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Abstract 

Research interests have been focused on the concept of penalizing jobs both for 

being early and for being tardy because not only of modern competitive industrial 

challenges of providing a variety of products at a very low cost by smoothing 

productions but also of its increasing and exciting computer applications. Here, 

sequencing approaches of the mixed-model just-in-time production systems is 

reviewed. In this note, realizing a need of critical review, a survey on the elegant 

mathematical models, methods and complexity of the mixed-model just-in-time 

sequencing problem with an insight into the existing analytical literature is given. 

The established research results together with open problems and possible 

extensions are presented. 

 

Keywords: Mixed-model; just-in-time; non-linear integer programming. 

 

1.Introduction 

Mixed-model assembly lines with negligible change-over costs between the 

products allow manufacturing of different products of a common base product in 

evenly distributed sequences on the same line [12]. Just-in-time production 

system, which requires producing only the necessary products in the necessary 

quantities at the necessary times often uses mixed-model assembly lines [47]. The 

problem of finding a sequence of different products distributed as evenly as 

possible is called the mixed-model just-in-time sequencing problem (MMJITSP). 
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This problem minimizes both the earliness and the tardiness penalties that respond 

to the customer demands for a variety of models without holding large inventories 

or incurring large shortages. This requires the production of each model in 

diversified small-lot instead of large-lots in a flow line. The MMJITSP has goals 

of keeping the rate of usage of parts as constant as possible and of smoothing the 

work overload on each workstation on the line [51]. The second goal was taken up 

in other two alternative sequencing approaches, mixed- model sequencing and car 

sequencing also. The mixed-model sequencing problem that considers other 

operational characteristics though limited to a small subset of them of the line also 

is to minimize sequence dependent work overload [6,12]. The car sequencing 

problem is to find a sequence of product copies to meet the demand for each copy 

of the product without violating the given rules for production options. The 

problem avoids work overload implicitly through the control of the work intensive 

product options [54]. 

 

This paper mainly focuses on the first goal of the problem. MMJIT system 

consists of a hierarchy of finite and distinct levels such as products, sub-

assemblies, component parts, raw materials, etc. The sequence at the final level is 

crucial and affects the entire supply chain as all other levels are also inherently 

fixed because of the pull nature of the system. Minimization of the variation in 

demand rates for outputs of supplying processes is the output rate variation 

problem (ORVP) [34]. This is a multi-level problem. Minimization of the 

variation in the rate at which different products are produced on the line is the 

product rate variation problem (PRVP), a single-level problem [34]. Assumptions 

that the products require approximately the same number and mix of parts or that 

the parts of an output of a level other than the product level are dedicated to be 

assembled into a particular product (pegging) reduces ORVP into the PRVP [57]. 

Even special cases of the ORVP are computationally more challenging than the 

PRVP [34, 41]. The problem has been formulated as a non-linear integer 

programming with the objective of minimizing the deviation between the actual 

and the ideal production under the assumption that the system has sufficient 

capacity with negligible switch-over costs from one product to another and each 

product is produced in a unit time [47, 49, 48]. See also [32]. The solutions to this 

problem have been referred as level, balanced or fair sequences. 

 

Since the problem has been dealt with in a great number of papers with heuristics 

and pseudo-polynomial exact solution procedures, it would be worth to have a 

synthesis of them. A number of survey papers has been appeared [34, 21, 65, 12]. 

A recent survey performs a systematic record of the academic efforts pertaining to 

the problem [12]. Moreover, another one reviews the problem to help bridge the 

gap between the academic literature and industry practice [65]. This survey covers 

almost complete works of the problem including unresolved cases focused on 

mathematically interesting base model of theoretical value together with real 

world applications. 
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The plan of the paper is as follows. Section  reviews the mathematical model. In 

Section , sequencing procedures have been studied. Sections study in 

detail the level scheduling problem with a goal of uniform usages of all parts. 

Section  relates the MMJITSP to the apportionment problem. Sections  and  

summarize production smoothing with arbitrary non-zero processing time and 

setup time, and smoothing the work overload, respectively. The last section 

concludes the paper. 

 

2. Mathematical Model Formulation 

 

The system consists of  different production levels ,  with product 

level . Let  be the demand for part  of level , ,   the number of 

different parts of level . By , we represent the number of total units of part  at 

level  required to produce one unit of product ,  and then 

, the dependent demand for part  of level  determined by . 

