# A method to obtain the best uniform polynomial approximation for the family of rational function $\frac{1}{a x^{2}+b x+c}$ 

M. A. Fariborzi Araghi ${ }^{1}$,F. Froozanfar ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, Islamic Azad university, Central Tehran branch, P.O.Box 13.185.768, Tehran, Iran.<br>${ }^{2}$ Ms.student of Mathematics, Islamic Azad university, Kermanshah branch<br>, Kermanshah, Iran

*Correspondence E-mail: M. A. Fariborzi Araghi: fariborzi.araghi@gmail.com
© 2015 Copyright by Islamic Azad University, Rasht Branch, Rasht, Iran
Online version is available on: www.ijo.iaurasht.ac.ir


#### Abstract

In this article, by using Chebyshev's polynomials and Chebyshev's expansion, we obtain the best uniform polynomial approximation out of $P_{2 n}$ to a class of rational functions of theform $\left(a x^{2}+c\right)^{-1}$ on any non symmetric interval $[d, e]$. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form $\left(a x^{2}+b x+c\right)^{-1}$ for both cases $b^{2}-4 a c\left\langle 0\right.$ and $\left.b^{2}-4 a c\right\rangle 0$.


Key words: Chebyshev's polynomials, Chebyshev's expansion, uniform norm, the best uniform polynomial approximation, alternating set.

## 1. Introduction

(b) $\sum_{j=0}^{n-1} t^{p j} T_{p j}(x)=\frac{1-t^{p} \cos (p \theta)-t^{p n} \cos (p n \theta)+t^{p+n} \cos (p n \theta) \cos (p \theta)+t^{p n+n} \sin (p n \theta) \sin (p \theta)}{1+t^{2 p}-2 t^{p} \cos (p \theta)}$. In section 2, we characterize the best On of the important and applicable subjects in applied mathematics is the best approximation for functions. A large number of paper and books have considered this problem in various points of view.

Definition 1. [19] Suppose $P_{n}$ denotes the space of polynomials of degree at most $n$, then for given $f \in C[d, e]$, there exists a unique polynomial $p_{n}^{*} \in P_{n}$ such that:

$$
\left\|f-p_{n}^{*}\right\|_{\infty} \leq\|f-p\|_{\infty}, \quad \forall p \in P_{n} .
$$

We call $p_{n}^{*}$ the best polynomial approximation out of $P_{n}$ to $f$ on $[d, e]$.
In other words, $p_{n}^{*} \in P_{n}$ is the best uniform approximation for function $f$ on $[d, e]$ if $E_{n}(f,[d, e])=\max _{d \leq x \leq e}\left|f(x)-p_{n}^{*}(x)\right| \leq \max _{d \leq x \leq e} \mid f(x)-p(x), \quad \forall p \in P_{n}$.

The main questions of this problem are existence, uniqueness and characterization of the solution. The existence and uniqueness of the solution for the best approximation problem have been proved in $[15,19]$.

In resent years, some researches investigated in order to characterize the best uniform approximation for special classes of functions. Several of these researches were focused on classes of functions possessing a certain expansion by Chebyshev's polynomials. For example Jokar and Mehri in [8] studied $(x-a)^{-1}(a>1)$ and $(x+1)^{-1}$. Also Achieser in $[1,2]$ studied $(x-a)^{-1}$. Lorentz in [10] obtained the best uniform approximation for complex function $(z-\alpha)^{-1},(z, \alpha \in C)$. In the sequel, Lubinesky in [11] showed that Lagrange interpolants at the Chebyshev zeros yield the best relevant polynomial approximation of $\left(1+(a x)^{2}\right)^{-1}$ on [-1,1]. Eslahchi and Dehghan in [6] characterized the best uniform polynomials approximation to a class of functions $\left(a^{2} \pm x^{2}\right)^{-1}$ on $[-1,1]$ and $[-c, c]$. They also in [5] obtained the best uniform approximation to a class of $\left(T_{q}(a) \pm T_{q}(x)\right)^{-1}$. Also Elliott in [9] used the generalized form of Chebyshev's polynomials in a specific series to obtain the best approximation.

