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  INTRODUCTION 
 

The genome-wide evaluation combines traditional ap-
proaches for prediction of genetic values with using high 
throughput genotype data such as SNP (Meuwissen et al. 
2001). Selection based on the genome wide distributed 
markers estimated breeding values (MEBVs) resulted in 
increased genetic progress, due to improvement in the accu-
racy of estimations of the MEBVs, reduction in the genera-
tion interval (Meuwissen et al. 2001) and reduction in in-

breeding rates, due to emphasis on the MEBVs rather than 
the family information (Daetwyler et al. 2007). The accu-
racy in obtaining the MEBVs determines the success rate in 
breeding programs. Reason of this process is that whenever 
marker density is high enough, the most QTL will be in 
high LD with some markers and estimates of marker effects 
will lead to accurate predictions of genetic merit for a trait.  
A series of the statistical methods mainly differing in the 
extent of regularization and variable selection has been 
proposed. Simulation studies revealed clear differences 
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between methods with respect to their predictive ability. 
These methods including the ridge regression (Whittaker et 
al. 2000), the Bayesian methods such as BayesA and 
BayesB (Meuwissen et al. 2001), BayesC and BayesCπ 
(Habier et al. 2011), Bayesian least absolute shrinkage and 
selection operator (LASSO) (De los Campos et al. 2009), 
and nonparametric kernel methods (Gianola and van Kaam, 
2008). Some widely used as analysis methods rely on a 
linear mixed model backbone (Meuwissen et al. 2001) in 
which the SNP marker effects are modeled as random ef-
fects, drawn from a normal distribution. The predictions of 
the marker effects are known as the best linear unbiased 
predictions (BLUPs), which are linear functions of the re-
sponse variates. The Bayesian methods use a prior for the 
QTL effect distribution and another prior for the number of 
the QTL (Meuwissen et al. 2001). However, the true distri-
bution of the QTL effects is unknown for many quantitative 
traits. Goddard (2009) found greater accuracies by using a 
gamma (1.66, 0.4) prior distribution for the QTL effects 
compared to a normal prior distribution. The BayesA ap-
proach assumes, all SNP to have some effect, however, 
assumed that some of the SNP are in LD with the QTL of 
moderate to large effects. But in the BayesB approach as-
sumes, many of the SNP are in genomic regions where 
there are no QTL and thus have zero effects, whilst a small 
proportion of the SNP are in the LD with the QTL and con-
sequently do have an effect (Meuwissen et al. 2001). The 
LASSO uses the sum of absolute values of the regression 
coefficients as a penalty function, which leads to a sparse 
solution with less than min (n, p) nonzero elements retained 
in the model. Several factors affecting the prediction per-
formance of these methods such as genetic trait architec-
ture, span of the LD, sample size, trait heritability, and 
marker density have been identified (Daetwyler et al. 2010; 
Habier et al. 2011). However, how these methods account 
for the respective factors is still not fully understood, caus-
ing uncertainty about the best choice of method for a given 
population and trait. We hypothesise in this paper that the 
relative utility of the genome-wide evaluation methods de-
pends significantly on both the genomic structure of the 
population and the genetic trait architecture.  

Thus, the main objective of this study was to compare 
three non-linear variable selection methods, BayesA, 
BayesB and Bayesian LASSO, using simulated data across 
a range of population and trait genetic architectures to in-
vestigate the effects of marker density, number of the QTL 
and Neon the accuracy of the MEBVs. 
 

  MATERIALS AND METHODS 
Simulation  
The populations were simulated using the QMSim softwere 

(Sargolzaei and Schenkel, 2009) based on forward-in-time 
process.  

A genome consisted of three chromosomes with a length 
of 100cM was simulated 1000, 2000 and 3000 SNPs were 
equally spaced over the chromosomes. Three different 
numbers of QTL (100, 200 and 300) were considered and 
QTLs were uniformly distributed over the chromosomes. 
One hundred individuals, including 50 males and 50 fe-
males, were simulated for the base population (zero genera-
tion). These loci were assumed to be biallelic for both SNPs 
and QTL with allele frequencies equal to 0.50 (Table 1).  

The simulation started with an initial population of 100 
Ne individuals and followed by 0.5 Ne and 2 Ne discrete 
generations, denoted as historical generations. In the initial 
population and each historical generation, males and fe-
males were randomly selected to form Ne matings and pro-
duced Ne offspring with 0.5 Ne males and 0.5 Ne females. 
The parent’s gametes were simulated assuming LD based 
on the Haldane mapping function (Haldane, 1919) to gener-
ate recombinant gametes and were randomly combined to 
create the individual.  