Clearly,  for , and  otherwise. Let  be total part 

demands of level  with demand ratio  and then  for 

. The time horizon in the product level is partitioned into units and 

there will be  complete units of various products  at level  during the first  

units. This introduces the concept of a stage. The pull nature of the system implies 

that the lower level parts are pulled forward according to the need of the product 

level. 

 

Let  be the quantity of part  produced at level  in the time units  through 

and  be the total quantity produced at level  during these time 

units. At level , . The required cumulative production for 

part  of level  through  time units will be . Consider 

 unimodal symmetric convex non-negative function with minimum  at , 

. Then the mathematical model for the ORVP [49, 39], is  

                      

minimize                 

 

minimize                

 

               subject to     ,        ;  

                                                                      ;             

                                      ,                ;   
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                                      ,                      

 

                                      ,        ;   

                                                              

 

                                      , ,                     

 

                                      , integer, ,         ; ; 

                                                                                                        

 

 

Constraint  ensures that the necessary cumulative production of part  of 

level  by the end of time unit  is determined explicitly by the quantity of 

products produced at level . Constraints  and  show the total 

cumulative production of level  and level , respectively, during the time units  

through . Constraint  ensures that the total production of every product over 

 time units is a non-decreasing function of . Constraint  guarantees that the 

demands for each product are met exactly. Constraints , ,  ensure 

that exactly one unit of a product is scheduled during one time unit in the product 

level. 

 

Use of weights in the model is an essential feature. Weighted case of the problem 

is formulated with appropriate weights . The selection of weights will be based 

on the total production at various levels, the relative importance of having good 

schedules at the various levels and the numerical values assigned to the weights 

[49, 41]. Weights can be used to smooth the variability and to prevent lower-level 

parts to be dominant over higher level parts in the measures at different levels. 

Use of weights to a part shows the relative importance of the part that will affect 

the sequencing of the product into which that part is to be assembled [57]. 

 

The mathematical model for the ORVP reduces to the mathematical model for the 

PRVP when only the product level is considered and the superfluous subscript  

is dropped out. 

 

This model minimizes the perennial objective functions, the bottleneck measure 

of deviation  that produces smooth sequence in every time unit and the total 

measure of deviations  that produces smooth sequence on the average [55]. In 

particular, 
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 and  

 

 and  

 

in PRVP denote some particular objectives. We denote suffix  for the absolute 

deviation objective and suffix  for the square deviation, for example, problem  

for the problem PRVP with the objective function  and the constraints. With an 

appropriate weight , , the weighted problem is formulated. 

 

An alternative objective for the minimization of the deviation between the times at 

which a unit of a product be actually produced and the time at which the unit of 

the product is needed to be produced is intuitively similar to the PRVP [28]. 

 

3. Sequencing Procedures 

 

3.1. Heuristic approach 

 

The ORVP is computationally more challenging. The problem   is NP-hard in 

the ordinary sense as the NP-hard scheduling problem, around the shortest job 

reduces to the ORVP [34] and the problem Fea with only two levels is NP-hard in 

the strong sense as the strongly NP-hard -partition problem transforms into the 

ORVP in pseudo- polynomial time [41]. However, a number of heuristics gives 

rise to suboptimal solutions.  

 

The goal chasing methods GCM I and GCM II used in Toyota [51], see also [32], 

construct a sequence filling one position at a time from first slot to the last one. 

The variability is considered at the sub-assembly level whereas the variability at 

the product level is ignored. GCM II compared to GCM I represents a decrease in 

computational time because the sum is formed only on the components of a given 

product in GCM II [59]. GCM I and GCM II are myopic. A myopic polynomial 

heuristic, extended goal chasing method (EGCM) that considers more levels, 

adopts GCM I and GCM II as a special case [49]. The myopia lies in the fact that 

it only takes one step. Taking two steps into account, the myopia can be reduced 

[9]. 

