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Abstract 

In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear 

system (FLS). This method is discussed in details and followed by summary of 

some other acceleration techniques. Moreover, we show that in some situations 

that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is 

divergent, our proposed method is applicable and the acquired results are 

illustrated by some numerical examples. 

 

Keywords: Acceleration techniques; Chebyshev acceleration technique; Fuzzy 

system of linear equations; Iterative methods. 

 

1. Introduction 

Equations involving fuzzy numbers are the most important ingredients in many 

fields such as mathematics, physics, statistics, etc. Since in many applications at 

least some of the system's parameters and concepts are represented by fuzzy 

numbers, it is important to develop mathematical models and numerical 

procedures that would appropriately treat general fuzzy linear systems and solve 

them. The concept of fuzzy numbers and arithmetic operation with these numbers 

were first introduced and investigated by Zadeh [16], and in [6]. A general model 

for solving an FLS which coefficient matrix is crisp and the right-hand side 

is arbitrary fuzzy number vector was first proposed by Friedman et al. [9]. 

Afterwards, in the literature on fuzzy linear system of equations various methods 

were proposed to solve such systems, see [1-4, 8, 12-15]. In this paper we propose 

a new method based on Chebyshev acceleration technique to deal with FLS 

problems. 
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 This paper is organized in 6 sections. In Section 2 we introduce fuzzy linear 

systems. In Sections 3, 4, we respectively give the Chebyshev acceleration (CA) 

technique and some convenient iterative methods. In Section 5, we examine the 

advantage of the CA technique for solving fuzzy linear systems. Finally, we 

conclude in Section 6 based on the obtained results from numerical examination 

as given in Section 5. 

 

2. Fuzzy linear system 

Following [9] we represent an arbitrary fuzzy number by an ordered pair of 

functions ,  which satisfy the following requirements: 

1.  is a bounded left continuous nondecreasing function over . 

2.  is a bounded left continuous nonincreasing function over . 

3. , . 

A crisp number  is simply represented by . By 

appropriate definitions, the fuzzy number space  becomes a convex 

cone  which is then embedded into a Banach space. 

Definition 2.1 For two arbitrary fuzzy numbers ,  

and a real number , equality, summation and scalar multiplication on fuzzy 

numbers are defined as 

 

1.  if and only if  and  

2. . 

3.  

Definition 2.2: The  linear system  

, 

,                                                    (1) 

 
, 

where the coefficient matrix  is a crisp  matrix and 

 is a called fuzzy linear system (FLS). 

Definition 2.3 A fuzzy number vector given by 

, 

is called a solution of the fuzzy system if 

 

                                                                    (2) 

 

(2) 

(1) 
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In general, however, an arbitrary equation for either  or  may include a linear 

combination of ’s and ’s. Consequently, in order to solve the system given by 

Eq. (1) one must solve a crisp linear system where the right-hand side 

column is the function vector . 

    Let us now rearrange the linear system of Eq. (2) so that the unknowns are 

, ,  and the right-hand side column is  

. 

 We get the  matrix , where  are determined as 

follows: 

          
,

, ,

if 0 then 

if 0 then 

ij ij i n j n ij

ij i n j i j n ij

a s s a

a s s a

 

 

  

   
                                           (3) 

and any  which is not determined by Eq. (3) is zero. Using matrix notation we 

get 

,                                                                                                   (4) 

where  

         . 

The structure of  implies that  and that  where  

contains the positive entries of ,  contains the absolute values of negative 

entries of  and . 

Theorem 2.4 The matrix  is nonsingular if and only if the matrices  

and  are both nonsingular.  

Theorem 2.5 If  exists it must have the same structure as . 

Theorem 2.6 The unique solution , that is  is a fuzzy vector for 

arbitrary  if and only if  is nonnegative, i.e. 

               . 

Theorem 2.7 The inverse of a nonnegative matrix  is nonnegative if and only if  

is a generalized permutation matrix. 

We now restrict the discussion to triangular fuzzy numbers, i.e.  and 

consequently  are all linear functions of . Having calculated X which 

solves Eq. (4) we now define the ‘fuzzy solution’ to the original system given by 

Eq. (1). 

Definition 2.8: Let  denote the unique solution of 

Eq. (4). The fuzzy number vector   defined by 
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              , 

               

Is called the fuzzy solution of SX=Y. 

The use of  in Eq. (5) is meant to eliminate the possibility of fuzzy numbers 

whose associated triangle possess an angle greater than . 

If , are all fuzzy numbers then 

 and U is called a strong fuzzy solution. 

Otherwise, U is a weak fuzzy solution. 