The first generation structure was followed through to the 
50th generation of random mating to make LD populations. 
Subsequent to the LD populations 10 more generations (51 
to 60) were constructed. The base population consisted of 
1000 unrelated animals (500 males and 500 females). In 
this study, generations 51 and 52were assumed as training 
population and the other generations (53 to 60) as valida-
tion populations.  

In simulating training and validation populations, three 
QTL numbers (100, 200 and 300), three marker densities 
(1000, 2000 and 3000) and heritability level of 0.50 were 
assumed to be influencing the trait of interest. Furthermore, 
the two different assumed distributions for the QTL effects 
were uniform and gamma (α=1.66, β=0.4). Overall these 
assumptions for simulated traits for this study had different 
genetic architectures. The mutation rate of the markers and 
QTLs was assumed 2.5 × 10-5 per locus per generation 
(Solberg et al. 2008).  

True breeding values (TBV) were generated for all indi-
viduals in the training and validation populations. For each 
individual, TBV was obtained by summing up the effects of 

all QTL  

 

Where: 
aj: effect of QTL j, which was drawn from a gamma distri-
bution with the shape parameter β= 0.4 and scale parameter 
α= 1.66; following Meuwissen et al. (2001). 
m: total number of QTL.  
zj: equals −1, 0, or 1 for genotype 11, 12, and 22, respec-
tively. 
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Linkage disequilibrium  
The LD measure r2 (square of the correlation of alleles at 
two loci) was used for measuring LD (Hill and Robertson, 
1968): 
 
 
 
 
 
 
Where: 
D= f(AB) − f(A).f(B). 
f(AB), f(A), f(a), f(B), f(b): frequencies of haplotypes AB 
and of alleles A, a, B, b, respectively (Meuwissen et al. 
2001). 
  
Estimating the breeding values  
Three methods, BayesA, BayesB and Bayes LASSO, were 
used to estimate QTL, SNPs effects and genomic breeding 
values. The main difference between these three applied 
approaches is in their assumptions regarding genetic models 
of the trait. The genomicestimated breeding values (GEBV) 
for individuals in validation generations for threeBayesA, 
BayesB and Bayes LASSO methods were predicted using 
the model (Meuwissen et al. 2001): 

 

   
 

 
Where:  
n: number of SNPs across the genome.  
Xi: design matrix which refers to individual genotypes for 
SNPs.  
gi: vector of SNPs effects in chromosome i. 
  
BayesA method 
In this model like GBLUP, all SNPs are assumed to have 
some effects, however, assumed that some of the SNPs are 
in LD with QTL of moderate to large effects. The SNP ef-
fects sampled from a normal distribution with the variance 
for each SNP sampled from an inverse scaled Chi-square 

 
 
 
 
 
 
 
 
 
 

Table 1 Population structure and simulation parameters 
Parameter Value 

Number of chromosomes 3 

Genome length 300 cM 

Effective population size (Ne)  50, 100 and 200 

Numbers of QTL 100, 200 and 300 

Number of SNP markers 1000, 2000 and 3000 

QTL effects distributions Uniform and gamma (1.66; 0.4) 

Heritability 0.5 

Training set All individuals of generation 51 and 52 

Validation set All individuals of generations 53 to 60 

 
distribution. The BayesA method was performed using the 
model (Meuwissen et al. 2001): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Where:  
S: scale parameter.  
v: number of degrees of freedom. 
 
BayesB method 
In BayesB assumes that many of the SNPs are in genomic 
regions where there are no QTL and thus have zero effects, 
whilst a small proportion of SNPs are in LD with QTL and 
consequently do have an effect. This structure means that 
those effects that are non-zero can be thought of as those in 
stronger LD with the QTL. In fact, if the number of times a 
SNP is included in the model (i.e. has a non-zero effect) is 
recorded, the posterior probability of that SNP being linked 
to a QTL can be calculated. A Gibbs sampling algorithm 
was implemented to obtain samples from the joint posterior 
distribution. Steps of the algorithm are outlined below (for 
details on conditional posterior distribution see Yi and Xu 
(2008): 
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The Bayes LASSO method 
The Bayes LASSO, where a large proportion of marker 
effects are set to zero and the Bayesian LASSO, where 
marker effects are modeled using a double exponential dis-
tribution, with a high peak at zero and heavy tail that ac-
commodate SNPs with larger effects. Each marker has the 
same double exponential distribution and no heterogeneous 
variance either (Park and Casella, 2008). Better estimates 
are obtained where many possible QTL are estimated to 
have zero effect or, equivalently, excluded from the model. 
If all the QTL effects were from a reflected exponential 
distribution (i.e. without extra weight at zero), an estimator 
called the LASSO is the appropriate one (Tibshirani, 1996). 
However, in the situation where many true effects are zero, 
LASSO still estimates too many nonzero effects. A prag-
matic alternative is to exclude from the model but the most 
highly significant effects. 

