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Abstract 

In this article we consider the averaging method for differential inclusions with 

fuzzy right-hand side for the case when the limit of a method of an average does not 

exist. 
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1. Introduction 

One possibility of modeling uncertainty in a dynamical system is to replace 

functions in the problem  

nRxxtxtftx  0)0()),(,()(                                                (1.1) 

by set-valued functions [12,13,19]. This leads to the following (generalized) 

initial value problem  

,)0()),(,()( 0

nRxxtxtFtx                                                            (1.2) 

where F  is a set-valued function [3,7,18]. 
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A reasonable generalization of ''set-valued'' modeling, which takes aspects of 

gradedness into account, is the replacement of sets by fuzzy sets, i.e. (1.2) 

becomes the fuzzy initial value problem  

,)0()),(,(
~

)( 0

nExxtxtFtx                                                (1.3) 

with a fuzzy function F
~

 [1,2,5,6,8,11]. 

As it is known, for usual differential inclusions the average method is well 

justified [15]. Therefore we in the given paper will justify a possibility of 

application of a method of an average for differential inclusions with a fuzzy 

right-hand side. 

2. Preliminaries 

Let )( nRconv  be the family of all nonempty compact convex subsets of 
nR  with 

the Hausdorff metric 

 ,minmax,minmaxmax),( babaBAh
AaBbBbAa




 

where   denotes the usual Euclidean norm in 
nR . 

Let 
nE  be the family of mappings  1,0: nRx  satisfying the following 

conditions: 

1) x  is normal, i.e. there exists an 
nR0  such that   10 x ; 

2) x  is fuzzy convex, i.e.        xxx ,min)1(   whenever nR ,  

and  1,0 ; 

3) x  is upper semicontinuous, i.e. for any 
nR0  and 0  exists   0,0   

such that  

            0xx  whenever nR  ,0
; 

4) the closure of the set   0:   xRcl n
 is compact. 

Let 0̂  be the fuzzy mapping defined by   00̂   if 0  and   100̂  . 

Definition 2.1. The set    yxRy n :  is called the  -level  x  of a mapping 
nEx  for 10  . The closure of the set   0:  yxRy n

 is called the 0 - 

level  0x  of a mapping nEx .  

Theorem 2.1. [14] If nEx  then  
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1)    nRconvx 


 for all 10  ; 

2)     12 
xx   for all 10 21   ; 

3) if    1,0k  is a nondecreasing sequence converging to 0 , then 

   
1


k

kxx


. 

Conversely, if  10: A  is the family of subsets of nR  satisfying the 

conditions 1) - 3) then there exists nEx  such that   
Ax   for 10   and 

  0

10

0
AAx 






 . 

Define the metric  REED nn:  by the equation 

 
 

    



yxhyxD ,sup,
1,0

 .  

Using the results of [17], we know that 

  (1)  DE n ,  is a complete metric space, 

  (2)    yxDzyzxD ,,   for all nEzyx ,, , 

  (3)    yxDkkykxD ,,   for all RkEyx n  ,, . 

Let I  be an interval in R . 

Definition 2.2.  A mapping 
nEIf :  is called continuous at point It 0  

provided for any 0  there exists 0  such that      0, tftfD  whenever 

Ittt  ,0  . A mapping 
nEIf :  is called continuous on I  if it is 

continuous at every point It 0 . 

Definition 2.3. [14] A mapping 
nEIf :  is called measurable on I  if for any 

 1,0  the multivalued mapping      tftf   is Lebesgue measurable.  

Definition 2.4. [14] A mapping 
nEIf :  is called integrably bounded on I  if 

there exists a Lebesgue integrable function  tk  such that  tkx   for all 

  Ittfx  ,0 . 
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Definition 2.5. [14] An element nEg   is called an integral of nEIf :  over 

I  if      
I

dttfAg 


 for any ]1,0( , where    

I

dttfA  $(A) is the Aumann 

integral [4].  