 

Three algorithms and two heuristics are formulated in [47]. The algorithm  and 

the algorithm  with heuristic 1 (MA3H1) consider the product rates, not the parts 

usage rates. It is a one-stage myopic heuristic with complexity O(nD). The 

algorithms may not yield feasible sequence but if feasible it is optimal, too. The 

algorithm  with heuristic  (MA3H2) is the improved two-stage heuristic with 

complexity O(n2D). MA3H2 is of highest quality for feasible solutions among 

GCM I, GCM II, MA3H1 and MA3H2 [59, 25]. 
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Time spread (TS) heuristic employs similar procedure as GCM1 with function in 

which time required to assemble products are applied. Comparison of different 

methods  through simulation analysis show that TS and MA3H2 seem to be 

effective [60]. 

 

Inman and Bulfin’s earliest due date (EDD) rule based on ideal time of production 

of each product [28], Ding and Cheng’s two-stage algorithm that minimizes the 

variation of 

the two stages [22, 23] and MA3H2 heuristic obtain good solutions. Modified 

forms of these, with appropriate weights, are useful alternatives for frequent 

updates of sequencing [15]. 

 

A local search heuristic that attempts to swap the order of assembly of a pair of 

products provides near-optimal sequence for realistic-size problems in a 

reasonable time. It may be extended considering release date and due date 

constraints [27]. 

 

The problem with a bicriterion objective of part usage and setup time has 

inversely correlated objective values. An efficient frontier, where simultaneously 

maximization of feasibility and minimization of setup is desired, is exploited. 

Such frontier is explored using heuristics such as tabu search, simulated 

annealing, genetic algorithm, ant colony 

optimization approach, beam search heuristic, artificial neural network etc [44, 45, 

16, 43]. 

 

Suboptimal solutions using heuristics, for example, tabu search and branch and 

bound to the problem with the objective for parts usage and work load [48, 60], 

and [24]; parts usage and line length [6]; parts usage and line stoppage, [69, 32] 

can be obtained.  

 

3.2. Dynamic programming 

 

Let the demand vector at level  be  and the states in a schedule 

be  with   where  is the cumulative production of 

product , . Let   be the unit vector with   entries all of which are zero 

except for a single  in the i
th

 row, and  and Ω 

 be the matrices of dimension , . 

Let  with the maximum norm ,  and 

  with the Euclidean norm  be the maximum of 

absolute deviation and the sum of square deviations of actual production from the 

ideal production over all parts and products, respectively, where  is the amount 

of product produced. Define ø  and Ф  to be the minimum of the maximum 
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absolute deviation and the minimum of the total square deviations respectively for 

all parts and products over all partial schedules of .  

 

The DP recursion for ø  is 

              ø , 

              ø  

 with ø   and  for any state . 

 

The DP recursion for Ф  is 

         Ф  

with 

              Ф  and   

for any state  [41]. 

 

In any state ,  can have any values . The space and time complexities 

of the procedures are  and , respectively 

[50]. The number of feasible schedules for any problem instance is   

which is considerably larger than the number of states in the DP recursion. 

 shows that the DP algorithm is effective for small 

number of products even with large number of copies. During the enumeration 

process, an excessive amount of time or that of space is reduced by using some 

fast heuristic as a filter which eliminates any state from DP’s state space that 

would lead to no optimality [41]. If the heuristics yield near-optimal sequences, 

then the state space size could be reduced. The DP algorithm progresses through 

the state space in the forward direction of increasing the cardinality as the 

procedure generates all states  with  before   for all 

. 

 

3.3. Assignment method 

 

The problem can be solved pseudo-polynomially transforming the problem into an 

equivalent assignment problem. Calculation of the assignment costs is based on 

the level curves  , ;  and the positions in 

which each copy  of product , ,  is sequenced. 

 

If all copies of product  are sequenced at their ideal positions , the 

ceiling of the unique crossing point satisfying , 

, the product  will contribute the cost  to the total cost 

of the solution and an optimal sequence is obvious. Sequencing the products at 
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their ideal positions minimizes the problems  and , however, leads to 

infeasibility when more than one copy  compete for the same ideal position in the 

sequence. Competition occurs in general case. Higher priority is given to   over  

whenever  <  to avoid competition and  is assigned to a position , 

.  

 

The new assignment contributes additional cost   where 

               

 

   
with  

   

              . 

 

The assignment problem equivalent to the problem  is, [40], 

     

 min                           

 

              subject to          ,                                

 

                 ,         ;        

 

where if  is assigned to time unit  and  otherwise 

 

Let , be the set of the 

assignment of  to . A set  is  -feasible if the following constraints 

hold. 