At first some definitions and theorems that will be used throughout this article are introduced.

Theorem 1. (Chebyshev's alternation theorem) [15]
Let $f$ be in $C[d, e]$. Let the polynomial $p$ be in $P_{n}$ and $e(x)=f(x)-p_{n}(x)$. Then $p$ is the best uniform approximation $p_{n}^{*}$ to $f$ on $[d, e]$ if and only if there exist at least $n+2$ points $x_{1}\left\langle x_{2}\left\langle\cdots\left\langle x_{n+2}\right.\right.\right.$ in $[d, e]$, for which:[14]

$$
\left|e\left(x_{i}\right)\right|=\max _{d \leq x \leq e} \mid f\left(x_{i}\right)-p_{n}\left(x_{i}\right), \text { with } e\left(x_{i+1}\right)=-e\left(x_{i}\right) .
$$

Definition 2. [4,16] The Chebyshev's polynomial in $[-1,1]$ of degree $n$ is denoted by $T_{n}$ and is defined by $T_{n}(x)=\cos (n \theta)$ where $\cos \theta=x$. (1)

Note that $T_{n}$ is a polynomial of degree $n$ with leading coefficient $2^{n-1}$.

Definition 3. [12] The Chebyshev's polynomial in $[d, e]$ of degree $n$ is denoted by $T_{n}^{*}$ and is defined by $T_{n}^{*}(x)=\cos (n \theta)$ where
$\cos \theta=\frac{2 x-(d+e)}{e-d}$.
(2)

Lemma 1. [8] For $x=\cos \theta,|t|\langle 1$ and natural number $p$ we have:
(a) $\sum_{j=0}^{\infty} t^{p j} T_{p j}(x)=\frac{1-t^{p} \cos (p \theta)}{1+t^{2 p}-2 t^{p} \cos (p \theta)}$,
uniform approximation to the class of $\left(a x^{2}+c\right)^{-1}$ on $[d, e]$ and in section 3, using the results from section 2, we obtain the best uniform approximation for the class of $\left(a x^{2}+b x+c\right)^{-1}$ on $[-1,1]$.

## 2. Best Approximation of $\left(a x^{2}+c\right)^{-1}$ on $[d, e]$

In this section, we determine the best uniform polynomial approximation out of $P_{2 n}$ to $\left(a x^{2}+c\right)^{-1}$ on $[d, e]$, when $\left.\frac{c}{a}\right\rangle 0$ or $\frac{c}{a}\langle 0$.

Now, we prove the following lemmas to verify Chebyshev's expansion in two mentioned cases.

Lemma 2. Suppose that $x \in[d, e], \frac{c}{a}\left\langle 0\right.$ and $\left.\frac{-4 c}{a}\right\rangle(e-d)^{2}$. Then, we have:

$$
\begin{equation*}
\frac{1}{a x^{2}+c}=\frac{-1}{a\left(\frac{-c}{a}-x^{2}\right)}=\frac{-16 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)}+\frac{32 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)} \sum_{k=0}^{\infty} t^{2 k} \bar{T}_{2 k}(x) ; \tag{3}
\end{equation*}
$$

where $t=\frac{1}{(e-d)}\left(2 \sqrt{\frac{-c}{a}}-\sqrt{\frac{-4 c}{a}-(e-d)^{2}}\right), \quad(|t|\langle 1)$
(4)
and $\bar{T}_{n}(x)=\cos (n \theta)$ where $\cos \theta=\frac{2 x}{e-d}$.
Proof: In the expansion of the function $\left.\frac{1}{\alpha^{2}-x^{2}},\left(\alpha^{2}\right\rangle 1\right)$ on $[-1,1]$ we have [17]:
$\frac{1}{\alpha^{2}-x^{2}}=\frac{4 t^{2}}{t^{4}-1}-\frac{8 t^{2}}{t^{4}-1} \sum_{k=0}^{\infty} t^{2 k} T_{2 k}(x)$,
(5)
where, $x \in \cos \theta$ and $\alpha=\frac{t^{2}+1}{2 t}$ and $t=\alpha-\sqrt{\alpha^{2}-1}$. Suppose that $\alpha=\sqrt{\frac{-c}{a}}$, then we have
$\frac{1}{\left(\frac{t^{2}+1}{2 t}\right)^{2}-\cos ^{2} \theta}=\frac{4 t^{2}}{t^{4}-1}-\frac{8 t^{2}}{t^{4}-1} \sum_{k=0}^{\infty} t^{2 k} T_{2 k}^{*}(x)$.
(6)