Theorem 2.2. [14] If a mapping nEIf :  is measurable and integrably bounded 

then f  is integrable over I . 

Now, consider the Cauchy problem with small parameter 

  ,)0(,, 0xxxtx                                                                            (2.1) 

where 0  is a small parameter, nn ERR  :  is a fuzzy mapping, nEx 0 . 

We interpret [2,5,6] the equation (2.1) as a family of differential inclusions 

        

  00,,, xxtxttxtx                         (2.2) 

 

where the subscript   indicates that the  -level set of a fuzzy set is involved (the 

system (2.2) can only have any significance as a replacement for (2.1) if the 

solutions generate fuzzy sets (fuzzy R-solution) [8]). 

In the articles [9] associate with the inclusion (2.1) the following averaged 

differential inclusion 

,)0(,)( 0xyyy                                                                         (2.3) 

where      .0,
1

,lim
0









 



T

T
dtxt

T
xD                                                   (2.4) 

Here the integral of the fuzzy mapping is understood in sense [14]. 

 

3. Main Result 

In this article we consider the case when the limit (2.4) does not exist but there 

exist fuzzy mappings 
nn ER   :,  such that 

    0,
1

,lim
0









 





T

T
dtxt

T
x ,                                              (3.1) 
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    0,,
1

lim
0









 


 xdtxt

T

T

T
 ,                                                           (3.2) 

where  ,  is the semideviation of the elements in the sense of fuzzy metric: 

 
     

baBA
BbAa







 infsupsup,
1,0

. 

Along with the differential inclusion (2.1) we will consider the following 

differential inclusions: 

    00, xxxx    ,                                                                    (3.3) 

    00, xxxx    .                                                                    (3.4) 

Theorem 3.1. Let in the domain   nEGxRtxtQ   ,|,  the following 

hold: 

1) the fuzzy mapping  xt ,  is uniformly bounded with constant M , 

measurable in t , satisfies the Lipschitz condition in x  with constant  ; 

2) the fuzzy mapping  x  is uniformly bounded with constant M , satisfies the 

Lipschitz condition in x  with constant  ; 

3) uniformly with respect to x  in the domain G  the limit (3.1) exists; 

4) for any GGx  '0  and 0t  the R-solution of the inclusion (3.3) )(tR
 

together with a  -neighborhood belong to the domain G . 

Then for any ],0(   and 0L  there exists   0,0 L  such that for 

all ],0( 0   and  1,0  Lt  

     0̂ˆ
StRtR  ,                                                                                   (3.5) 

where     00̂ˆ




 SS   for all  1,0 . 

Proof. Let  1,0  is arbitrary.   Divide the interval  1,0 L  on the partial 

intervals with the points Nmmi
m

iL
ti  ,,0,


. Let  tx

 be a solution of the 

inclusion 

     .0, 0xxxx   
                                                                      (3.6) 
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Then there exists a measurable selector      txtu   such that 

          .0,,, 01 xxtttdutxtx ii

t

t

i

i

 





                                    (3.7) 

Consider the following function  

          ,0,,, 0

1

1

11 xytttttutyty iiiii                                   (3.8) 

where 

 
    










1

1

1

)(min
i

i
i

i

i

t

ttyu

t

t

i dttuu
m

L
dttuu

m

L

 
.                                         (3.9) 

As in (3.9) the function being minimized is strongly convex and the set 

   itx  is compact and convex then there exists the point iu . 

