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  Abstract 

The product rate variation problem minimizes the variation in the rate at which 

different models of a common base product are produced on the assembly lines 

with the assumption of negligible switch-over cost and unit processing time for 

each copy of each model. The assumption of significant setup and arbitrary 

processing times forces the problem to be a two phase problem. The first phase 

determines the size and the number of batches and the second one sequences the 

batches of models. In this paper, the bottleneck case i.e. the min-max case of the 

problem with a generalized objective function is formulated. A Pareto optimal 

solution is proposed and a relation between optimal sequences for the problem with 

different objective functions is investigated. 

Keywords: Product rate variation problem; batching; sequencing problem; 

nonlinear integer programming   

1. Introduction 

The product rate variation problem (PRVP) minimizes the variation in the rate at 

which different models of a common base product are produced on the assembly 

lines [6]. The problem minimizes both the earliness and the tardiness penalties 

that respond to the customer demands for a variety of models without holding 

large inventories or incurring large shortages. This is a problem of finding a 
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sequence of different models distributed as evenly as possible on the assembly 

lines with the assumption of negligible switch-over cost and unit processing time 

for each copy of each model. 

The problem has been formulated as a non-linear integer programming with the 

objective of minimizing the deviation between the actual and the ideal production 

under the assumption that the system has sufficient capacity with negligible 

changeover costs from one model to another and each model is produced in a unit 

time [12, 13]. The problem has mathematically interesting base model with 

theoretical value and real world applications, see [3]. 

The problem has been extensively studied and solved in pseudo-polynomial time. 

The total PRVP i.e. the problem with the objective of minimizing the total 

deviation has been solved in , [9, 10] and the problem with the objective of 

minimizing the maximum deviation i.e. the bottleneck PRVP in  time. 

The bottleneck PRVP with absolute-deviation objective has been solved in [15] 

and with square-deviation objective in [4]. Recently a solution for the bottleneck 

PRVP with a general objective has been proposed with a relation between optimal 

sequences for the problem with different objectives [5]. 

The assumption of negligible change-over costs from one model to another cannot 

be undertaken if different models have significant setup and arbitrary processing 

times. It has been investigated that a sequence, of different models having 

significantly different setup and processing times, obtained by the methods 

designed for synchronized assembly lines is as good as a randomly obtained 

sequence, see [11]. 

Significant setup and arbitrary processing times can be undertaken when the 

planning horizon is partitioned into a finite number of time-buckets with equal 

length. The time length of a time-bucket is called a takt-time. A time-bucket 

consists of a setup and a batch (a copy or several copies) of a model. The 

assumption that allows significant setup and arbitrary processing times forces the 

product rate variation problem to be a two-phase problem [16, 17]. We call this 

problem as the product rate variation problem with batching. The first phase is the 

batching problem that determines the batch size and the number of batches of the 

models. The second phase is the sequencing problem that sequences the batches. 

The problem that determines the size and the number of batches and minimizes 

the maximum variation in the rate at which batches of different models of a 

common base product are produced is called the bottleneck product rate variation 

with batching problem. 
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In this paper, the bottleneck product rate variation problem with batching is 

formulated. Here, bottleneck means the minimization of the maximum deviation 

between the actual and the ideal production. Note that the total product rate 

variation problem with batching exists in the literature [11]. A Pareto optimal 

solution to the problem is described. The first phase problem is solved with an 

algorithm appeared in [11] then the second phase is solved with bottleneck 

assignment or perfect matching with a bisection search methods. A relation 

between optimal sequences is investigated. 

The plan of the paper is as follows. Section 2 reviews the mathematical model. In 

Section 3, a Pareto optimal solution is described. An algorithm for the first phase 

problem and two sequencing procedures for the second phase problem are 

discussed. Section 4 shows the relation between optimal sequences. The last 

section concludes the paper. 

 

2. Mathematical Models  

Let  and  be the setup and processing times of a model , , 

respectively. The total demands   are manufactured over the planning 

horizon T partitioned into  time- buckets i.e. the number of batches with the takt-

time . There may exist batches with no models to be manufactured. Such 

empty batches are potentially useful for the improvement of the system 

performance [11]. The takt-time satisfies , . For feasible , the 

number of batches of model  is  such that , where 

 is denoted to be the number of empty batches. 

 

There exist unavoidable time lost in each batch due to the variability of setup and 

processing times. A model ,  spends  time units out of  in all 

batches. The total time lost  is to be 

minimized. We minimize the total time lost maximizing . The minimum average 

response time  improves the system responsiveness and minimum work-in-

process inventory is achieved maximizing , [11]. 
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The multi-objective mathematical programming for the batching phase of the 

product rate variation problem with batching [16, 11], is 

maximize       (1)                                    

maximize             (2)              

  

maximize                 (3)   

subject to  

                                                                       (4)  

 

               (5)                       

           

                                                          (6)           

   

           ,     integer   (7)   

 

Constraint (4) ensures that the number of batches does not exceed the capacity of 

the system. Constraint (5) shows that the demand of each model is met exactly. 