According to (2) we can write:

$$
\begin{equation*}
\frac{1}{\frac{-c}{a}-x^{2}}=\frac{1}{\left(\frac{t^{2}+1}{2 t}\right)^{2}-\cos ^{2} \theta}=\frac{4(e-d)^{2}}{4(e-d)^{2}\left(\frac{t^{2}+1}{2 t}\right)^{2}-\left(x-\frac{d+e}{2}\right)^{2}} \tag{7}
\end{equation*}
$$

Combining (6) and (7) we obtain:
$\frac{4}{(e-d)^{2}\left(\frac{t^{2}+1}{2 t}\right)^{2}-\left(x-\frac{d+e}{2}\right)^{2}}=\frac{16 t^{2}}{(e-d)^{2}\left(t^{4}-1\right)}-\frac{32 t^{2}}{(e-d)^{2}\left(t^{4}-1\right)} \sum_{k=0}^{\infty} t^{2 k} T_{2 k}^{*}(x)$.
(8)

Suppose that $t=\frac{1}{(e-d)}\left(2 \sqrt{\frac{-c}{a}}-\sqrt{\frac{-4 c}{a}-(e-d)^{2}}\right)$, consequently $|t|\langle 1$. ( Note that for $t=\frac{2 a+\sqrt{4 a^{2}-(e-d)^{2}}}{(e-d)}$, the condition $|t|\langle 1$ is not true.)

Thus we have:
$\frac{4}{\frac{-c}{a}-\left(x-\frac{d+e}{2}\right)^{2}}=\frac{16 t^{2}}{(e-d)^{2}\left(t^{4}-1\right)}-\frac{32 t^{2}}{(e-d)^{2}\left(t^{4}-1\right)} \sum_{k=0}^{\infty} t^{2 k} T_{2 k}^{*}(x)$.
(9)
where with $\bar{T}_{n}(x)=\cos (n \theta), \cos \theta=\frac{2 x}{e-d}$, so relation (3) is proved.

Lemma 3. Suppose that $x \in[d, e]$ and $\frac{c}{a} \times 0$. Then we have:
$\frac{1}{a x^{2}+c}=\frac{1}{a\left(x^{2}+\frac{c}{a}\right)}=\frac{16 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)}-\frac{32 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)} \sum_{k=0}^{\infty}(-1)^{k} t^{2 k} \bar{T}_{2 k}(x)$;
where
$t=\frac{1}{(e-d)}\left(\sqrt{\frac{4 c}{a}+(e-d)^{2}}-2 \sqrt{\frac{c}{a}}\right), \quad(|t|<1)$.
and $\bar{T}_{n}(x)=\cos (n \theta)$ where $\cos \theta=\frac{2 x}{e-d}$.
Proof: In the expansion of the function $\frac{1}{\beta^{2}+x^{2}}$ on $[-1,1]$ we have[6]:
$\frac{1}{\beta^{2}+x^{2}}=\frac{4 t^{2}}{\left(t^{4}-1\right)}-\frac{8 t^{2}}{\left(t^{4}-1\right)} \sum_{k=0}^{\infty}(-1)^{k} t^{2 k} T_{2 k}^{*}(x)$,
where $x=\cos \theta, \beta=\frac{1-t^{2}}{2 t}$. With suppose $\beta=\sqrt{c / a}$, the rest of proof is similar to the proof of lemma 2 . Thus we omit it.

