zimov et al. 2011), and increased MDA concentrations 
have been measured in bovine mammary epithelial cells 
cultured with lipopolysaccharides (Shi et al. 2016). 

Another source of lipid peroxidation in cattle is parasitic 
infection (Ellah, 2013). Cows infected with lungworms and 
fasciolosis have decreased antioxidant capacity and aug-
mented lipid peroxidation, while infected animals have 
higher concentrations of MDA than those not infected 
(Bahrami et al. 2014; Silva et al. 2016). Lipid peroxidation 
could result from over production of ROS during host de-
fense by phagocytes. Phagocytes use NADPH-oxidase sys-
tem in their cell membrane to generate superoxide during 
phagocytosis (Roos, 1991). Nitric oxide also generated dur-
ing parasite infection by phagocytes can react with superox-
ide to form peroxynitrite. Both nitric oxide and peroxyni-
trite are used as weapons to kill parasites (Brunet, 1991; 
Linares et al. 2001), but peroxynitrite produces MDA on 
the side (Radi et al. 1991). 
 
Protein oxidation 
Protein oxidation is defined as “covalent modification of a 
protein induced by direct reaction with reactive oxygen 
species or indirect reaction with secondary by-products of 
oxidative stress” (Zhang et al. 2013), which leads to oxida-
tion of amino acid residue side chains, peptide bond cleav-
age, formation of cross-like aggregates and ultimately to 
alterations in protein structure and functionality (Stadtman 
and Levine, 2003). All the amino acid residues of a protein 
are susceptible to oxidative damage, but cysteine and me-
thionine are considered the most sensitive (Berlett and 
Stadtman, 1997). However, only with these two did re-
versible oxidation occur, giving them antioxidant proper-
ties. According to Yan (2014), irreversible oxidation of 
amino acid residues may result in loss of protein function. 
However, on the contrary, reversible oxidation serves as a 
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protein function regulator. According to Levine et al. 
(1996), under oxidative stress conditions, preferential oxi-
dation of methionine allows the protein to maintain its bio-
logical function. 

Abstraction of hydrogen from the α-carbon of the amino 
acid generates a carbon-centered radical that can also ab-
stract hydrogen from thiols or react with iron to render per-
oxyl radicals. Peroxyl radicals are converted to alkyl perox-
ides by reaction with superoxide or by abstraction of a hy-
drogen molecule from other molecules. Alkyl peroxide 
produces an alkoxyl radical by reacting with a hydroper-
oxyl radical, which can undergo protein peptide bond 
cleavage by α-amidation or diamide pathway. Other radi-
cals resulting from protein oxidation include thiyl radicals 
generated by hydrogen abstraction from free thiol groups or 
cleavage of disulfide linkages, chloramines produced by 
hypochlorous acid reacting with proteins and carbonyl 
groups by oxidation of lysine, proline, arginine and 
threonine (Hawkins and Davies, 2001; Stadtman and Le-
vine, 2003). 

Protein oxidation has been evaluated in dairy cattle by 
assessing the status of advanced oxidation protein products 
(AOPP). AOPP are produced by hypochlorous acid that 
reacts with proteins during neutrophil activation 
(Bordignon et al. 2014). Cows with high concentrations of 
AOPP had a higher embryo mortality incidence after artifi-
cial insemination, probably due to a pathogen eliciting an 
inflammatory response in the uterus (Celi et al. 2011; Celi 
et al. 2012). Moreover, parasitic infection has also in-
creased AOPP blood serum concentrations. 
 
DNA oxidation 
Oxidative damage to DNA occurs at a basic sites, purine 
and pyrimidine bases. Abasic sites are produced by hy-
drolysis of the N-glycosylic bond, while free radical attack 
at positions 1, 2 or 4 of the sugar residues gives rise to oxi-
dized a basic sites (Häring et al. 1994). Oxidative damage 
can also be inflicted on purine and pyrimidine bases. The 
oxidative damage products of purines and pyrimidines are 
discussed by Cadet and Wagner (2013) and, according to 
David et al. (2007), due to the high susceptibility of gua-
nine to oxidative damage; 7,8-dihydro-8-oxo-2′-
deoxyguanosin is the most studied product of oxidative 
DNA damage. 

Oxidative damage to DNA in dairy cattle was reported by 
Ellah et al. (2014). According to these authors, dairy cows 
during the dry period experience greater oxidative DNA 
damage than during other phases of lactation. In a different 
study, Ellah et al. (2016) found that during the transition 
period, the concentration of DNA oxidative damage prod-
ucts was greater during pre-partum than after parturition. 
These studies suggest that oxidative stress is more severe 

during the dry period. However, Sharma et al. (2011) and 
Gong and Xiao (2016) agree that the first weeks post-
partum are the most stressful for dairy cattle.  

They reported increased lipid peroxidation and reduced 
antioxidant capacity in cows during the first days of lacta-
tion compared with cows 30 days after calving. In concor-
dance with these findings, Omidi et al. (2016) reported 
higher antioxidant capacity in cows at the end of lactation. 
Thus, it seems that oxidative stress is established before and 
after parturition. 

The degree of oxidative damage is expected to be greater 
after parturition, when a negative energy balance predispos-
ing lipid mobilization will favor free radical formation 
(Piccione et al. 2007; Pedernera et al. 2010). In addition, 
cows in early lactation that experience a negative energy 
balance have lower concentrations of antioxidants such as 
vitamin C, tocopherol and glutathione (Cigliano et al. 2014; 
De Bie et al. 2016). On the other hand, Mandebvu et al. 
(2003) suggest that antioxidant capacity in dry cows may be 
compromised due to the low content of antioxidants in ra-
tions formulated at this stage of lactation. In addition, low 
activity of the hepatic antioxidant paraoxonase-1 has been 
found in cows during the transition period (Turk et al. 
2008). 