Constraints (5), (6) and (7) ensure the feasibility of .  

 

We denote , ;  to be the actual cumulative number of 

batches for model  produced during the time-buckets  through . The actual 

cumulative production of model  during the same time-buckets is , where 

  is the average number of copies of model  per batch. The ideal cumulative 

production of model  during  through  time-buckets is , where   is the 

batch rate. The sequencing problem minimizes the deviation between the actual 

and the ideal productions. Let  be a positive integer. 
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The mathematical programming for the sequencing phase of the bottleneck 

product rate variation problem with batching is 

 

minimize         (8)   

subject to  

   ,           (9)                    

 

                                ,         ;       (10)  

  

                                , ,           

(11) 

                              

           ,  integer    ;         (12)                

 

Constraint (9) ensures that exactly k batches are produced during the periods  

through . Constraint (10) states that the total number of batches is a 

nondecreasing function of . Constraint (11) guarantees that the batches are 

exactly met. Constraints (9), (10) and (12) ensure that exactly one batch of a 

model is sequenced during a unit time-bucket. Note that the formulation of the 

sequencing phase of the problem is similar to the formulation in [15] for the 

bottleneck product rate variation problem. 

 

We denote Problem  for the bottleneck product rate variation problem with 

batching with the objective function Fm and the constraints (9) to (12). 

 

3. Pareto Optimal Solution 

The batching phase of the problem is solved with an algorithm appeared in [11]. 

The algorithm finds  , the largest possible number of batches, 
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then enumerates all possible number of batches with . The minimum 

number of batches   is calculated for each . 

 

The algorithm determines the number and the size of batches in  time. The 

sequencing phase of the problem is solved either using bottleneck assignment 

method or perfect matching with a bisection search method. 

 

3.1. Bottleneck Assignment Method 

Problem  can be solved transforming the problem into an equivalent bottleneck 

assignment problem. The bottleneck assignment problem is 

 

 

      minimize                         (13) 

subject to 

,        (14) 

, ;                                     (15) 

where , ; ; 

 is the bottleneck assignment cost for  i.e. the  batch of model  

when assigned to  time- bucket and  if  is assigned to  or , 

otherwise. 

The constraint (14) shows that exactly one batch is produced in one time-bucket 

and the constraint (15) ensures that one batch is produced exactly once. There 

exists an optimal solution  that preserves order [11]. 

A number of algorithms solve the bottleneck assignment problem of Problem Fm 

[14]. The Hungarian method takes  time to solve the problem with  nodes. 

All Pareto optimal solutions for the problem can be obtained in  time since 

. 
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3.2. Perfect Matching with a Bisection Search 

The perfect matching with a bisection search, appeared in [15] for the bottleneck 

product rate variation problem with absolute-deviation objective, can also be 

applied for Problem  with necessary modifications. This procedure is more 

efficient than the bottleneck assignment method. 

The method relies on the level curves   , ; 

;  and the bottleneck (bound) . The time horizon is 

assumed to be continuous though is partitioned into  equal time-buckets i.e. 

. A batch  is sequenced in a time-bucket  such that the level 

curves do not exceed . This introduces the earliest  sequencing time  and 

the latest sequencing time  for , for all . 

The inequalities  and  ,that  

satisfies, imply . 

Likewise,  satisfies the inequalities  and 

, implying . 

So, 

Theorem 1 For a given ,  and , ;  are the 

unique integers and . 

The earliest sequencing time  and the latest sequencing time  form a 

time window  within which , ;  can 

be sequenced with the level curves not exceeding the bottleneck. 

Corollary 1 If  be sequenced within the time window , the 

level curves do not exceed . 

Proof:  Let  be sequenced in time  such that . 

 and  . 

   and  

So,  and  .  
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Both  and  can be calculated in  time since  [15]. 

A −convex bipartite graph  is constructed sequencing  within 

, where   stands for the set  of sequencing time-buckets, 

 the set of  and . 

The earliest due date (EDD) algorithm that matches each  to the unmatched 

 with the smallest  and  finds a perfect matching. The 

algorithm stops if no such  exists [15]. 

The sequencing times are strictly monotonic since 

 and 

 for , . This 

implies that the perfect matching is order-preserving.  