Theorem 2. The best uniform polynomial approximation out of $P_{2 n}$ for $\left(a x^{2}+c\right)^{-1}$ where $\frac{c}{a}\left\langle 0\right.$, on $[d, e]$ and $\left.\frac{-4 c}{a}\right\rangle(e-d)^{2}$, is as follows: $p_{2 n}^{*}(x)=\frac{-16 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)}+\frac{32 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)} \sum_{k=0}^{n-1} t^{2 k} \bar{T}_{2 k}(x)-\frac{32 t^{2 n+2}}{a(e-d)^{2}\left(t^{4}-1\right)^{2}} \bar{T}_{2 n}(x)$,
and

$$
\begin{equation*}
E_{2 n}(f)=\left\|f-p_{2 n}^{*}\right\|_{\infty}=\frac{32 t^{2 n+4}}{|a|(e-d)^{2}\left(t^{4}-1\right)^{2}}, \tag{13}
\end{equation*}
$$

(14) where $t=\frac{1}{(e-d)}\left(2 \sqrt{\frac{-c}{a}}-\sqrt{\frac{-4 c}{a}-(e-d)^{2}}\right),\left(|t|\langle 1), \bar{T}_{n}(x)=\cos (n \theta)\right.$ where $\cos \theta=\frac{2 x}{e-d}$.

Proof: Noting to Chebyshev's alternation theorem we should prove that the function $e_{2 n}(x)=\frac{1}{a x^{2}+c}-p_{2 n}^{*}(x)$
has $2 n+2$ alternating points in $[d, e]$. From (3) and (13) we have:

$$
\begin{equation*}
e_{2 n}(x)=\frac{32 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)} \sum_{k=n}^{\infty} t^{2 k} \bar{T}_{2 k}(x)+\frac{32 t^{2 n+2}}{a(e-d)^{2}\left(t^{4}-1\right)^{2}} \bar{T}_{2 n}(x) . \tag{16}
\end{equation*}
$$

By replacing $p=2$ in lemma 1 and subtracting both sides of $(b)$ from $(a)$ we obtain:

$$
\begin{equation*}
\sum_{k=n}^{\infty} t^{2 k} \bar{T}_{2 k}(x)=t^{2 n} \frac{\cos (2 n \theta)-t^{2}(\cos (2 n \theta) \cos (2 \theta)+\sin (2 n \theta) \sin (2 \theta))}{1+t^{4}-2 t^{2} \cos (2 \theta)} . \tag{17}
\end{equation*}
$$

By replacing (17) in (16), we obtain:

$$
\begin{align*}
& e_{2 n}(x)=\frac{32 t^{2 n+2}}{a(e-d)^{2}\left(t^{4}-1\right)^{2}}\left[\left\{\frac{\left(1-t^{2} \cos (2 \theta)\right)\left(t^{4}-1\right)+\left(1+t^{4}-2 t^{2} \cos (2 \theta)\right)}{1+t^{4}-2 t^{2} \cos (2 \theta)}\right\} \cos (2 n \theta)\right. \\
& \left.+\left\{\frac{t^{2}\left(t^{4}-1\right) \sin (2 \theta)}{1+t^{4}-2 t^{2} \cos (2 \theta)}\right\} \sin (2 n \theta)\right] \tag{18}
\end{align*}
$$

Noting to (4), we have $\frac{-c}{a}=\left(\frac{(e-d)\left(t^{2}+1\right)}{4 t}\right)^{2}$. Then we can rewrite (18) in the form of:

$$
\begin{align*}
& e_{2 n}(x)=\frac{32 t^{2 n+4}}{a(e-d)^{2}\left(t^{4}-1\right)^{2}}\left\{\frac{(e-d)^{2}\left(\frac{-c}{a}\right)-x^{2}\left(\frac{-8 c}{a}-(e-d)^{2}\right)}{(e-d)^{2}\left(\frac{-c}{a}-x^{2}\right)} \cos (2 n \theta)\right. \\
& \left.+\frac{2 \sqrt{\frac{4 c^{2}}{a^{2}}+\frac{c}{a}(e-d)^{2}} \sqrt{x^{2}(e-d)^{2}-4 x^{4}}}{(e-d)^{2}\left(\frac{-c}{a}-x^{2}\right)} \sin (2 n \theta)\right\} . \tag{19}
\end{align*}
$$

Now if we define:
$F_{1}(x)=\frac{(e-d)^{2}\left(\frac{-c}{a}\right)-x^{2}\left(\frac{-8 c}{a}-(e-d)^{2}\right)}{(e-d)^{2}\left(\frac{-c}{a}-x^{2}\right)}$,
$F_{2}(x)=\frac{2 \sqrt{\frac{4 c^{2}}{a^{2}}+\frac{c}{a}(e-d)^{2}} \sqrt{x^{2}(e-d)^{2}-4 x^{4}}}{(e-d)^{2}\left(\frac{-c}{a}-x^{2}\right)}$.

