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Abstract 

In models of data envelopment analysis (DEA), an optimal set of weights is 

generally assumed to represent the assessed decision making unit(DMU) in the 

best light in comparison to all the other DMUs, and so there is an optimal set of 

weights corresponding to each DMU. The present paper, proposes a three stage 

method to determine one common set of weights for decision making units. Then, 

we use these weights to rank efficient units. We demonstrate the approach by 

applying it to rank gas companies. 
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1.Introduction 

 

Data envelopment analysis (DEA) is a non-parametric technique for evaluating the 

performance of many activities. DEA evaluates the relative efficiency of a set of 

homogeneous decision making units(DMU) by using a ratio of the weighted sum 

of outputs to the weighted sum of inputs. Specifically, it determines a set of 

weights such that the efficiency of a target DMU relative to the other DMUs is 

maximized. So, there is an optimal set of weights corresponding to each DMU. 

We would like to select one common set of weights for all DMUs. The idea of 

common weights in DEA is not new. It was first introduced by Cook et al.[5] and 

Roll et al.[10]. Cook and Kress[4] gave a subjective or dual preference ranking by 

developing common weights through a series of bounded runs by closing the gap 

between the upper and lower limits of the weights. Ganley et al.[8] considered the 

common weights for all DMUs by maximizing the sum of efficiency ratios of all 
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DMUs. Liu and Peng [9] proposed a method to determine one common set of 

weights to create an efficiency score of a set of efficient DMUs. They have used 

these weights to ranking efficient units. Cook and Zhu [6] have developed a goal 

programming model to derive a common-multiplier set. The important feature of 

their multiplier set is that it minimizes the maximum discrepancy among the 

within-group scores from their ideal levels. 

As it is, the selection of weights for a set of DMUs is connected with the efficient 

facet of production possibility set (see [7]). In the present paper, we aim to search 

one common set of weights to determine the efficiency score of a set of DMUs. In 

the procedure we propose, common weights will be associated with an efficient 

facet of the frontier. This might be equivalently stated as a selection of weights 

associated with hyperplane that not only maximize contact with the production 

possibility set but also maximize the technical efficiency of all DMUs. This will 

be done by using a mixed binary linear programming problem. By using these 

common weights, DMUs will be ranked. The rest of the paper is organized as 

follows: section two begins with the basic DEA models. In the next section, 

section 3, we describe a method to determine one common set of weights using a 

simple example. We then draw the general approach in section 4. In section six 

we introduce an empirical example which uses evaluations of the gas companies. 

Conclusions appear in section 7. 

 

2.Preliminaries 

 

To describe the DEA efficiency measurement, let there are n DMUs and the 

performance of each DMU is characterized by a production process of m inputs 

( ; 1,..., )ijx i m to yields s outputs ( ; 1,..., )
rj

y r s . We can represent the 

efficiency of ODMU  (output per unit of input) by the expression 
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where ,  r=1,...,srou  and iov ,  i=1,...,m  are vectors of multipliers for outputs and 

inputs, respectively. Charnes et al. [2] proposed measuring the relative efficiency 

of a set of n DMUs by solving, for each ODMU , the following linear fractional 

programming problem: 
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where    is a very small number (0 1) . The essential idea behind this 

model is to afford each unit o the opportunity to present its efficiency picture in 

most favorable light possible. Hence, each DMU is allowed to choose multipliers 

that maximize its efficiency score. Since (1) is a linear fractional programming 

problem, we can transform it into a linear format using the manner of Charnes and 

Cooper [3]. Toward this end, let 
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3. Common weights 

 

As we have seen in foregoing section, in DEA, each DMU maximizes its 

efficiency score, under the constrains that none of DMUs' efficiency scores is 

allowed to exceed 1. Decision makers always take the maximum efficiency score 

1 as the common benchmark level for DMUs.  
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Liu and Peng [9] have used this benchmark level to describe and determine 

common weights. In their model, the goal is to maximize the efficiency of the 

aggregate DMU, under the conditions that the efficiency score of DMUs in E, the 

set of all CCR-extreme efficient DMUs, cannot exceed the benchmark level. 