Let    iii tytx 1  , then for  1,  ii ttt  we have 

             iiiiii ttMtytxtxtxtytx   11
;          (3.10) 

           iii ttMtytxh   
 1, .                                    (3.11) 

From (3.9), (3.11) follow that  

          













 




1111

1,
i

i

i

i

i

i

i

i

t

t

i

t

t

t

t

i

t

t

dttydttxhdtudttu


 

          
 








 
 








2
,

2

1
1

1
1

ii
iii

t

t

i

ttM
ttdttytxh

i

i





 











2

2

2 m

ML

m

L
i


 .                                                                                   (3.12) 

Taking into account (3.7), (3.8) and (3.12) we get the following estimate: 


















 iiii

m

L

m

ML

m

ML

m

L





 1

22 2

2

2

2

1  
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 1
2

11
2

1


























L

i

e
m

ML

m

L

m

ML 
.                                                       (3.13) 

As 

     
m

ML
dutxtx

t

t

i

i

 
  ,             

m

ML
tyty i  11 , 

so then using (3.13) we obtain 

       3
2

1
2

1  LL e
m

ML
e

m

ML

m

ML

m

ML
tytx  .                       (3.14) 

From the condition 2) of the theorem follows that for any 01   there exists 

  0, 1

0  L  such that for all 0   the inclusion holds  

         0,
1

1

11







Sdty

L

m
ty

i

i

t

t

ii  


 .                                       (3.15) 

So there exists a measurable function        1

11 ,,,  iii ttttyttu


 such that  

  1

1
1







i

t

t

udttu
L

m i

i

. 

Consider the function 

          0

1

1

111 0,,, xxtttdutxtx ii

t

t

i

i

   .                   (3.16) 

Then from (3.15), (3.16) follows that 

    1

11 Ltytx ii  . 

As 

   
m

LM
txtx i  11 , 

we obtain the following inequalities: 

    1

11 


L
m

ML
tytx  ,                                                                     (3.17) 
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 11

11 ,,, 


m

M
LL

m

ML
tyttxth i .             (3.18) 

       

From the inequality (3.18) and the way of choosing the function  tu1  we 

get  

       







 1

11 ,, 


m

M
Ltxttx , 

where    nn

Bb
RconvBRabaBa 


,,min, . 

According to [7] there exists such a solution  tx  of the inclusion (2.1) that 

       11

0

1

1 
















 

 L
t

t e
m

M
Lde

m

M
Ltxtx   .             (3.19) 

From (3.14), (3.17), (3.19) follows that 

      LL eL
m

ML
etxtx  1

2
53  . 

Choosing  


 ML
em L 53   and 

LLe



2

1  , we get 

     txtx  

and 

       0


StRtR  . 

Since  1,0  is arbitrary, we obtain      0̂ŜtRtR 
. The theorem is 

proved. 

Theorem 3.2. Let in the domain Q  the following hold: 

1) the mapping  xt,  is uniformly bounded, measurable in t , satisfies the 

Lipschitz condition in x ; 

2) the mapping  x  is uniformly bounded, satisfies the Lipschitz condition in 

x ; 

3) uniformly with respect to x  in the domain G  the limit (3.2) exists; 
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4) for any GGx  '0  and  0t  the R-solution of the inclusion (3.4) )(tR  

together with a  -neighborhood belong to the domain G . 

Then for any ],0(   and 0L  there exists   0,0 L  such that for 

all ],0( 0   and  1,0  Lt  

     0̂ˆ
StRtR   .                                                                        (3.20) 

 

The proof of the theorem is carried on similarly to the proof of the theorem 3.1. 

Remark 3.1. In the capacity of the mappings  x  and  x  one can use the 

superior and inferior limit of the sequence of sets [10]: 

        0,
1

,lim,0,
1

,lim
00


















 









T

T

T

T
dtxt

T
xDdtxt

T
xD . 

The sets  x  and  x  are the maximum and the minimum with respect to 

the inclusion among the sets  x  and  x , that is for any  x  and  x  

the inclusions hold 

       xxxx   , . 

Remark 3.2. If the limit (2.4) exists then       xxx  
 and from 

theorems 3.1, 3.2 the theorem [9] follows. 

 

4. Conclusion 

It is also possible to use the partial averaging of the differential inclusions with 

fuzzy right-hand side, i.e. to average only some summands or factors. Such 

variant of the averaging method also leads to the simplification of the initial 

inclusion and happens to be useful when the average of some functions does not 

exist or their presence in the system does not complicate its research. 
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