Then we have: $\quad F_{1}^{\prime}(x)=\frac{-2 x\left(\frac{8 c^{2}}{a^{2}}+\frac{2 c}{a}(e-d)^{2}\right)}{(e-d)^{2}\left(\frac{-c}{a}-x^{2}\right)^{2}}$.

It is easy to conclude that if $0 \notin[d, e]$, then $F_{1}(x)$ is a monotonic function and if $0 \in[d, e]$ then $F_{1}(x)$ is a monotonic function on each interval $[d, 0],[0, e]$. Also we have: $F_{1}^{2}(x)+F_{2}^{2}(x)=1, \quad x \in(d, e]$.
(23)

Therefore, according to (22) and definition of $\bar{T}_{n}$ for $x \in[d, e]$, we have: $-1 \leq F_{1}(x) \leq 1$. Hence according to mean value theorem for every $x \in[d, e]$, there exists a $\eta \in(0, \pi)$ such that $\quad \cos \eta=F_{1}(x), \quad x \in[d, e]$.

Therefore, from (23) we can write: $\sin \eta=F_{2}(x)$.

Replacing (24) and (25) in (19) we obtain:
$e_{2 n}(x)=\frac{32 t^{2 n+4}}{a(e-d)^{2}\left(t^{4}-1\right)^{2}} \cos (\eta+2 n \theta)$.

Now, if $x$ varies from $d$ to $e$, then $\cos (2 n \theta+\eta)$ varies from $\cos (n+1) \pi$ to $\cos (-\pi)$ and consequently $\cos (2 n \theta+\eta)$ possesses at least $2 n+2$ extermal points, where it assumes alternately the values $\pm 1$. Therefore $p_{2 n}^{*}$ is the best approximation out of $P_{2 n}$, and (14) will be proved with considering (26).

Theorem 3. The best uniform polynomial approximation out of $P_{2 n}$ for $\left(a x^{2}+c\right)^{-1}$ where $\frac{c}{a}>0$, on $[d, e]$ will be:

$$
p_{2 n}^{*}(x)=\frac{16 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)}-\frac{32 t^{2}}{a(e-d)^{2}\left(t^{4}-1\right)} \sum_{k=0}^{n-1}(-1)^{k} t^{2 k} \bar{T}_{2 k}(x)-\frac{32(-1)^{n} t^{2 n+2}}{a(e-d)^{2}\left(t^{4}-1\right)^{2}} \bar{T}_{2 n}(x),(27)
$$

and

$$
E_{2 n}(f)=\left\|f-p_{2 n}^{*}\right\|_{\infty}=\frac{32 t^{2 n+4}}{|a|(e-d)^{2}\left(t^{4}-1\right)^{2}}
$$

(28) where $t=\frac{1}{(e-d)}\left(\sqrt{\frac{4 c}{a}+(e-d)^{2}}-2 \sqrt{\frac{c}{a}}\right),(|t|<1), \bar{T}_{n}(x)=\cos (n \theta)$
where $\cos \theta=\frac{2 x}{e-d}$.

Proof: The proof is similar to the proof of theorem 2.
If we obtain the best uniform polynomial approximation for $f(x)=\frac{1}{25-x^{2}}$ on $[-3,3]$ by using theorem 2 , with $n=3, p_{6}^{*}(x)$ we will see that this result is similar to the best uniform polynomial approximation obtained in [6]. If we obtain the best uniform polynomial approximation for $f(x)=\frac{1}{25+x^{2}}$ on $[-5,5]$ by using theorem 3 , with $n=2, p_{4}^{*}(x)$ we will see that this result is similar to the best uniform polynomial approximation obtained in [6].