In our approach, we believe that there should be a common set of weights which 

ensure that, if possible, all DMUs have efficiency one. In order to motivate our 

approach to common weights determination, consider the simple example shown 

in table 1(This example is taken from Liu and Peng[9]). In this example, we have 

four DMUs with two inputs and two outputs. Hence, we need to determine 

weights ,  r=1, 2 ru and i
v ,  i=1, 2  such that: 
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In other word, we need to determine weights  ru  and  i
v  such that for each 

DMU, the weighted sum of outputs is equal to the weighted sum of inputs. Here, 

we have four equality constraints and four non negativity variables (in general n 

equality constraints and m s non negativity variables), and hence, in general, 

we cannot guarantee the consistency of the system of equations. 

We define 
j

  as the deviation of efficiency of 
j

DMU as follows: 
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In our approach to determine common weights, we believe that common weights 

should be determined such that 
4 2 2

1 1 1

r rj i ij

j r i

u y v x
  

 
 

 
    is minimized. Toward 

this end, we define 
min

P as a lower bound of 

 1 2 2 1 1 2 2 ,  j=1,...,4rj j j ju y u y v x v x   . Then, at the first stage, consider the 

following: 
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The left hand side inequalities of (5) ensure that 
min

P is at least as small as the 

smallest difference between the weighted sum of outputs and the weighted sum of 

inputs of any DMU, while the inequalities of right hand side ensure that zero is at 

least as large as the largest difference between the weighted sum of outputs and 

weighted sum of inputs of any DMU. Maximizing 
min

P  in (5) means that we 

minimize the dispersion of pairs 
2 2

1 1

, ;  j=1,...,4ri ij rj
j r

v x u y
 

 
  
 
   in the space of 

(weighted inputs - weighted outputs). In other word, we attempt to bring the 

DMUs close to benchmark level. Hence, if it is possible to find a set of weights 

such that each DMU has efficiency one i.e. to have 
min

0P  , then this will 

automatically be found when we come to solve the above linear program.  

Let *

min
P  be the optimal solution value to (5). In this stage, we maximize contact 

with the production possibility set. Toward this end, we use the slack variables 
j

s  

and binary variables 
j

b  and rewrite the right hand side inequalities of (5) as 

equality. We attempt to force 0
j

s   as many as possible. 

 

 

 

So, at the second stage, our approach to common weights determination solves the 

following mixed binary linear program: 
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M is a large positive number. Clearly, selecting 0tb  forces the 0ts  . 

Finally, we refine the selection of common weights made in second stage by 

choosing those that are positive. Toward this end, let  1 2 1 2,  ,  ,  Min u u v v   

and 
*b  be the optimal value to (6). We now solve the following: 
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Model (7) is restricted to maintain *
j

j E

b b


 . In this program, we select between 

the alternative optimal solutions (if any) provided by (6) by maximizing the 

minimum value of the weights. For our simple four DMU example, running the 

proposed approach yields to the results that are listed in table 1. As the 7-th 

column of the table indicates, units 1, 3 and 4 belong to the efficient facet  

 

1 2 1 20.0309 0.0885 0.5655 0.0164 0y y x x    . 

The total deviation of efficiency is 0.0907 , while this index is 0.1296  in Liu 

and Peng approach. 

 

 

4.General approach 

 

We can now present our general approach for common weights determination. As 

before, let m be the number of input measures, s be the number of output 

measures, n be the number of DMUs,  rpy   be the value of  
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output measure r for DMU p
,  

ip
x  be the value of input measure i for DMU p

,    

be a very small number     0 1     and E be the set of all  CCR- extreme 

efficient DMUs. 

 

Let 
minP be a lower bound of 
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   . Then our approach 

to common weights determination is as follows: 

 

Stage 1: We first need to minimize the dispersion of DMUs, in set E, in the space 

of (weighted inputs-weighted outputs) using the linear program: 
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Maximizing 
min

P  in (8) means that we bring the DMUs close to the benchmark 

level. Let *

min
P  be the optimal solution value associated with (8). 
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The purpose of (9) is to find from among the alternate optima, a supporting 

hyperplane with a maximal number of efficient units in the support set. Let b   be 

the optimal solution value associated with (9). 

 

Stage 3: We now select between alternative optimal solutions (if any) provided by 

(9) by maximizing the minimum value of the weights. Toward this end, let 

 1s1
,..., , ,...,u u mMin v v  . To determine one common set of weights, solve 

the following: 
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As can be seen, the objective in (10) is to maximize the minimum value of the 

weights. 