: For each , , there is exactly one  

such that , i.e., exactly one copy is produced at one time unit. 

: For each , there is exactly one ,  

such that , i.e., each copy is produced exactly once. 

: If  and   then , i.e., lower indices copies are 

produced earlier. 

 

Constraints  and  are related to the assignment problem. Constraint  

imposes an order on copies of a product. 
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Theorem 3.1 [40] For any feasible ,  

 

 

The result becomes an inequality without . An optimal solution cannot be 

obtained by simply solving the assignment problem since  is not the assignment 

type. 

 

Theorem 3.2 [40] If   satisfies   and , then   satisfying  with 

 can be determined in  time. Moreover, each copy in the 

sequence   from  preserves the order that it has in the sequence  from . 

 

Since there are  values   values  and each takes   time to 

calculate, the Hungarian method takes  time to solve the assignment 

problem with  nodes. The assignment can be made order preserving in  

time. Hence, an optimal solution to the problem G can be obtained in  time, 

see [40]. A number of algorithms solve the assignment problem of the problem  

[52]. 

 

The approach for the problem  is applicable in every - norm and particular to 

-norm, see [21]. 

 

The corresponding assignment problem equivalent to the problem  is 

 

                  min                       

 

subject to the constraints  and  where 

        
 

The assignment costs grow to the left and to the right from the ideal positions 

 in the assignment matrix , [10]. One ideal position exists in each row 

of the matrix, however, there exist two ideal positions in the case of a 

competition. 

 

The problem is solved by means either of specific bottleneck assignment 

algorithms or as a sequence of assignment problem with some modifications such 

as use of a binary matrix instead of the bottleneck assignment matrix and 

application of bisection search to find the optimal bottleneck value [10]. Optimal 

solution can be obtained in  time. 
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The bottleneck assignment costs  for which , 

, can be calculated in time  but it remains open 

whether the problem can be solved in . If it exists, it would be better than 

the existing solution procedures [38]. 

 

A cyclic sequence substantially reduces the time complexity. Such sequences 

exist in the problem  [47, 49]. The cyclic sequences are optimal, too. A 

concatenation  of  copies of an optimal sequence s for the instance 

 of the problem is optimal for ,  [36]. It 

builds a sequence for a longer time horizon. Such a sequence can be found under 

the assumption  where  is convex and symmetric with 

minimum  at  [11]. 

 

3.4. Perfect matching method 

 

The problem  is solved by reducing it to an order-preserving perfect matching 

problem 

via single machine scheduling release/due date decision problem [55]. The perfect 

matching problem is constructed in a -convex bipartite graph  

with , set of the  copy of product , 

, the starting times and the edge set  with the earliest starting time 

 and the latest starting time for  defined as 

. For a given bound  and the level 

curves , , the values and 

,  are calculated in time  as the unique integers 

 and  [13]. 

 

A modified version of earliest due date (EDD) rule with complexity  in -

convex bipartite graph  finds an order-preserving perfect matching for 

the upper bound  [26]. 

 

A stronger upper bound has been obtained for the problem . If  be any optimal 

value, then   where ,  [13], and 

 [62]. Therefore, it holds   for 

. The optimal value  cannot be less than  for even  since   
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and cannot be less than  for odd   since  [20]. It is natural to 

seek instances with optimal value less than . 

 

It has been shown that only the standard instance i.e. the instance with 

, , has optimal  if and only if 

 [35, 14]. It came into existence as the small deviations 

conjecture [13]. If  , all products 

must be sequenced in the ideal position  for each , which happens if  is 

divisible by each . This geometric proof exploits a natural 

symmetry of regular polygons inscribed in a circle of circumference  such that 

each polygon corresponds to a different product having  corners for product  at 

 points on the perimeter of the circle. Consequently,  demands are the first 

 non-negative powers of  [35]. 

 

The small deviations conjecture is shown to be true as a consequence of the 

Fraenkel’s 

conjecture for symmetric case using a fact that a solution to the problem  with 

for ,  is periodic, symmetric and balanced word [14]. 

The Fraenkel’s conjecture for symmetric case states that a periodic, symmetric 

and balanced word with , exists if and only if  [14]. 