Example 1. In figure 1, the function $f(x)=\frac{1}{-2 x^{2}+19}$ has been drawn. The dashed points show the best uniform polynomial approximation of degree 8 , $p_{8}^{*}(x)$, to $\left(-2 x^{2}+19\right)^{-1}$ on $[-1,2]$.


Figure 1: The best approximation of $\left(-2 x^{2}+19\right)^{-1}$.

Example 2. In figure 2, both the function and its best uniform polynomial approximation, $p_{16}^{*}(x)$, ( the dashed point ) of degree 16 to $\left(5+x^{2}\right)^{-1}$ on $[0,2]$ has been shown.


Figure 2: The best approximation of $\left(5+x^{2}\right)^{-1}$.

## 3. Best Approximation of $\left(a x^{2}+b x+c\right)^{-1}$

In this section, by using the previous theorems, we obtained the best polynomial approximation for $\left(a x^{2}+b x+c\right)^{-1}$ on $[-1,1]$.

Theorem 4. The best uniform polynomial approximation out of $P_{2 n}$ for $\left(a x^{2}+b x+c\right)^{-1}$ on $[-1,1]$ is as follows:
(a) $\quad p_{2 n}^{*}(x)=\frac{1}{a}\left[\frac{-4 t^{2}}{\left(t^{4}-1\right)}+\frac{8 t^{2}}{\left(t^{4}-1\right)} \sum_{k=0}^{n-1} t^{2 k} T_{2 k}\left(x+\frac{b}{2 a}\right)-\frac{8 t^{2 n+2}}{\left(t^{4}-1\right)^{2}} T_{2 n}\left(x+\frac{b}{2 a}\right)\right]$,
where,

$$
\begin{align*}
& t=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}-\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}-1}, \quad\left(b^{2}-4 a c>4 a^{2}>0\right),|t|<1 . \\
& \text { (b) } \quad p_{2 n}^{*}(x)=\frac{1}{a}\left[\frac{4 t^{2}}{\left(t^{4}-1\right)}-\frac{8 t^{2}}{\left(t^{4}-1\right)} \sum_{k=0}^{n-1} t^{2 k}(-1)^{k} T_{2 k}\left(x+\frac{b}{2 a}\right)+\frac{8(-1)^{n} t^{2 n+2}}{\left(t^{4}-1\right)^{2}} T_{2 n}\left(x+\frac{b}{2 a}\right)\right], \tag{31}
\end{align*}
$$

where,

$$
\begin{equation*}
t=\sqrt{\frac{-b^{2}+4 a c}{4 a^{2}}+1}-\sqrt{\frac{-b^{2}+4 a c}{4 a^{2}}}, \quad b^{2}-4 a c\langle 0,| t \mid\langle 1 . \tag{32}
\end{equation*}
$$

Proof: We can write the function $\left(a x^{2}+b x+c\right)^{-1}$ in the form of:

$$
\begin{equation*}
\frac{1}{a x^{2}+b x+c}=\frac{1}{a\left(\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}\right)} . \tag{33}
\end{equation*}
$$

Since $x \in[-1,1]$ therefore

$$
\text { (34) } x+\frac{b}{2 a} \in\left[-1+\frac{b}{2 a}, 1+\frac{b}{2 a}\right]=[d, e] \text {. }
$$

Now, by changing $x$ to $x+\frac{b}{2 a}$ in theorems 2 and 3, we have:
$\bar{T}_{2 n}\left(x+\frac{b}{2 a}\right)=\cos \left(2 n \arccos \frac{2(x+b / 2 a)}{1+b / 2 a+1-b / 2 a}\right)=\cos (2 n \arccos (x+b / 2 a))=T_{2 n}\left(x+\frac{b}{2 a}\right)$.

Case1: $\left(b^{2}-4 a c>0\right)$ In this case, replacing $\frac{-c}{a}$ by $\frac{b^{2}-4 a c}{4 a^{2}}$, according to (34), the defined $t$ in theorem 2 , changes to ( 30 ) where $b^{2}-4 a c>4 a^{2}$. Therefore, we can prove $(a)$ by using theorem 2 .