The λ parameter in the LASSO approach was assigned a 
gamma(a, b) prior distribution. Values of a and b were set 
at 0.05 and 1.0, respectively, so that prior of λ was essen-
tially uniform over a wide range of values. Steps of the al-
gorithm are outlined below (Yi and Xu, 2008): 
 
 
 

 
 
 
 
 
 
 
 

 
 

For each analysis, a markov chain monte carlo (MCMC) 
with 210000 cycles with WinBUGS1.4 software ran and the 
first 10000 cycles were discarded as burn-in period. Esti-
mates at every 5th it eration were sorted as a sample, result-
ing in a total 40000 samples. 
  
Comparison of the methods to estimate breeding values  
The effects of heritability levels, marker density panels, and 
the number of QTLs on the accuracy of genomic predic-
tions were evaluated using PROC GLM, and the average 
accuracies of GEBV were compared using the least squares 
means (LSM) procedure at P < 0.05 (SAS, 2003). The cor-
relation between the GEBV and true genomic breeding 
value (TGBV) was used as measure of accuracy. 

 

  RESULTS AND DISCUSSION 
This study demonstrates the accuracy of genomic selection 
with different numbers of the QTL, marker densities and 
QTL effect distribution in different Ne. Calculated average 
LD values between all SNPs (r2) in the last generation of 
the LD population (generation 50) was 0.191 ± 0.011. This 
indicates that 87% of the expected LD had been achieved in 
this simulation. The expected LD based on Sved (1971) 
formula was 0.210.  

In this study, the genomic accuracy, the correlations be-
tween the TBVs and GEBVs, for different marker densities 
(1000, 2000 and 3000), different number of the QTLs (100, 
200 and 300), the different levels of heritability (0.10, 0.30, 
and 0.50) with two the QTL effect distributions uniform 
and gamma are shown in Tables 2 and 3, respectively. 
 
Genomic accuracy under different marker densitiesand 
Ne  
The relative genomic accuracy increased with increasing of 
marker densities and Ne. Increasing the marker density 
from 1000 to 3000, increased the average genomic accuracy 
with two the QTL effect distributions and three Ne levels 
(Figure 1).  

Increasing the accuracy of the genomic breeding values 
by increasing marker density to 3000 can be resulted to 
increase the LD between markers and QTL. The results of 
this study were agreement with the results of Solberg et al. 
(2008) and Habier et al. (2011).  

Solberg et al. (2008) reported that with increasing marker 
density from 100 to 800 markers at each Morgan, genomic 
accuracy increase from 69 to 86 percent. Increasing the 
number of markers increase the LD between genes and 
markers, and thus increases the accuracy of genomic 
evaluations. 

Also by increasing Ne, genomic accuracy of breeding 
values also increased (Tables 2 and 3).   
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Table 2 The estimated genomic accuracy for different effective population size (Ne), three marker densities and numbers of QTL (NOTL) with 
uniform QTL effect, SE < 0.03 in all scenarios 

Statistical methods 

LASSO BayesB Bayesa   

Marker density NOTL Ne 

3000 2000 1000 3000 2000 1000 3000 2000 1000   

0.587 0.577 0.558 0.592  0.579  0.563  0.474  0.462  0.441  100 

0.581 0.562 0.551 0.584  0.568  0.557  0.461  0.447  0.432  200 

0.569 0.550 0.537 0.573  0.555  0.542  0.435  0.430  0.417  300 

50 

0.865 0.827 0.818 0.868  0.832  0.821  0.789  0.758  0.732  100 

0.828 0.815 0.809 0.831  0.820  0.813  0.745  0.733  0.725  200 

0.746 0.741 0.726 0.751  0.745  0.733  0.718  0.711  0.706  300 

100 

0.871 0.844 0.827 0.879  0.847  0.831  0.791  0.774  0.757  100 

0.845 0.836 0.820 0.851  0.838  0.825  0.786  0.761  0.750  200 

0.827 0.824 0.811 0.833  0.826  0.817  0.758  0.732  0.725  300 

200 

Table 3 The estimated genomic accuracy for different effective population size (Ne), three marker densities and numbers of QTL (NOTL) with 
gamma QTL effect, SE < 0.03 in all scenarios 