An order-preserving perfect matching in  is analogous to a feasible solution to 

Problem . It is clear that a feasible solution implies every 

 assigns a unique time-bucket ,  and no 

time-bucket remains unmatched. This creates an order-preserving perfect 

matching in . Conversely, every order-preserving perfect matching creates a 

bijection  where  and , ;  and 

. Thus, 

Theorem 2 Any instance of Problem  has a feasible sequence if and only if, the 

−convex bipartite graph formed by the instance has an order-preserving perfect 

matching. 

A perfect matching in  exists if and only if ,  for all , where 

 and  is either an interval in  or the 

neighborhood of an interval in , [1]. This is the Hall’s theorem for the existence 

of a perfect matching that yields a feasible solution to the problem. 

Existence of a perfect matching depends on . A perfect matching exists if  

satisfies the inequalities in the following theorem. This is a certificate for the 

existence of a feasible solution. 

Theorem 3 Problem  has a feasible solution if and only if, for all  with 

 and ,  satisfies the inequalities 

 and 

. 
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Proof: Let . Then  

  and  

  and  

 . 

 

So,  if and only if 

  

Let . Then,  

  and  

  and   

  .  

Thus,  if and only if 

. 

A feasible solution with a minimum  is optimal. The minimum  can be obtained 

using a bisection search that runs between the lower and upper bottlenecks. A 

batch for some model  is sequenced at the time-bucket . It holds 

. For ,  and 

, for all . The two inequalities lead to the two 

inequalities in Theorem 3. The lower and upper bottlenecks for Problem  are 

 and , respectively.  

Theorem 4 A bisection search in the interval  

determines the minimum  in  time. 

Proof:  Let , ;  be the bottleneck for 

optimality. 

So,  is an integer in .  
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Further, .  

 

The time complexity to yield an optimal sequence using the bisection search is 

 since  and  can be calculated in . The bottleneck product 

rate variation problem with batching can be solved with Pareto optimal solution in 

time . 

Note that the time complexity can substantially be reduced when cyclic sequence 

exists. When cyclic sequence, consisting of , a positive integer, subsequences 

with the same length, exists and is optimal [15]. 

Every instance has optimal sequence when the given bottleneck is the upper 

bottleneck. However, it is not guaranteed for smaller value. 

Let  , . For any feasible solution, 

, , where  is the closest integer 

to  and  is  for even and  for odd case. It is clear that the lower 

bottleneck for even  is  and less than that for odd . The lower bottleneck 

for any  is . 

 

Theorem 5 No instance ,  of Problem  is feasible for . 

Proof:  The bottleneck  implies that  . 

For feasible sequence,  . 

  , . 

 . 

. 

Thus, .   

 

The instances of which the copies of models do not compete for the sequencing 

positions have the optimal value less than . The copies of a standard instance 

i.e. the instance with , ,  do not compete if 
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and only if it is power-of-two. For two model case, the optimal value is less than 

 if and only if the demand for one model is even and that for the other model 

is odd [7, 2]. 

 

4. Relation between Optimal Sequences 

Any optimal sequence if exists at the bottleneck  of any instance for Problem 

 for some  would have been optimal for all  since all the level curves 

 meet only at . But the upper bottleneck  for any 

Problem  is less than . This shows that for any instance there may not exist the 

same optimal sequence for every Problem  at the same bottleneck. 

Theorem 6 A feasible sequence s to Problem  is also feasible to Problem . 

Proof:  Consider a feasible sequence  to problem . Assume that the copy  be 

sequenced at the time unit . This implies .  

For ,   

 And, . 

We show . 

For ,  can be sequenced in the ideal position  and  

. 

For , . 

This shows that . 

Further,  

  

  

And  k  
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. 

So, . 

Thus,  is feasible to Problem . 

 

The same does not happen in the case of optimality. The optimality of the 

problem differs with different objective functions. 

 

Theorem 7 Any optimal sequence for the problem with an objective function may 

not be optimal in the case of different objective function. 

Proof: Let  be an optimal solution of any instance  for Problem  with 

the bottleneck . 

The sequence  cannot even be feasible for Problem ,  at the same 

bottleneck since .  

 Theorem 7 also shows that the converse of Theorem 6 is not true. 

 

5. Conclusion 

This paper formulates the mathematical model of the bottleneck case of the 

product rate variation problem with batching. A Pareto optimal solution exists. An 

algorithm in [11] solves the batching phase of the problem. The sequencing phase 

can be solved either by the bottleneck assignment method or by the perfect 

matching with a bisection search. The latter one is more efficient. Every instance 

has optimal sequence when the given bottleneck is the upper bottleneck. 

However, it is not guaranteed for smaller value. Cyclic sequence exists if 

 and is optimal. 

 

It has been shown that a feasible sequence to Problem  is also feasible to 

Problem , for all ,  being positive integer. But it does not hold for optimal 

sequence. Further relations between optimal sequences of the problem with 

different objective functions would be interesting in future research. 
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