 

A -balanced word on a finite set  is an infinite sequence  

with  such that every two subsequences of equal length consist of 

only those letters whose number of occurrences in each subsequence differ by at 

most a positive integer   (See [63]). Note that -balanced word is a balanced 

word. Consider a finite word  on  of length  with  occurrences of a 

letter  and , the rate of letter  with .  is said to be 

symmetric if , a mirror reflection of . An infinite word  is periodic if 

for some . 

 

For a sequence  with maximum deviation , any infinite periodic word , with 

period  is -balanced, -balanced and -balanced on each product , if 

  and , respectively [29]. The inclusions are proper [21]. 

 

Unfortunately, the -balanced words are unlikely for most rates to exist. There 

exists an 
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optimal sequence for the problem  in the set of all -balanced words. However, 

it remains unresolved whether there always exists a -balanced word that is 

optimal for the problem . The challenging problem of balanced words in 

practice is to construct an infinite periodic sequence over a finite set of letters with 

given rates and distributed as evenly as possible. 

Though, only the instance ,  has  for the 

problem , for , infinitely many instances with  exist i.e. the optimal 

value of the problem  is less than  if and only if one of demands  or  is 

odd and the other even [14]. A sequence with distances  and  for product  

with demand  and  and  for product  with demand  is optimal for two 

product case. This procedure solves both the problem  and the response time 

variability problem for , which is not true in general for . The 

response time variability problem minimizes the variability of time for which 

clients, events, jobs or products wait for the next turn in obtaining the resources 

necessary for their advance. This problem intends to utilize the resources so as to 

ensure a fair sharing of common resources between the products which requires to 

be evenly distributed such that the occurrences in any two consecutive items of 

the same product is to keep at constant distance as much as possible all the time. 

The general case of the problem is NP-hard [17]. This result naturally motivates to 

look at other possible common solutions with respect to different objectives. 

 

The EDD algorithm matches each ascending  to the unmatched  with 

the smallest  Since  and  are strictly monotonic increasing for 

consecutive copies of each product [55] and  cannot be less than 

 with  [37] the algorithm ensures the perfect matching to be order-

preserved. 

 

The weighted problem can analogously be reduced to the order-preserved perfect 

matching problem [57]. Heavy weightage for particular copies of a product 

restricts the time window  and increases the separation of 

consecutive copies of that product in the sequence.  and  are 

calculated as the integers  and . 

 

An order-preserved perfect matching gives rise to a feasible solution. 

 

The necessary and sufficient condition for a feasible solution to the problem  is 

the following. 

 



 

  

Iranian Journal of Optimization, Vol 3, Issue  2, spring  2011                                  232            

Theorem 3.3 [13] The problem  has a feasible solution if and only if for all 

 with and, 

  and 

. 

 

The theorem tests the feasibility of  in time  though less efficient than 

 time and of a pair ,    in  time [38]. 

 

The perfect matching using a certain bound obtained through a bisection search in 

the interval  yields an optimal sequence in  time. The 

lower bound   is tight [55]. 

 

Since the deviations are multiples of  and the upper bound is , the bound 

for the optimal value can be only   with  [42]. This fact 

can be implemented to calculate possible optimal values for the problem   only 

for these values. The optimal sequences of an instance  

obtained at bound  are and 

, here the  and the 6th positions are 

swapped. 

 

An optimal sequence for the weighted problem is obtained as follows: 

 

Theorem 3.4 [57] An optimal sequence for the weighted problem can be 

determined when a bisection search is performed in the interval 

in exact pseudopolynomial time 

, where  is a positive integer constant that depends on 

the problem data. 

 

The exact complexity of the problem  still remains open. The problem  has 

been proved to be Co-NP but remains open whether it is Co-NP-complete or 

polynomially solvable [13]. Observation of the input size 

 and the involvement of  variables and  

constraints in the model indicate that an expectation of a polynomial algorithm for 

this problem seems far from trivial. 

 

There exists cyclic optimal sequence for the problem   [57]. Let  be a factor of 

 and  with  for product . Each copy of product  is labeled as 

 where and , the  period of copies of 

product  that consists of   copies of product . There will be  such periods for 
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each product. If all of one period’s early (late) starting times are calculated, then 

the early and the late starting times for all copies in all periods can be calculated 

from these values. When , the time required to calculate the 

starting times can be reduced by a factor of . 

 

Theorem 3.5 [57] If , , then the problem  

consists of  repetitions of the optimal sequence. 