 

5.An empirical study 

 

This section illustrates the common weights determination discussed in this paper 

with the analysis of gas companies activities. The data set consists of 25 gas 

companies located in 24 regions in Iran. The data for this analysis are derived 

from operations during 2006. We use six variables from the data set as inputs and 

outputs. Inputs include capital, number of staff and operational costs(excluding 

staff costs), and outputs include number of subscribers, amount of pipe-

laying(kilometers) and length of gas network(kilometers). In table 2 we have 

recorded the data set (All monetary variables are stated in ten millions of current 

Iranian Rial). Using CCR model (1) we have found that five companies #2, #3, #5, 

#8 and #12 are extreme efficient and so E = {2, 3, 5, 8, 12}. Applying our general 

approach given above we have that: 
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It is to be noted that these weights are associated with an efficient facet of the 

frontier on which companies #2 and #8 are located. In table 2 we have recorded 

the results.  
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Table 1: data and results 

         #j 

0.8026 0.2681 0.1974(2

4) 

20152

9 

501 27564 152832

5 

1401 37743

0 

1# 

0 1 1(1) 84044

5 

803 44136 118690

5 

1094 22133

8 

2# 

0.1461 1 0.8539(2

) 

83261

6 

251 27690 132332

5 

1079 26780

6 

3# 

0.3875 0.9700 0.6125(7

) 

25177

0 

816 45882 648685 444 16091

2 

4# 

0.2139 1 0.7861(4
) 

44350
7 

654 72676 909539 801 17721
4 

5# 

0.1664 0.8926 0.8336(3

) 

34158

5 

177 19839 545115 686 14632

5 

6# 

0.5384 0.6926 0.4616(1

2) 

23382

2 

695 40154 790348 687 19513

8 

7# 

0.2151 1 0.7849(5

) 

11894

3 

606 37770 236722 152 10814

6 

8# 

0.5017 0.7378 0.4983(1

1) 

17931

5 

652 28402 523899 494 16566

3 

9# 

0.2823 0.9318 0.7177(6

) 

19530

3 

959 63701 428566 503 19572
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10

# 

0.8338 0.0.531
1 

0.1662(2
5) 

16037 221 17334 298696 343 87050 11
# 

0.4896 1 0.5104(1

0) 

61836 565 30242 198598 129 12431

3 

12

# 

0.4784 0.6900 0.5216(9

) 

46233 153 14139 131649 117 67545 13

# 

0.6518 0.8119 0.3482(1

9) 

42094 211 13505 228730 165 47208 14

# 

0.5787 0.5843 0.4216(1

4) 

44195 114 8508 165470 106 43494 15

# 

0.6141 0.9162 0.3858(1

6) 

45841 248 7478 180866 141 48308 16

# 
0.7558 0.7335 0.2442(2

2) 

36513 230 1818 194470 146 55959 17

# 

0.4364 0.6861 0.5636(8

) 

70380 127 6422 179650 145 40605 18

# 

0.6059 0.7613 0.3941(1

5) 

36592 182 1860 94226 87 61402 19

# 

0.5492 0.9258 0.4508(1

3) 

47650 170 2900 91461 104 87950 20

# 

0.7677 0.2401 0.2323(2

3) 

13410 85 3326 88640 114 33707 21

# 

0.6745 0.5857 0.3255(2

0) 

79883 318 1478 292995 254 10030
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22

# 
0.6292 0.9884 0.3708(1

7) 

32553 273 9105 98302 105 94286 23

# 

0.6478 0.6813 0.3522(1

8) 

72316 241 5332 287042 224 67322 24

# 

0.7464 0.9968 0.2536(2

1) 

30004 441 8082 155514 104 10204
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25
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The 8-th column of the table gives the value of 
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We 

have shown the CCR efficiency of each company in column 9. The value of  js 

are listed in column 10. Returning to table 2, we see that only one company #2 has 

zero deviation. As can be seen, the total value of deviation of efficiency is 

12.7132. 

 

 

 

6.Conclusion 

 

In the current paper, we have presented a DEA based approach to determine one 

common set of weights for all DMUs. Common weights are selected 

simultaneously for all DMUs so as to minimize the deviation of efficiency of 

DMUs. They also, maximize contact with the production possibility set. We 

believe that the contribution of this paper is to present a DEA-based approach that 

determines one common set of weights that is associated with an efficient facet of 

the production possibility set and that these weights can be used for ranking 

efficient units. 
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