Case2 : $\left(b^{2}-4 a c<0\right)$ In this case, replacing $\frac{c}{a}$ by $\frac{-b^{2}+4 a c}{4 a^{2}}$, according to (34), the defined $t$ in theorem 3 , changes to (32). Therefore, we can prove $(b)$ by using theorem 3.

Example 3. In figure 3, we have drawn the function $f(x)=\frac{1}{x^{2}+2 x-15}$. Also, the dashed points show the best uniform polynomial approximation of degree 6 , $p_{6}^{*}(x)$, to $\left(x^{2}+2 x-15\right)^{-1}$ on $[-1,1]$.


Figure 3: The best approximation of $\left(x^{2}+2 x-15\right)^{-1}$.

Example 4. In figure 4, both the function and its best uniform polynomial approximation , $p_{16}^{*}(x)$, ( the dashed point ) of degree 16 to $\left(x^{2}-2 x+6\right)^{-1}$ on $[-1,1]$ are shown.


Figure 4: The best approximation of $\left(x^{2}-2 x+6\right)^{-1}$.

## 4. Conclusion

As seen in this article, in the sequel of previous researches, the best uniform approximation for $\left(a x^{2} \pm c\right)^{-1}$ was achieved. In this case, we applied the interval $[d, e]$ as general in place of $[-1,1]$.

Also, by characterizing the best uniform approximation for $\left(a x^{2}+b x+c\right)^{-1}$ on $[-1,1]$, a more general form than previous approximation in $[6,8]$ was obtained.

## References

[1]-Achieser N. I., Theory of Approximation, Ungar, New York, 1956.
[2]-Achieser N.I., Theory of Approximation, Dover, New York, translated from Russian, 1992.
[3]-Bernstein S.N., Extremal Properties of Polynomials and the Best Approximation of Continuous Functions of Single Real Variable, State United Scientific and Technical Publishing House, translated from Russian, 1937.
[4]-Cheney E.W., Introduction to Approximation Theory, Chelsea, New York, 1982.
[5]-Dehghan M., Eslahchi M.R., Best uniform polynomial approximation of some rational functions,Computers and Mathematics with applications, 2009.
[6]-Eslahchi M.R., Dehghan M., The best uniform polynomial approximation to class of the form $\left(a^{2} \pm x^{2}\right)^{-1}$, Nonlinear Anal., TMA 71 (740_750), 2009.
[7]-Golomb M., Lectures on theory of approximation, Argonne National Laboratory, Chicago, 1962.
[8]-Jokar S., Mehri B., The best approximation of some rational functions in uniformnorm, Appl. Numer. Math. 55 (204-214), 2005.
[9]-Lam B. , Elliott D.,Explicit results for the best uniform rational approximation to certain continuous functions, J. Approximation Theory 11 (126-133), 1974.
[10]-Lorentz G.G., Approximation of Functions, Holt, Rinehart and Winston, New York, 1986.
[11]-Lubinsky D. S., Best approximation and interpolation of $\left(1+(a x)^{2}\right)^{-1}$ and itstransforms, J. Approx. Theory 125 (106-115), 2003.
[12]-Mason J. C., Handscomb D. C., Chebyshev polynomials, Chapman \& Hall/CRC, 2003.
[13]-Newman D.J.,Rivlin T. J., Approximation of monomials by lower degree polynomials, Aeq. Math. 14 (451-455), 1976.
[14]-Ollin H. Z., Best polynomial approximation to certain rational functions, J.Approx. Theory 26 (389-392), 1979.
[15]-Rivlin T. J., An introduction to the approximation of functions, Dover, New York, 1981.
[16]-Rivlin T. J., Chebyshev Polynomials. New York: Wiley, 1990.
[17]-Rivlin T. J., Polynomials of best uniform approximation to certain rational functions,Numer. Math. 4 (345-349), 1962.
[18]-Timan A.F., Theory of Approximation of a Real Variable, Macmillan, New York, translated from Russian, 1963.
[19]-Watson G. A., Approximation Theory and Numerical Methods Chicago, John Wiley \& Sons, 1980.