 

The problem  can be represented as a complete convex bipartite weighted graph 

on  . Since each  can be produced at any instant , it is clear 

that   and . The cost  for  at  is taken as the weight 

for the edge . The problem is to find a perfect matching with minimum 

sum of the weights [56]. 

 

Theorem 3.6 [42] A sequence s for the problem  is optimal if and only if there is 

a minimum weight perfect matching  with a weight function 

such that  and 

. 

 

Let us say an incomplete convex bipartite graph on  if weights are attributed to 

only those edges  of which with . This 

substantially reduces the number of weights to be calculated. A -bounded 

optimal solution for the problem , if exists, could be obtained in  

time, since  holds for  [56]. 

Theorem 3.7 [33] The sequence optimal to the problem  with , , and 

 for the incomplete graph is also optimal to the problem  for 

the complete graph. 

 

This result cannot be generalized for non-identical cost functions in . As an 

example, the instance with the cost 

functions, 

 where 

 shows 

that  will not hold for some positions [33]. 

 

But the existence of such a solution is rarely possible. The question of 

determining minimum  such that the optimal solution to the problem  is -
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bounded remains unanswered [21]. It is shown that the upper bound on the 

optimal value of the problem  is  though the bound is not tight. However, the 

lower bound for the problem  is  [1]. Note that a solution is said to 

be -bounded or -feasible if the deviation is less than a given bound . 

 

The perfect matching method can also be applied to the generalized pinwheel 

scheduling problem or the Liu-Layland periodic scheduling in hard real-time 

environments, see [37]. The generalized pinwheel scheduling problem for  pairs 

of positive integers  is to find an infinite sequence  

on finite set  such that ,  and any subsequence of s 

consisting of  consecutive elements of  contains  at least  times, 

. The solution procedure to the problem  with  and the rates 

,  yields a generalized pinwheel schedule for the instance 

 if  [38]. The Liu-Layland periodic scheduling 

problem is to find an infinite sequence  on a finite set  such 

that ,  and a preemptive and periodic job  occurs exactly  

times on any subsequence of , consisting of  consecutive elements of  with 

,  where  and  are the run-time and request period for job . 

The solution to the problem  with  and rates ,  is a 

periodic schedule [38]. 

 

3.5. Simultaneous optimality 

 

Study of finding solutions that minimize a number of objective functions 

simultaneously is useful. Such solutions not only reduce time complexity of the 

problem but also are more applicable in practice. 

 

A Pareto algorithm that determines all Pareto optimal sequences for the bicriterion 

sequencing problem with the objectives  and  exist. The algorithm determines 

an order preserving perfect matching with . Then a minimum weight order-

preserving perfect matching with the weight  for the edge , 

 is determined. The corresponding 

production sequence is a Pareto optimal sequence. A Pareto optimal solution can 

be determined in  time and all Pareto optimal solutions in 

 time [56]. 

 

Let  be the set of all -feasible sequences. The two problems are -equivalent 

if both 
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have the same set of optimal sequences on . The problems  and  on  have 

the same cost  for  [42] and are -equivalent [18, 19]. 

The assumption in [33] that the -equivalence is due to symmetry and convexity 

of the objectives is not true. The instance  with the function  

 

                   

                                           

                  

                     

                   

 

is a counterexample [18], where  is optimal value to the problem . An optimal 

sequence for the problem  in  is optimal for the problem  in , too. With 

this, the problem  can be solved by means of solving the problem  in . It is 

advantageous for the complexity since the conversion of the floating point 

numbers to integers of absolute penalties required is smaller in magnitude than 

that of the square penalties [33]. An optimal solution in  to the problem  may 

not be optimal to the problem , [18, 19]. If the problem  has no optimal 

solution in , the optimality is not guaranteed, however, it provides a lower and 

an upper bounds for the optimal solution to the problem . The problems  and 

 may not have optimal sequences in  [18]. 

 

4. The PRV and Apportionment Problems 

 

The apportionment problem, though it appears in different situations, has been 

studied as a problem for the assignment of seats of a legislature to states or parties 

and applied in real sense [58, 5, 37]. There exists a connection between the PRVP 

and the apportionment problem [8, 30]. 