Statistical methods 

LASSO BayesB Bayesa   

Marker density NOTL Ne 

3000 2000 1000 3000 2000 1000 3000 2000 1000   

0.592 0.578 0.570 0.599  0.585  0.574  0.481  0.473  0.458  100 

0.581 0.566 0.561 0.587  0.572  0.567  0.475  0.468  0.453  200 

0.566 0.558 0.549 0.569  0.564  0.555  0.443  0.436  0.427  300 

50 

0.885 0.862 0.839 0.886  0.867  0.844  0.797  0.763  0.744  100 

0.850 0.839 0.826 0.855  0.843  0.830  0.759  0.746  0.731  200 

0.833 0.826 0.815 0.839  0.827  0.818  0.725  0.719  0.712  300 

100 

0.887 0.871 0.846 0.893  0.875  0.849  0.825  0.811  0.793  100 

0.868 0.858 0.827 0.873  0.862  0.833  0.817  0.802  0.784  200 

0.847 0.839 0.818 0.854  0.845  0.821  0.780  0.771  0.764  300 

200 

 

Figure 1 Genomic accuracy of three methods BayesA, BayesB and LASSO with three marker densities 
levels in three effective population size 
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The reason can be attributed to increase the number of 
known data (number of phenotypic records in the base 
population) versus the number of unknowns variables (SNP 
effects). When the number of observations in the base 
population are greater, the SNP effects more precisely esti-
mate and eventually genomic breeding values will be 
greater accurate (Daetwyler et al. 2010). In general, in the 
same number of QTL and marker density in both uniform 
and gamma QTL effect distributions, estimated accuracies 
of GEBV for high Ne (200), were greater than the moderate 
(100) and low Ne (50), respectively. 
 
Genomic accuracy under different numbers of the QTL 
and QTL effect distributions 
Increasing the numbers of the QTL from 100 to 300, de-
creased the average genomic accuracy in all three Ne and 
two the QTL effect distributions (Figure 2). The results of 
the current study are in agreement with Daetwyler et al. 
(2010) who found a decrease in the accuracy with an in-
crease in the numbers of QTL. By increasing the numbers 
of QTL for a trait, the average variance of each the QTL for 
the trait of interest will decrease and the estimation of the 
QTL effect will be less accurate. With the uniform QTL 
effect distribution, by increasing the numbers of the QTL, 
the proportional contribution of each QTL on the trait will 
be very low and therefore some of their effects will be 
missed and missing heritability will be increased.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This can be due to the fact that by increasing the numbers 
of the QTL, the effect of each QTL on the trait will de-
crease and thus estimated the QTL effects will be small and 
the QTL effect distribution will be more similar to a uni-
form distribution. In addition the gamma distributions of 
the QTL effects resulted in better accuracy in three meth-
ods. Shirali et al. (2015) also reported better accuracy using 
BayesC estimation for gamma distribution in the QTL ef-
fect. When the distribution of the gene effects is gamma, 
some genes have a major effects and a high percentage of 
genes are close to zero impact. So the Bayesian methods 
compared with non-Bayesian methods are better. These 
effects can be due to two possible reasons. First, the prior, 
the QTL effect and the QTL effect are all gamma distribu-
tions. Second, the gamma distribution captures the QTL 
with very high effects compared to a normal and uniform 
distribution, resulting in more accurate estimation of the 
GEBVs for traits which are influenced by a numbers of the 
QTL with high effects (Nadaf and Pong-Wong, 2011). 
  
Genomic accuracy under different methods 
The BayesB method was accurate in comparison with both 
BayesA (P<0.05) and Bayesian LASSO (P>0.05) methods. 
Among the three methods, the greatest genomic accuracy 
obtained in low numbers of the QTL (100), high marker 
density, gamma QTL effect distribution, and large numbers 
of Ne (200) with BayesB method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 Genomic accuracy of three methods BayesA, BayesB and LASSO with three numbers of QTLin three 
effective population size 
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The results of this study are in agreement with Daetwyler 
et al. (2010) and Wimmer et al. (2013).  
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