 

3. Chebyshev acceleration technique: 

 In the SOR method [7], a parameter  is adjusted to make spectral radius of the 

iteration matrix  as small as possible. We now consider acceleration 

technique where the iteration matrix is fixed but the structure of the iteration is 

altered to increase the convergence speed. An iterative method to solve SX=Y 

where S is extended matrix corresponding to original matrix A, has the following 

form: 

 

                
 

where is a splitting for the extended coefficient matrix S. Following 

[10], we wish to determine coefficients such that  

               
represents an improvement over . If , then it is reasonable to 

insist that . Hence, we require  

                 
subject to this constraint, we consider how to choose the  so that the error in 

 is minimized. 

    We know that  where , we see that 

                 
    Working in the 2-norm we therefore obtain 

                 , 

Where such that  . 

    At this point we assume that M is symmetric with eigenvalues  that satisfy 

                 . 

It follows that  

                

 

(6) 
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Thus, to make the norm of  small, we need a polynomial  that is small 

on  subject to the constraint that . 

    Consider the Chebyshev polynomials  generated by the recursion 

                  
where  and . These polynomials satisfy  on  

but grow rapidly off this interval. As a consequence, the polynomial 

             
where 

                  
Satisfies  and tends to be small on . From the definition of , 

then we see 

                
Thus, the larger  is, the greater the acceleration of convergence. It is possible to 

derive a three-term recurrence among the  by exploiting the three-term 

recurrence among the Chebyshev polynomials.  

In particular, it can be shown that the three-term acceleration scheme based on 

iteration (6) has the following form: 

 

                ,          

 

where  and  are parameters that characterize the acceleration scheme, 

, and  is the starting guess. 

    From Section 2, we have that the extended matrix S has the following form: 

             where . 

Thus, we assume the following splitting form of S for using the above scheme. 

 

       . Thus, 

we have the following equations as an iterative method: 

         , 

         . 

 

Finally, in matrix form, we have: 

 

            .          

 

supposing that  exists. 

    For Chebyshev acceleration, the parameters  and  are  
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as mentioned above,l denotes the most positive eigenvalue of  ands denotes the 

most negative eigenvalue of M. 

 

4. A survey of some other acceleration techniques 

4.1.Jacobi’s iteration method 

 

If we split  to  where  is a diagonal matrix that includes the diagonal 

entries of  and  is remained entries of ,and  we obtain Jacobi’s 

iteration method [7, 10]. 

 

4.2.Gauss-Sidel’s iteration method 

By choosing  and  where  is lower triangular sub matrix of  and  is strictly 

upper triangular submatrix of  that  when  the Eq. (8) 

reduces to Gauss-Sidel’s iteration method [7, 10]. 

 

4.3.SOR iterative method 

To acquire successive over relaxation (SOR) iterative equation, we should select 

 and , where  and  are strictly lower triangular 

submatrix, diagonally submatrix and upper triangular submatrix of , respectively, 

where  and .  is parameter of SOR method [7, 10]. 

 

4.4.Conjugate gradient method 

    Although, the theoretical basis for the conjugate gradient method is quite 

different from the theoretical basis for Chebyshev acceleration, and actually has 

its roots in optimization theory and it is guaranteed to converge only when  is 

symmetric and positive definite [11], but it can be considered as Chebyshev 

acceleration. The conjugate gradient method corresponds to taking  and 

making the following choices for acceleration parameters:  

 

                

                
Where  is the residual at step k and  denotes the Euclidean norm. 

  

 

5. Numerical Example 

In this section, we give some numerical examples to demonstrate the method. 

Example 5.1 Consider the following  fuzzy system 
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               , 

               , 

              . 

the extended matrix S is  

 

                . 

 

We define  

                 
and 

                  
where . 

    The exact solution is 

 
The exact and approximated solutions are plotted and compared in Figure 1. 

Note that we computed the approximated solution by Chebyshev acceleration 

technique 

With  for . 

Example 5.2 Let us treat the following fuzzy linear system 

                    , 

                    , 

                    . 

 

 

 
Figure 1: Comparison of the exact and approximate solution. 
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In accord with previous sections, we obtain that the extended matrix  has the 

following form 

                  
Clearly, all of the Jacobi, Gauss-Sidel and SOR methods are divergent because of 

singularity of the corresponding obtained matrix  by splitting . Unfortunately,  

is not symmetric and positive definite, therefore the conjugate gradient method is 

also divergent. 

By definition of  and as 

 
where , the acquired results by utilizing Chebyshev's method are 

illustrated in Figure 2, with the same precision as previous example for . 

 

 

 
Figure 2: Comparison of the exact and approximate solution. 

 

6. Conclusion 

In this paper, we used Chebyshev acceleration technique for solving an FLS in 

extended form [9], and compared it by some other famous iterative techniques. As 

seen in Example 5.2, utilizing of such methods as Jacobi, Gauss-Sidel and SOR 

because of their specific splitting of the coefficients matrix and also the conjugate 

gradient method that is convergent only for symmetric and positive definite 

matrices is unsuccessful. Therefore, using appropriate numerical methods such as 

our proposed method is a suitable approach to associate with FLS problems. 
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