 

In divisor method of apportionment, a divisor function , a monotone real-valued 

function defined over the set of non-negative integers, is defined as 

 where  is an integer for which there exists no pair of integers 

 and   with   and .  Suppose that a cumulative 

seats  have been apportioned in the stages  through . Then a seat is 

apportioned to a state  in the stage  when ,  with 

 implies  , where  and  are the populations of states  and  

respectively. The time complexity of the procedure is  [4]. A divisor 

method is said to be parametric if .  Adams, 
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Condorcet, Webster and Sainte-Lague and Jefferson and d’Hondt use this method 

with ,  0.5, and , respectively [3]. 

 

The EDD rule in [28] coincides with the parametric method of apportionment 

with   [8]. The parametric method is cyclic [3]. The method, developed by 

[55] to break a tie by choosing the smallest  for unmatched  to 

sequence at while solving the bottleneck PRVP, is the parametric method 

of apportionment with   [30]. The sequences of three products with 

demands  and  obtained by parametric method with  =   

are the same the perfect matching method with yields. 

 

It is noteworthy that the apportionment problem is more directly related to a 

problem that determines the number of units of products to produce in such a way 

that the proportions are as close to the ideal proportions as possible when total 

number of units are given [8]. 

 

5. Production Smoothing Problem 

 

The assumption that allows setup and arbitrary processing times forces the 

problem to be the production smoothing problem, a two-phase problem. The first 

phase is the batching problem that determines batch size and the number of 

batches of the products. The second phase is the sequencing problem that 

sequences the batches. 

 

A takt-time , the ratio of the time horizon  to the number of time-buckets  

is used as a key factor. A batch (a copy or several copies) of a product is produced 

during a takt-time. Let  , , batches of product  be 

produced during   such that , where  and  are the setup and 

the processing time of product . 

 

The multi-objective non-linear integer programming model of the problem [38], is 

 

                  minimize                    

                  maximize                           

 

                  subject to 
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The constraints  and  show that each product is assigned in  batches 

and the constraints  and  ensure the feasibility of . 

 

Recently, a Pareto optimal solution has been developed [38]. The solution 

procedure determines  in  time and sequence of the batches is determined 

in  time by transforming the problem into the assignment problem. 

 

The cost  of assigning  batch of product  to the position is 

 

                     if ,    

       0   if  

       if  

with    , if , 

         , if ,  

and  , the ceiling of the unique crossing point satisfying  

, . 

 

Some heuristics and meta-heuristics appear in the literature though the batching 

problem is proven to be NP-hard [66]. 

 

A dynamic programming for the exact solution has been explored. However, its 

use in real environment due to its computational time is impractical [68]. The 

dynamic programming has been extended to a bounded dynamic programming 

procedure to solve large-size problem within practical times. Some heuristics, 

meta-heuristics and hybrid meta-heuristics such as north-east solution search, 

parametric heuristic search, strategic oscillation, scatter search, path relinking, 

robust tabu search are also introduced to solve the problem [67]. The problem has 

been studied on a single machine in [67] and on the flow shop in [68]. 

 

 



 

  

Iranian Journal of Optimization, Vol 3, Issue  2, spring  2011                                  238            

6. Smoothing Workload Problem 

 

The problem of smoothing the workload on each workstation on the line is a 

secondary concern of the MMJITSP. This case has drawn attention from 

researchers and practitioners as MMJIT sequencing that deals with the goals of 

keeping a constant rate of parts usage and of smoothing workload. 

 

By , we represent the assembly time required for a unit of a product 

 on a workstation . Clearly, the assembly time 

required for  unites of product  is . Then, let  be the total 

assembly time on  over planning horizon . Let  be the cycle time, where 

 is the total demand. Ideally, the workstation  should spend  

time on product  during the periods  through . However, the actual time 

required is , where ,  be the cumulative 

production of product  during the same periods. The deviation between the actual 

and the ideal assembly times on workstation  incurs either idle line or work 

overload on the line. The objective of the problem is to minimize the sum of the 

deviations on all the workstations of the line.  

 

The mathematical model of the smoothing problem [34], is 

              minimize  

 

subject to .  is non-negative unimodal convex function having  at 

. 

 

The model assumes all products may not have the same operation time at any 

workstation on the line. The problem to minimize  subject 

to the constraints  shows that the smoothing workload problem has 

the same form of the PRVP [34]. A model of the problem similar to the PRVP is 

also formulated in [46]. The solution to this problem can be obtained using EDD 

rule in [28]. Another model is in existence based on the concept that the worker of 

a workstation stops the conveyor of the products if incompletion of the operations 

occur within the work zone. Two algorithms branch and bound for small size 

problems and simulated annealing for large size case solve the problem [64]. 