Reactive oxygen species can also induce DNA strand 
break. The mechanism leading to strand break begins with 
hydrogen being stolen from sugar (2-deoxyribose), causing 
the formation of a carbon base radical, which in the pres-
ence of oxygen is converted to a peroxyl radical. This can 
abstract hydrogen molecules from neighboring sugars and 
lead to strand break (Kryston et al. 2011). In dairy cattle, 
increased hepatic DNA strand break has been identified as 
the transition period progresses, resulting in hepatocytes 
apoptosis (Tharwat et al. 2012). The latter indicates that 
during this period liver functionality is compromised, ex-
plaining the reduction in the previously mentioned hepatic 
antioxidant production. 
 
Cellular responses to oxidative stress 
The increase in the production of reactive oxygen species is 
counterattacked by well-organized response elements. One 
of them is the nuclear factor E2-related factor (Nrf2). Under 
non-oxidative stress conditions Nrf2 is found in the cell 
cytoplasm bound to its regulator, the kelch-like ECH pro-
tein 1 (Keap1), but an increase in reactive oxygen produc-
tion causes oxidation of Keap1 and the release of Nrf2. This 
can be translocated to the cell nucleus where it associates 
with Maf proteins (sMaf) and bind to antioxidant respon-
sive elements (ARE), which in turn control the expression 
of several antioxidants, including glutathione, thioredoxin 
and NADPH (Gorrini et al. 2013; Hayes and Dinkova-
Kostova, 2014). 
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Activation of Nrf2 helps to ameliorate oxidative stress. In 
dairy cattle, activation of Nrf2 in mammary epithelial cells 
exposed to heat shock stress reduces the production of reac-
tive oxygen species and improves cell survival (Jin et al. 
2016). Like heat stress, high concentrations of NEFA and 
ketosis are known to induce oxidative stress damage. NEFA 
produces oxidative stress damage and apoptosis in hepato-
cytes by activating p38 mitogen-activated protein kinase 
(MAPK) and the subsequent increased expression of tran-
scription factor p53 and the down regulation of Nrf2 (Song 
et al. 2014). The guardian of the genome, p53, protects the 
cell from oxidative damage under low level of oxidative 
stress, but induces cell death when oxidative stress in-
creases (Liu and Xu, 2011). 

As a result of incomplete metabolism of NEFA in liver, 
the cows develop ketosis, which is characterized by a high 
blood concentration of ketone bodies during periods of 
negative energy balance. Ketone bodies such as β-
hydroxybutyrate produce similar damage to hepatocytes 
such as NEFA (Song et al. 2016). In addition, Gessner et 
al. (2013) found that after calving the mRNA for genes 
controlled by Nrf2 declined. Thus, the cellular antioxidant 
response to oxidative insult is compromised in cows with 
negative energy balance after parturition. 

The nuclear factor–κB (NF–κB) is also activated during 
oxidative stress events. Similar to Nrf2, NF–κB is seques-
tered in the cell cytoplasm bound to a protein IκB. How-
ever, increased production of reactive oxygen species 
breaks the bond between NF–κB and IκB, allowing translo-
cation of NF–κB to the cell nucleus, where it stimulates the 
expression of pro-inflammatory factors (Gloire et al. 2006). 

In dairy cattle, oxidative stress and activation of NF–κB 
has been observed in cows with acidosis, together with a 
down regulation of Nrf2 (Abaker et al. 2017). Another 
situation leading to NF–κB turn on is ketosis. Shi et al. 
(2014) reported that hepatocyte damage induced by β-
hydroxybutyrate was mediated by increased activation of 
NF–κB and expression of pro-inflamatory factors (tumor 
necrosis factor-α and interluekin-6). Interestingly, the ex-
pression of these pro-inflammatory factors was reduced by 
antioxidant treatment. 

The mitogen activated protein kinase (MAPK) is turned 
on by increased reactive oxygen species concentrations. It 
is integrated by three subfamilies, the extracellular signal-
regulated kinases (ERK), C-Jun N-terminal kinases (JNK) 
and p38. The first subfamily is normally involved in the cell 
survival process and the last two are implicated in apoptotic 
cell death, but not always (Wada and Penninger, 2004). 
Cell treatment with hydrogen peroxide resulted in cell 
apoptosis and activation of the three subfamilies of MAPK, 
but cell death was decreased by inhibition of ERK and the 
contrary occurred when JNK was inhibited (Wang et al. 

1998). In dairy cattle, Tian et al. (2014) suggest that the 
oxidative stress damage and apoptotic cell death induced by 
β-hydroxybutyrate in abomasum smooth muscle cells is 
responsible for abomasum displacement. The latter oc-
curred under the upregulation of p38 and JNK, but down-
regulation of ERK. 
 

  CONCLUSION  
Oxidative stress disrupts cell homeostasis and compromise 
dairy cattle health. Participation of oxidative stress in situa-
tions such as metabolic disorders, bacterial and parasitic 
infections suggest that antioxidant therapy could improve 
dairy cattle health affected by these situations. Knowledge 
of the physiology of oxidative stress in disrupting cell ho-
meostasis and dairy cattle health will help to determine the 
best dose and time for antioxidant supplementation to pre-
vent oxidative stress damage. 
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