 

A pseudo-polynomial solution procedure with complexity  exist to solve 

the problem with a finite number of workstations, the displacement time and the 

time the worker needs to go from one finished product to another one entering the 

station. See [7]. A tabu search solves the problem with utility work (work done by 
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the utility workers), equivalent to minimizing the work overload, for several 

products and workstations [53].  

 

A number of papers studies joint problem that simultaneously addresses both parts 

usage and work load goals. See, for example, [2, 61]. A dynamic programming 

(DP) is effective for small number of products though with large number of copies 

[50]. For large problems, two myopic heuristics ’one-stage’ heuristic with 

complexity  that fills one position at a time and its improved case ’two-stage’ 

heuristic with complexity  exist [50, 48]. The joint problem as an 

assignment problem gives rise to optimal sequence for small input size [31]. 

 

7. Concluding Remarks 

 

The mathematical models for MMJITSP and different sequencing approaches 

developed till date have been analyzed. The MMJITSP with the goal of keeping 

constant rate of usage of parts is focused. The study shows that the problems have 

real world exciting applications as well as interesting mathematical features of 

theoretical value. We explicitly explore, with justification of the ground for future 

research, the questions which still remain open and are challenging. 

 

The problem, under the assumption that the products require approximately the 

same number and mix of parts or the pegging assumption (single-level) is 

solvable. A pseudo- polynomial algorithm of the assignment problem is 

applicable to the problem . The approach can also be applied to the bottleneck 

PRVP with necessary modification. 

 

The other approach for solving the problem  is the binary search for -feasible 

sequence on perfect matching in bipartite graph. It is also of pseudo-polynomial 

complexity. This property is applicable to other general convex symmetric 

nonnegative functions also. The bound  is sufficient for searching an 

optimal solution to the problem  and similar results hold for the problem . 

 

The approach applied to the incomplete bipartite graphs to solve the problem  is 

developed. But it is yet unknown what should be the minimum size of  such that 

the -bounded solution guarantees an optimal sequence. Looking for a good  is 

appealing as this would reduce the complexity. 

 

Despite much effort to solve the PRVP with pseudo-polynomial complexity on 

the input size of the demands, the exact complexity of the single-level problem 

still remains open. The problem  has been proved to be Co-NP but remains 

open whether it is Co-NP-complete or polynomially solvable. To have a 

conclusive statement, it would be one issue of the future research. Analyzing the 
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work-in-progress, solution of this problem with polynomial time complexity 

seems unlikely to exist. 

 

Since the PRVP is a group of single-objective problems and the properties of 

optimal sequences may differ significantly for different objective functions, 

obtaining common or closely related optimal sequences to different objective 

functions would significantly save the complexity cost. 

 

The ORVP even with two-levels are strongly NP-hard. Therefore, an 

improvement of existing approximation algorithms, for example dynamic 

programming or local search techniques would contribute to the research.  

 

Existence of cyclic optimal sequences also considerably reduces the 

computational time. This problem has been resolved for the PRV case. However, 

the conjecture whether cyclic sequences to the ORVP are optimal is still open. 

 

The elegant algebraic concept of balanced words introduced in this field is 

relatively new. The -balanced words cannot be obtained for most rates, but the 

set of all -balanced words consists of optimal sequence for the problem . 

Minimality of this set is unknown and enumeration of this set for optimality is 

expensive. It is still unsolved whether the set of all -balanced words is sufficient 

for an optimal sequence for the problem . Characterization of balanced words to 

the other MMJITSP would strengthen the concept of balanced words in obtaining 

balanced sequence. 

 

The production smoothing problem as a variant of the MMJITSP with arbitrary 

nonzero processing and setup times helps bridge the gap between the theoretical 

achievements and industrial practice. Study of this problem in a variety of 

manufacturing environments 

for example shop scheduling systems is an important research area. 

 

The relation between the MMJITSP and well established apportionment problem 

found 

in the literature shows that the parametric method with     seems to be 

closely related to Inman and Bulfin’s EDD algorithm and the perfect matching 

method though no formal proof is in existence. 
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